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3 École Centrale de Lyon
36 Avenue Guy de Collongue, 69134 Écully Cedex, France
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Abstract
This paper discusses the potential of meta-poro-elastic systems with small mass inclusions to create broad-
band sound absorption performance under the quarter-wavelength limit. A first feasibility study is done to
evaluate whether embedding small mass inclusions in specific types of foam can lead to near-perfect absorp-
tion at tuned frequencies. This paper includes an optimization routine to find the material properties that
maximize the losses due to the mass inclusion such that a near-perfect/perfect absorption coefficient can be
achieved at specified frequencies. The near-perfect absorption is due to the mass-spring effect, which leads
to an increase in the viscous loss. Therefore, it is efficient in the viscous regime. The well-known critical
frequency, which depends on the porosity and flow resistivity of the material, is commonly used as a criteria
to distinguish the viscous regime from the inertial regime. However, for the types of foam of interest to
this work, the value of critical frequency is below the mass-spring resonance frequency. Hence, the inverse
quality factor is used to provides a more accurate estimation on the frequency at which the transition from
the viscous regime to the inertial regime.

1 Introduction

Poro-elastic materials are commonly used in many industries as a sound-absorbing treatment. However,
their efficiency is limited to mid- and high-frequencies, where a thickness of quarter-wavelength would not
result in bulky treatments. Therefore, many research efforts in the recent years focused on improving the
low-frequency behavior of poro-elastic materials by embedding different types of inclusion in the material.
Groby et al. [1] investigated the modal behavior of a porous layer with low/high contrast inclusions. They
showed that high contrast inclusions can modify the mode of the layer with a frequency offset from the
natural frequency of the layer. This offset depends on the spacing between the inclusions and the inclusion
geometry. They explained that the modified mode corresponds to evanescent waves in the ambient fluid and



propagative ones in the porous layer, which leads to energy entrapment in the porous layer and consequently
an increase in the absorption. Another effect exists that leads to energy entrapment in the porous layer, which
is known as the trapped mode effect [2]. Groby et al. [3] showed that using a rigid inclusion of comparable
size as the acoustic wavelength in a rigid frame foam, the energy can be trapped between the rigid wall
and the inclusion leading to a perfect absorption above the decoupling frequecy i.e. in the inertial regime.
Weisser et al. [4] investigated the effect of elastic inclusions in a poro-elastic layer. They considered two
types of inclusions i.e. a soft and a hard elastic inclusion with comparable size to the acoustic wavelength
and a very thin rubber shell ring. The former showed the same behavior as the rigid inclusion leading to a
perfect absorption using the trapped mode effect. The latter showed absorption improvement at the flexural
mode of the ring in the viscous regime. In [5] the effect of periodic point mass inclusions in a poro-elastic
layer was investigated numerically. The investigation showed that the sound absorption performance can be
improved by the so-called mass-spring effect, where the foam under the mass is considered to be the spring.
It was shown that the resonance frequency of the mass-spring system depends on the mass and location of
the inclusion. The mass-spring effect was observed and confirmed experimentally in acoustic blankets with
randomly placed mass inclusions [6] in the context of transmission loss improvement.

These works show the potential of meta-poro-elastic systems to improve the absorption coefficient below
the decoupling frequency by exploiting the resonant behavior being the mode of the inclusion or the mass-
spring effect. It is shown in [7] that the amount of the absorption enhancement due to the mass-spring effect
is proportional with the viscous coupling coefficient [8, 9], i.e. viscous characteristic length and the flow
resisitivity of the poro-elastic layer. Therefore, an optimization routine is used in this paper to find material
properties that can lead to a perfect absorption using the mass-spring effect. On the other hand, it is known
that the number of resonance frequencies of a mass-spring system is limited to the number of degrees of
freedom (DOFs) of the system. In other word, the peaks in the absorption coefficient is rather narrow and
limited to DOFs of the mass-spring system. In this paper the potential of achieving a broadband perfect
absorption by creating a super-cell [10] with multiple mass inclusions (a multi-DOF mass-spring system)
tuned at different frequencies. Additionally, a detailed discussion is given on the decoupling frequency since
the efficiency of the mass-spring effect is strongly connected to the viscous losses.

