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A B S T R A C T

In this study we apply electron tomography of dislocations to quartz with a view to assess whether the von Mises- 
Taylor criterion is satisfied or violated in a deformed crystal of quartz. We propose a method to perform electron 
tomography with few projected images which allows extension of this technique to beam-sensitive materials such 
as quartz. The 3D characterization of the dislocation microstructure allows the evaluation of contributions to 
dislocation mobility with no ambiguity. From the geometrical characteristics of the dislocations and their Bur
gers vectors, we show how to identify the non-zero components of the strain tensor. We show that in the quartz 
grain investigated, the von-Mises-Taylor criterion is satisfied thanks to the climb of 〈c + a〉 dislocations.   

1. Introduction

The book of Nicolas and Poirier (1976) “Crystalline Plasticity and
Solid State Flow in Metamorphic Rocks” has represented a milestone in 
transferring metallurgical knowledge to structural geology. Despite the 
complexities of crystal structure of minerals and compositional variation 
of minerals and rocks, their plastic deformation, like metals, involves the 
motion of crystal defects. In naturally deformed samples, microstruc
tures are often the only record left by past tectonic events and their 
detailed study is essential to decipher the thermomechanical history 
experienced by the rocks. Compared to metals, often of cubic symmetry, 
most minerals exhibit low crystallographic symmetry, which in turn 
allows only a limited number of slip systems to be activated (Barber et al. 
2010). According to the Von Mises-Taylor criterion (von Mises 1928; 
Taylor 1938), at least five independent slip systems must operate to 
satisfy the conditions of continuity of displacement at crystal boundaries 
and accommodate an arbitrary imposed deformation. This criterion can 
be relaxed to four slip systems if strain is inhomogeneous and only local 
accommodation is required (Hutchinson 1977; Nebozhyn et al., 2000; 
Detrez et al. 2015; Castelnau et al. 2020). Nevertheless the Von Mises- 
Taylor criterion is not satisfied in many minerals and other deforma
tion mechanisms such as crack opening, frictional sliding, kinking, 

twinning, dislocation climb, high-temperature grain boundary sliding, 
or diffusion creep may be necessary to deform polycrystalline rocks 
(Groves and Kelly 1969). Here, we propose a novel approach based on a 
detailed characterization of a dislocation microstructure by tomography 
in transmission electron microscopy (TEM) to assess its capability of 
achieving an arbitrary imposed deformation. In this study, quartz will be 
used as a case study to illustrate the methodology that we introduce. 

In quartz, dislocations were first evidenced by Willis (1952) from 
growth spirals on a surface. Evidence for basal slip was first reported by 
Christie et al. (1964). In this trigonal structure, basal glide involves three 

1/3
〈

1120
〉

slip directions referred to as 〈a〉 (Baëta and Ashbee 1969).

Blacic (1975) reports, as a function of increasing temperature, a tran

sition from 〈a〉 -basal to [0001] (〈c〉) prismatic ({m}) 
{

1010
}

glide. Ball

and White (1978) pointed the apparent difficulty of satisfying the von 
Mises criterion for general plasticity by activation of 〈a〉 -basal and 〈c〉
-prismatic glide alone. In particular, with these slip systems, strains 
parallel to the [0001] axis cannot be produced in any single grain in 
response to imposed stresses. They proposed that the deformation of 
quartzite in the crust involves activation of dislocation climb to allow 
general plasticity of the polycrystalline aggregate. This fundamental 
limitation can also be solved by activation of 〈c + a〉 glide involving 
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dislocations with 1/3
〈

1123
〉

Burgers vectors. Evidence for activation of

〈c + a〉 glide was first reported by Baëta and Ashbee (1969) and further 
confirmed by TEM by Trepied and Doukhan (1982) in quartz single 
crystals compressed along the [0001] axis at temperatures above 973 K. 
Activation of slip systems induces crystal preferred orientations in rocks 
(Nicolas and Poirier 1976) which can be linked to seismic anisotropy 
(Mainprice and Nicolas 1989). This direction of research has been very 
active in the last decades, with the development of EBSD measurements
and Visco-Plastic Self-Consistent (VPSC) models. Surprisingly, in these 
studies, the role of 〈c + a〉 glide has only been marginally considered. 
Alternatively, a number of models have been based on a succession of 
slip systems with increasing temperature, 〈a〉-glide is successively acti
vated in the easy basal plane, and then in the rhombohedral planes 

(acute rhombs π
{

1012
}

and π′
{

0112
}

, and positive r
{

1011
}

and

negative z
{

0111
}

rhombs) followed by 〈a〉 -prismatic (m
{

1010
}

) and

finally 〈c〉 -prismatic (see Morales et al. 2011; Keller and Stipp 2011; 
Morales et al. 2014). However, the activation of those planes does not 
solve the von Mises-Taylor criterion issue raised by Ball and White 
(1978). Looking beyond the activation of slip systems, activation of 
climb (as suggested by Ball and White (1978)) is not the only alternative. 
Violation of the von Mises-Taylor criterion leads to stress concentration 
at the grain boundaries which can be released by crack opening or 
activation of grain boundary sliding. Activation of grain boundary 
sliding in quartz had been proposed in quartz-rich rocks by Fliervoet 
et al. (1997), Rutter and Brodie (2004), Fukuda et al. (2018) and Tokle 
et al. (2019). Microstructural evidence for the activation of grain 
boundary sliding is difficult to established as demonstrated by recent 
studies of Maruyama and Hiraga (2017), Quintanilla-Terminel et al. 
(2017) and Bollinger et al. (2019). 

In the present study, we show that the validity of the von Mises- 
Taylor criterion can be assessed from a detailed, 3D, characterization 
of the dislocation microstructure since the kinematics of glide is fully 
determined from a dislocation’s geometry (knowing its Burgers vector). 
Our approach is presented in the “Theory” section of this paper. Con
ventional TEM usually provides 2D projections of the dislocation 
microstructure which is not sufficient to determine the slip plane. 3D 
dislocations structures can be reconstructed by tomography as first 
demonstrated by Barnard et al. (2006) (see a recent review on this 
technique by Feng et al. (2020)). The strong sensitivity of quartz to 
electron irradiation (see for instance Fig. 2 of Barber et al. 2010) is 
however a limitation to perform electron tomography which usually 
involves long acquisition of image series at varying tilt. In Section 2, we 
propose a novel method to perform electron tomography with few 
projected images which extends this technique to beam-sensitive ma
terials. In Section 3, we show how the strain components produced by 
the dislocation microstructure can be calculated from the elements 
characterized in electron microscopy (dislocation geometry, Burgers 

vector). The results presented in Section 4 are analyzed in Section 5 in 
the light of the ability of the observed microstructure to produce a 
general deformation in the grain. We conclude with some perspectives 
offered by this work toward more quantitative studies. 

2. Materials and Methods

2.1. Specimen 

Here we characterize dislocation microstructures in quartz grains 
from a Bohemian (Czech Republic) granulite. The specimen was me
chanically polished down to a thickness of 30 μm, then ion milled with 
Ar-ions to achieve electron transparency. A thin carbon layer was 
deposited to ensure electron conduction on the thin-foil. An example of 
typical dislocation microstructure is shown in Fig. 1. 