This paper is structured as follows. Section 2 details the configurations studied in the paper and the modeling
technique used to calculate the sound absorption of the system. Section 3 focuses on the potential of the
meta-poro-elastic system to achieve broadband near-perfect/perfect absorption using the mass-spring effect.
Firstly, the sound absorbing behaviors of a homogeneous layer and a reference meta-poro-elastic layer are
discussed briefly. Secondly, the optimization routine for a periodic unit cell (PUC) with single inclusion and
a super-cell (with multiple inclusions) is explained. Thirdly, the criteria to distinguish the viscous regime
from the inertial regime is explained. The paper is concluded in the section 4.

2 Problem description

This section consists of three parts. The first part describes the problem configuration. The second part
briefly explains the material modeling used in this paper. The third part details the absorption coeffcient
calculation.

2.1 Problem configuration

In this paper an infinite 2D poro-elastic layer with and without inclusions is considered, see Figure 1. The
structure is modeled as a 2D plain strain problem in the x − y plane. The unbounded acoustic domain and
the poro-elastic domain are denoted by Ωa and Ωp, respectively. The problem is periodic in the x−direction
with a PUC characteristic length of lx in case of poro-elastic layer with a single inclusion per PUC, see
Figure 1(b) and Lx in case of super-cell with multiple inclusions, see Figure 1(c). The layer is rigidly backed
and excited by an acoustic plane wave with normal angle of incidence. The meta-poro-elastic systems are
obtained by introducing one inclusion at point (x0, y0) or multiple inclusions at different positions (xi, yi).
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Figure 1: Schematic view of the problem configurations:(a) Poro-elastic layer (b) Single inclusion meta-
poro-elastic layer (c) Periodic super-cell composed of n unit cells.

2.2 Modeling technique

The Helmholtz equation [11] is used to model the steady-state behavior of the semi-infinite acoustic domain.
The Biot-Allard model [12, 13, 14, 15, 16] is used for the poro-elastic domain in order to consider the frame
vibration and all the energy dissipation mechanisms, i.e. the viscous, thermal, and structural effects [17]. The
mixed u − p formulation [18, 19] is used, where the field variables are the solid-phase displacements and
the pore-fluid pressure. The coupling between the acoustic and poro-elastic domain [20] is considered by (i)
applying the continuity of the pressure at the interface (ii) imposing the pressure loading on the solid phase,
and the structural acceleration on the acoustic domain pressure due to the poro-elastic solid phase. Readers
are referred to [8] for the description of these coupling conditions. Moreover, the acoustic pressure is decom-
posed in terms of propagative Bloch modes [21] at the radiating boundary to account for the non-reflecting
boundary at the unbounded interface of the acoustic domain. Additionally, the solid phase displacement in
y−direction is constrained at the base to model the connection to the rigid wall.

Periodic field variables are considered for the acoustic domain (Ωa) and the poro-elastic domain (Ωp) to
ensure the Floquet-Bloch relation [22, 23]:

W (x + d) = W (x) exp
(
ik̃ · d

)
, (1)

where d = {dx, 0, 0} is the spatial periodicity vector, in which dx = lx for the single inclusion meta-poro-
elastic case and dx = Lx for the super-cell case. Moreover, k̃ = {k̃x, 0, 0} is the trace wavenumber of
the incident acoustic plane wave. Furthermore, the inclusion is considered as concentrated point mass (mi),
where only its inertial contribution is taken into account [5]. The Finite Element Method (FEM) is used to
solve the problem.

2.3 Absorption coefficient calculation

In this work, the performance of the proposed systems are evaluated in terms of its sound absorption coef-
ficient, which is calculated using the average acoustic impedance (Z = pt/v) at the interface between the
acoustic and poro-elastic domains. In this definition, pt is the total acoustic pressure and v is the velocity
of the propagative acoustic wave at the interface. The system sound absorption coefficient under the plane
acoustic wave excitation with normal incidence angle is determined as follows:

α = 1−
∣∣Z − Z0

Z + Z0

∣∣2, (2)

where Z0 = ρ0c0 is the characteristic impedance of the air with ρ0 and c0 being the air density and sound
speed respectively. In this paper, the absorption coefficient is decomposed in terms of viscous and struc-



tural energy dissipation mechanisms, such that the resonance frequency of the frame and the inclusion or
inclusions can be identified. The mathematical description of this decomposition can be found in [17].