2.2. Transmission electron microscopy 

TEM analyses were conducted with a FEI® Tecnaï G2–20 Twin mi
croscope operating at 200 kV with a LaB6 filament, associated with a 
“Spinning Star” precession module (Vincent and Midgley 1994) from the 
Nanomegas Company. Electron tomography has been performed by 
acquiring tilt series with a double tilt sample-holder in diffraction 
contrast imaging mode. The crystal of interest is oriented so as to 
identify a diffraction vector with a high structure factor to produce well- 
contrasted images. Here we use g: 1101 which belongs to the family of 
diffraction vectors with the highest structure factor in quartz. Imaging is 
performed in the weak-beam dark-field (WBDF) mode to keep a high 
signal to noise ratio. In these conditions background contrasts are het
erogeneous because of the occurrence of thickness fringes. Also, the 
contrast of dislocations inclined in the thin foil oscillates. In order to get 
homogeneous contrast for both background and dislocations, we have 
induced a precession of the electron beam (Rebled et al. 2011; Mussi 
et al. 2014; Mussi et al. 2015a, b; Mussi et al. 2017) with a precession 
angle of 0.1◦ to ensure that the electron beam is not masked by the 
objective aperture (necessary to reveal dislocation contrasts). Electron 
tomography of dislocations requires a perfect alignment of the diffrac
tion vector along the sample-holder principal axis, in order to keep the 
dislocation contrast constant all over the tilt series acquisitions. 
Following accurate tilt series alignments (with spatial precision better 
than 5 nm) dislocation tomography reconstructions are obtained using 
the weighted back-projection (WBP) algorithm (Herman et al. 1976) 
accessible on the TomoJ plugin (Messaoudi et al. 2007) from the free 
ImageJ software. Reconstruction algorithms are aimed at transforming a 
tilt series into a stack. The determinations of dislocation position in 
reconstructed volumes are accurate in the sample-holder accessible 
angular range (interpolation calculation of the algorithm); however they 
are less accurate in the missing-wedge (extrapolation calculation of the 
algorithm). Consequently, reconstructed dislocation thicknesses are thin 
in the sample-holder accessible angular range and thick in the missing- 
wedge, so their geometries take the form of ribbons. To improve the 
reconstructed volume qualities, dislocations have been directly redrawn 
into the volumes using the free UCSF Chimera software (Pettersen et al. 
2004; Liu et al. 2014; Mussi et al. 2016; Mussi et al. 2017). 

Burgers vector indexing is performed using the thickness fringe 
method developed by Ishida et al. (1980). This technique consists of 
counting the number of thickness fringes that end on the dislocation 
terminations. This number corresponds to the g.b scalar product where g 
is the diffraction vector and b the Burgers vector. Even if this method is 
underused by the community of TEM users (Wiezorek et al. 1997; 
Miyajima and Walte 2009), it is useful to characterize the Burgers vec
tors of materials sensitive to electron beam as it considerably limits the 
WBDF micrograph acquisition number. 

Fig. 1. Typical dislocation microstructure obtained in kinematical bright field 
condition with the 1101 diffraction vector. 



Fig. 2. Reconstruction method for few projected images in garnet. a) Seven projected micrographs (projection angles of − 54◦, − 40◦, − 24◦, 0◦, 24◦, 40◦ and 62◦) 
extracted from the raw aligned tilt series obtained in WBDF conditions with the 420 diffraction vector and a precession angle of 0.1◦; b) corresponding projected 
micrographs redrawn in black and white contrast; c) superposition of projected images extracted from the reconstructed volume (in red) and the redrawn micro
graphs of Fig. 2b (in blue), where the reconstructed volume has been obtained using only 4 redrawn micrographs for projection angles of − 24◦, − 8◦, 8◦ and 24◦. The 
projected images extracted from the reconstruction volume accurately fit the original micrographs even for high projection angles. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version of this article.) 



2.3. Tomography with few projected images and low angular ranges 

To determine the best working conditions to perform electron to
mography on specimens sensitive to electron beam, a tilt series from a 
previous study has been used. This tilt series was acquired on a deformed 
garnet sample which is less sensitive to irradiation damage. It was ac
quired every 2◦ from − 54◦ to 62◦. Reconstructing a good quality 3D 
dislocation microstructure with few projected images and a low angular 
range requires favorable reconstruction conditions. That is why we 
decided to analyze only a few dislocations that are not far from the tilt 
axis, so that reconstruction algorithm extrapolations can be minimized. 
The dislocations of each projected images have been redrawn to ensure a 
black and white contrast, since discrete 3D reconstructions give access to 
better quality volumes than continuous grey level reconstructions 
(Batenburg and Sijbers 2011). Fig. 2a and b show 7 raw and redrawn 
projected images among the 59 projected images of the tilt series. An 
electron tomography volume has been reconstructed with only 4 
redrawn projected images and an angular range of only +/− 24◦, i.e. 
projection angles (angles between the normal of the thin foil and the 
electron beam direction for a specific tilt angle) of − 24◦,-8◦, 8◦ and 24◦