3 Results and discussion

This section consists of three parts. Firstly, the design of the proposed meta-poro-elastic configuration as
well as its specifications are detailed. This design is considered as the reference case. Secondly, the sound
absorption of the reference case is evaluated and is compared to the homogeneous layer of the same poro-
elastic material. Thirdly, an optimization routine is detailed and the results of the optimization of the meta-
poro-elastic system with a single inclusion and the super-cell with multiple inclusions are evaluated. Finally,
the efficiency of the mass-spring effect in the viscous regime is discussed in detail.

3.1 Meta-poro-elastic system design

Two cases are considered in this part. The first case consists of a homogeneous polyurethane (PU) foam
layer of thickness Ly = 24 mm. The material properties of the PU foam are shown in Table 1 , where E, η
are the elastic modulus and loss factor of the frame, ν is the bulk Poisson ratio, ρ1 is the bulk density, φ is the
porosity, α∞ is the tortuosity, Λ, Λ′ are the viscous and thermal characteristic lengths, and σ is the airflow
resistivity. These parameters are taken from [5].

The second case is the proposed design of a meta-poro-elastic system with a concentrated mass of m0 =
0.0039 kg equivalent to the mass by a rod steel inclusion of radius r = 0.4 mm embedded in the homo-
geneous layer. The location of this idealized point mass is (x0, y0) = (4, 12) mm. The proposed design is
periodic in the x−direction with a PUC characteristic length of lx = 8 mm. The acoustic and poro-elastic
domains are discretized using 710 TRI6 elements leading to a total of 4142 DOFs.

Table 1: The Biot parameters of the PU foam [5].

E (kPa) η (-) ν (-) ρ1 (kg/m3) φ (-) α∞ Λ (µm) Λ′ (µm) σ (Pa·s/m4)
143 0.055 0.3 31 0.97 2.52 37 119 87000

3.2 Sound absorption of the reference meta-poro-elastic system

The total sound absorption coefficients and the decomposed absorption coefficients in terms of viscous and
structural losses of the homogeneous layer and the reference meta-poro-elastic case are shown in Figure 2.
The resonance frequency of the frame [14] for the homogeneous case is observed at 820 Hz. This frequency
corresponds to a peak in the structural losses. At the same time, two peaks in the structural losses are
observed for the reference meta-poro-elastic case at 520 Hz (resonance frequency of the inclusion) and 1480
Hz (modified resonance frequency of the frame). The first peak is induced by the mass-spring effect [7],
while the second one is induced by the modified mode effect [1]. The resonance frequency of the inclusion
depends on the poro-elastic material properties as well as the vertical position and the mass of the inclusion,
while the modified mode frequency of the frame depends on the foam properties, PUC characteristic length,
and the spacing between the inclusions.

Moreover, the meta-poro-elastic system shows an improved absorption behavior, for example at f = 770 Hz
from α = 0.23 to α = 0.65, as compared to the homogeneous case. But this improvement is far from
a perfect absorption behavior. The latter gives the motivation to use an optimization routine such that the
energy losses due to the mass-spring effect are maximized.
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Figure 2: Total and partial absorption coefficients for the homogeneous layer and the reference (i.e. not
optimised) meta-poro-elastic case.

3.3 Optimization of the meta-poro-elastic system

A pattern search algorithm [24] is used for the optimization of the meta-poro-elastic system. In the optimiza-
tion routine the horizontal position of the inclusion (x0), the added mass (m0), the PUC characteristic length
(lx), and the poro-elastic layer thickness (Ly) are kept identical as the reference case. The design space
consists of foam material properties (σ, Λ, Λ′, ρ1, E, η) and the vertical position of the inclusion i.e. y0.
All the design parameters are normalized using scale factors such that the relative change in all of them is of
the same order at each iteration step. Moreover, a mesh expansion factor of 4, and a mesh contraction factor
of 2 is chosen. The target function is defined as:

fp =

i=m∑
i=1

(1− aiαi)
2, (3)

wherem is the number of tuned frequencies, αi is the value of absorption coefficient at each tuned frequency,
and ai is the correction factor for each value of absorption coefficient defined as follows:

ai =

{
0 αi < 0.8

1 αi ≥ 0.8.
(4)

This definition is used such that the convergence of the optimization to a global minimum is ensured. The
considered tuned frequency for the optimization of the PUC with single inclusion is 700 Hz. The lower bound
(LB), upper bound (UB), and the converged values (CV) of the design space parameters are summarized in
Table 2.