(red rectangle with dotted lines in Fig. 2). Then, the reconstructed dis
locations are redrawn into the reconstructed volume using Chimera 
software (Liu et al. 2014; Mussi et al. 2016; Mussi et al. 2017). Fig. 2c 
reveals small deviations between the positions of the redrawn recon
structed dislocations and the redrawn dislocations of projected images 
(approximately the dislocation thicknesses) even for high projected 
angles such as − 54◦ and 62◦. Consequently, we conclude that tomo
graphic reconstructions performed near tilted axes with dislocation 
micrographs redrawn in black and white reflect real dislocation micro
structures for only 4 projected images and a low angular range of only 
48◦ (+/− 24◦). 

3. Theory: Inferring strain(¡rate) components from dislocation
geometry 

3.1. Dislocation glide 

A dislocation with a Burgers vector b gliding on a plane with normal 
ng (index “g” stands for glide) produces a shear proportional to tensor b 
⊗ ng or equivalently to ̂b ⊗ n̂g with ̂b and n̂g the unit vectors parallel to b 
and ng. Here, ⊗ is the dyadic product (the dyadic product of two vectors 

â and b̂ is a second order tensor A
̿ 
with component Aij = aibj). To express 

the associated symmetric strain tensor, one defines the Schmid tensor S
̿ g

:

S
̿ g

=
1
2

(
b̂ ⊗ n̂g

+ n̂g
⊗ b̂

)

Sg
ij =

1
2
(
bing

j + bjng
i
)

which is symmetric and traceless, i.e. S11
g + S22

g + S33
g = 0 since b̂ and n̂g 

are orthogonal. Plastic deformation due to dislocation glide is isochoric. 

Therefore, S
̿ g 

has only five independent components, for example S11
g ,

S22
g , S23

g , S12
g and S13

g . 

3.2. Dislocation climb 

Climb is the non-conservative displacement of a dislocation outside 
its glide plane due to the absorption or emission of point defects. It 
concerns only non-screw dislocations, i.e. when dislocations with a 
Burgers vector has a non-zero edge component. The climb of an edge 
dislocation produces a normal strain (Lebensohn et al. 2010; Yuan et al. 
2018) along the direction of the Burgers vector, i.e. a strain tensor 
proportional to: 

S
̿ c

= b̂ ⊗ b̂  

Sc
ij = bibj

4. Results

To reduce electron beam irradiation effects, a small condenser
aperture (100 μm in diameter) and a small spot size (11.3 nm in diam
eter) are used. Pixels have been gathered four by four to intensify the 
contrast by a factor 16 without increasing the electron dose. Contrast 
adjustments are performed in the vicinity of the zones of interest and 
analyses are performed as quickly as possible to minimize beam damage. 
Each tilt series is composed of four WBDF micrographs acquired with a 
small precession angle, an exposure time of 20s and projection angles of 
− 30◦, − 10◦, 0◦ and 25◦ respectively (these projection angles are chosen 
to avoid the dynamic contrasts of zone axes). An example of Burgers 
vector indexing is described on Fig. 3 for the dislocation 1A (Table 1). 
Two thickness fringes end on the dislocation for a 1011 diffraction 
vector (small black arrow on Fig. 3a), no interaction is observed for g =
1100 (Fig. 3b), one fringe ends on the dislocation for a 1101 diffraction 
vector (Fig. 3c), and one for 1101 (Fig. 3d). We can conclude that the 

Burgers vector of this dislocation is 1/3
[
1123

]
.

Then we perform tilt series alignments in several small zones where 
the Burgers vectors of dislocations have been indexed. We use nano
metric dislocation loops near the studied dislocations (see the small 
white arrow on Fig. 3a) as reference points to perform accurate tilt series 
alignments. After alignments, the dislocations of interest have been 
redrawn in white with a black background (Fig. 4b), then the dislocation 

Fig. 3. Dislocation 1A (see Table 1). Burgers vector indexing by the thickness 
fringe method (Ishida et al. 1980). a) WBDF micrograph obtained with g: 1011 
(projection angle of 41.5◦) showing a dislocation where g.b = ± 2 (small black 
arrow), a small dislocation loop of approximately 9 nm in diameter is indicated 
by a small white arrow; b) WBDF micrograph obtained with g: 1100 (projection 
angle of − 21.0◦) showing a dislocation where g.b = 0 (small black arrow); c) 
WBDF micrograph obtained with g: 1101 (projection angle of 0◦) showing a 
dislocation where g.b = ± 1 (small black arrow); d) WBDF micrograph obtained 
with g: 1101 (projection angle of − 28.5◦) showing a dislocation where g.b = ±

1 (small black arrow). These four diffraction conditions are characteristic of a 

1/3
[
1123

]
Burgers vector.



microstructures have been reconstructed with the WBP algorithm 
(Herman et al. 1976) and finally the resulting 3D dislocations have been 
directly redrawn in the volume (Fig. 4c) using the Chimera software (Liu 
et al. 2014; Mussi et al. 2016; Mussi et al. 2017). The complete dislo
cation reconstruction corresponding to Fig. 3 is presented on Fig. 4. 
From Fig. 4d, with a projection angle of − 12◦, the black dislocation 
segment projection appears rectilinear which suggests that the plane 
which contains this dislocation segment is edge-on. Knowing the thin 

foil orientation, it is possible to characterize this plane which is 
(

0116
)

,

at approximately 12◦ from the (0001) plane. Similarly, two other planes, 

(
3253

)
and 

(
3121

)
can be characterized for this dislocation, for pro

jection angles of 46◦ and 85◦ respectively. Dislocation 1A, with the 

Burgers vector 1/3
[
1123

]
appears to exhibit a complex three- 

dimensional configuration, with no segment in glide configuration. 
Fig. 5 shows the characterization of a [0001] dislocation shown 

along several projection angles. From Fig. 5e and j, the projections of 
this dislocation appear rectilinear with tilt angles of -57◦ and 123◦

respectively. Therefore, this dislocation is located in 
(

3148
)

. The

normal of this plane is at a 30◦ angle to the Burgers vector, i.e. it is not a 
glide configuration. 

Fig. 6 describes the geometry of a 1/3
[
2110

]
dislocation (2C). This is

the most commonly indexed Burgers vector of dislocations determined 
in our study, see Table 1. Here again, the geometry is 3D. This dislo
cation can be subdivided into four segments (in blue, light blue, black 
and grey colors respectively), each contained in a specific habit plane 

(Fig. 6). Two of them are prismatic planes: 
(

1100
)

and 
(

1010
)

plane

which do not contain the Burgers vector. The black and the grey seg

ments belong to the 
(

1 2 3 11
)

and 
(

3128
)

planes respectively (Fig. 6b,

e, h and i). Except for 
(

1 2 3 11
)

which is slightly ambiguous, all seg

ments depart significantly from glide configuration. A similar conclu

sion can be drawn for any other 1/3
[
2110

]
dislocation characterized

(Table 1). 
Fig. 7 shows the only unambiguous case for a glide configuration 

found in this study (dislocation 3E, Table 1). This dislocation has a 1/

3
[
1123

]
Burgers vector. It is composed of 2 segments: a black segment

whose projection appears rectilinear for a tilt angle of − 68◦ (Fig. 7c) and 
a purple segment whose projection is rectilinear for a tilt angle of +85◦

(Fig. 7h). The purple segment is in glide configuration in the 
(

2111
)

,

the second order pyramidal plane. The dislocation is, however, not 
purely in a glide configuration since the black segment (although its 
plane is not determined precisely), deviates significantly from the glide 
plane. 

Table 1 summarizes all characterizations. It must be noted that this 
sampling does not capture all dislocations in the area studied. Since 
tomography is performed only for an individual diffraction vector g =
(

1101
)

, some dislocations (e.g. 1/3
[
1120

]
,1/3

[
1213

]
and 1/3

[
2113

]
)

are out of contrast. No conclusion can be drawn for these dislocations. 

5. Discussion and conclusion

Several facts emerge from this study which cannot be drawn without
a detailed characterization. Firstly, all potential Burgers vectors of the 
quartz structure have been characterized i.e. <a>, [c] and < c + a>. 
This probably results from a deformation occurring at high temperature 
since this sample went through the granulite facies. All dislocations 
exhibit rather complex 3D configurations. Two processes lead to 3D 
dislocation microstructures: cross-slip and climb. Here tomography al
lows us to exclude cross-slip as the most prevalent process, since dislo
cation segments in glide configurations are almost never found. Climb is 
a major process acting in this specimen. This is consistent with the 
observation of several sub-grain boundaries. From our study, we can 
derive all parameters which are necessary to infer the strain components 
produced by the dislocations characterized either by glide (in the only 
occurrence observed: dislocations 3E) or by climb. Based on these results 
and theory presented in Section 3, we can report which dislocation 
provides a non-zero contribution for each component of the strain 
tensor:  

Table 1 
Summary of dislocation characterizations where we report the occurrence of the 
planes containing some segments of the dislocations (see figures). The angle 
between the Burgers vector b and the normal of those planes is reported in the 
last column. In some cases, determination of those planes is imprecise when their 
projection is horizontal (*) or when the segments are very short (**); their values 
are given to provide an estimation of the angle between the planes and the 
Burgers vectors.  

Dislocation (Burgers vector b) Segment Lying planes (Normal n) ̂(n, b)

1/3
[
2110

]
dislocations

03B  
(

3253
)

58◦

05B 1 
(

1103
)

70◦

2 
(

3253
)

58◦

5B 1 
(

3253
)

** 58◦

2 
(

1120
)

60◦

3 
(

1101
)

* 47◦

4 
(

10 1 11 5
)

40◦

5 
(

1120
)

60◦

6 
(

3148
)

69◦

2H 1 
(

3301
)

33◦

2 
(

3301
)

33◦

1C 1 
(

3142
)

49◦

2 
(

1101
)

47◦

2C 1 
(

1 2 3 11
)

85◦

2 
(

1100
)

30◦

3 
(

1010
)

30◦

4 
(

3128
)

68◦

3I 1 
(

1 3 2 17
)

86◦

2 
(

1341
)

76◦

[0001] dislocations 
1D 1 

(
1101

)
* 52◦

2 
(

1011
)

** 52◦

3 
(

1101
)

** 52◦

4 
(

3631
)

81◦

2B  
(

3148
)

30◦

1/3
[
1123

]
dislocations

1A 1 
(

3121
)

51◦

2 
(

3253
)

20◦

3 
(

0116
)

32◦

1B  
(

2243
)

82◦

1/3
[
1123

]
dislocation

3E 1 
(

2111
)

90◦

2 
(

2134
)

** 11◦



The above expression is given in a reference frame with the x-axis 
taken parallel to the crystallographic direction [a1] of the quartz lattice, 
and the z-axis parallel to direction [c]. The glide of dislocation 3E (c-a3) 
fills five components of the strain tensor, but since these components are 
all proportional to each other (due to a single slip system), the dislo
cation 3E only provides one independent system. Using the method 
described in Castelnau et al. (2020), one can also show that four com
ponents of the climb strain tensor are independent. As these are com
plementary to those due to glide, the combination of glide and climb 
satisfies the five necessary systems of the von Mises-Taylor criterion. The 
striking observation is that, from our non-exhaustive characterization, 
one is able to conclude that the dislocation microstructure is sufficient to 
produce a general deformation since all components of the strain tensor 
are non-zero and independent. In the literature, it has usually been 
assumed that the von Mises-Taylor criterion is satisfied by climb 
(implied by <a > or [c] dislocations) or by <c + a > glide. We find here 
a completely different situation where <c + a > climb is critical to 

ensure general deformation. 

6. Perspectives

The present study demonstrates that electron tomography can be
applied successfully to a beam-sensitive mineral such as quartz. We 
show that the simultaneous determination of all characteristics of dis
locations (i.e. the Burgers vector and the line geometry) provide crucial 
information on the deformation mechanisms at play. Such a character
ization is beyond standard observation at the TEM since sample-holder 
tilt places limitations on determinations of critical imaging information. 
The electron tomography reconstruction can be used to overcome these 
physical limitations and to examine the dislocation geometry from all 
orientations. In the present study which is only a proof of concept, the 
conclusions presented are only semi-quantitative since we only identify 
the non-zero strain components. Developments toward a quantitative 
determination of the components of the strain tensor are, in principle, 
possible since the results of our calculations could be weighted by the 

Fig. 4. Reconstruction method for few projected images of Fig. 3 dislocation 1A 

whose Burgers vector is 1/3
[
1123

]
. a) Four aligned projected micrographs

(projection angles of − 30◦, − 10◦, 0◦ and 25◦) obtained in WBDF conditions with 
the 1101 diffraction vector and a precession angle of 0.1◦; b) corresponding 
redrawn projected micrographs in black and white contrast; c) superimposed of 
projected images extracted from the reconstructed volume (in blue) and the 
redrawn micrographs of Fig. 3b (in red); d) Projected images extracted from the 

reconstructed volume for eight projected angles, where the 
(

3253
)

plane is

edge-on for the projected angles of 46◦, the 
(

3121
)

plane is edge-on for the

projected angles of 85◦ and the 
(

0116
)

plane is edge-on for the projected angles

of − 12◦. This reconstruction gives us the opportunity to characterize three 

mixed climb systems: ±1/3
[
1123

](
3121

)
, ±1/3

[
1123

](
3253

)
and

±1/3
[
1123

](
0116

)
(in grey, black and grey respectively), for the same dislo

cation. The crystal orientation is materialized by the colored hexagonal prism 
and the Burgers vector is shown by the blue arrow. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.)   
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Fig. 6. Electron tomography reconstruction for dislocation 

(shown in d), with a 1/3
[
2110

]
Burgers vector (shown by the

green arrow), obtained with the 1101 diffraction vector: pro
jected angle of a) -95◦; b) -39◦; c) -25◦; d) -10◦; e) -3◦; f) 46◦; g) 

85◦; h) 141◦; and i) 177◦. The 
(

1100
)

plane containing the

blue dislocation segment is edge-on for a projection angle of 

− 25◦; the 
(

1010
)

plane containing the light blue dislocation

segment is edge-on for a projection angle of − 95◦ and a pro
jection angle of 85◦; the plane containing the black dislocation 
segment is edge-on for a projection angle of − 39◦ and a pro
jection angle of 141◦; and the plane containing the grey 
dislocation segment is edge-on for a projection angle of − 3◦

and a projection angle of 177◦. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to 
the web version of this article.)   

Fig. 5. Electron tomography reconstruction for a [0001] dislocation (2B), obtained with the 1101 diffraction vector, and shown in a) and f). Projected angle of a) 
-30◦; b) -180◦; c) -134◦; d) -95◦; e) -57◦; f) 25◦; g) 0◦; h) 46◦; i) 85◦; and j) 123◦. The plane containing the dislocation is edge-on for a projection angle of − 57◦ and a 
projection angle of 123◦. The [0001] Burgers vector is represented by the red arrow. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 



dislocation line length (which is accessible from tomographic study). To 
be relevant, such study should ensure that all dislocations present in the 
grain are in contrast and analyzed. The only limitation will then be the 
sampling which is always a difficulty in the TEM. This can however be 
achieved if the grains are small enough to be fully characterized. 
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