Table 2: The upper bound, lower bound, and the converged values of the design space parameters.

E (kPa) η ρ1 (kg/m3) Λ (µm) Λ′ (µm) σ (kPa·s/m4) y0(mm)

LB 3 0.01 10 1 1 1 0

UB 200 0.1 90 300 300 90 23

CV 159.62 0.0105 37.09 7.28 1 1.012 12.5

The total and partial absorption coefficients of the optimized configuration are shown in Figure 3. Addition-
ally, the total absorption coefficient of a homogeneous layer of the foam with optimized material properties
is calculated and compared to optimized meta-poro-elastic case. It can be seen that the optimized case shows
perfect absorption at the tuned frequency of 700 Hz due to the mass-spring effect. Moreover, it is apparent
that the viscous losses are very high at that frequency. There are two reasons behind such behavior. Firstly,
the resonating inclusion excites the frame to move out-of-phase with respect to the fluid phase. Secondly, the



optimized case has a very low viscous characteristic length, which corresponds to a high amount of viscous
loss if the motions of the solid frame and fluid in the pores are out of phase. On the other hand, it can be
seen that this type of material shows poor performance at frequencies where the frame is not in motion,
i.e. frequencies outside the modified mode of the frame and the resonance of the inclusion. This raises the
following question: can broadband perfect absorption be achieved for a super-cell with multiple inclusions
tuned at different frequencies? This forms the topic of the next section.
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Figure 3: Total and partial absorption coefficients for the homogeneous layer, the reference (i.e. not opti-
mized) meta-poro-elastic, and for the optimized case.

3.4 Optimization of the super-cell meta-poro-elastic system

In this part, the same optimization routine is used for the super-cell layer shown in Figure 1(c). A super-cell
with n = 4 inclusions is considered. The optimized material properties obtained in section 3.3 are used, and
the layer thickness (Ly) is the same as in the reference case. The design space consists of the position of four
inclusions, i.e. (xi, yi) for i = 1, ..., 4, and the PUC characteristic length, i.e. Lx. Five tuning frequencies are
considered in the optimization of the super-cell, viz. f = 700, 900, 1100, 1300, 1500 Hz. The lower bound
(LB) and upper bound (UB) for the horizontal position, vertical position, and PUC characteristic length in
millimeters are: [LBxi

,UBxi ] = [1, 20lx], [LByi ,UByi ] = [1, 23], and [LBLx ,UBLx ] = [lx, 20lx]. The
converged values (CV) of the design space parameters and the resulting configuration are given in Table 3.

Table 3: The schematic view of the optimized super-cell configuration with four inclusions and the converged
values of the design space parameters of the super-cell optimization.

CV (mm)
(x1, y1) (0.69lx, 14)
(x2, y2) (1.31lx, 16)
(x3, y3) (5lx, 16.5)
(x4, y4) (7.22lx, 13)
Lx 7.875lx

The total and partial (decomposed) absorption coefficients of the optimized super-cell configuration are
shown in Figure 4. Five near-perfect absorption peaks around the tuned frequencies are present. Four peaks
correspond to the four inclusion resonances and the additional peak corresponds to the modified mode of the



frame. The converged values given in Table 3 show that each inclusion can be tuned to a different frequency
by changing its position inside the super-cell. The super-cell characteristic length (Lx) is also an important
factor, since this value influences strongly the spacing between the inclusions within the super-cell. Figure
4 shows clearly the potential of such super-cell meta-poro-elastic systems with mass inclusions to create an
enhanced absorption in a tuned wide-band frequency range.
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Figure 4: Total and partial absorption coefficients for the homogeneous layer and the optimized case of the
super-cell layer.

3.5 Discussion on the decoupling frequency

The decoupling frequency corresponds to the frequency at which the two phases of the poro-elastic material
decouple and the frame acts as rigid. Above this frequency the energy losses are mainly due to inertial effects,
while below this frequency energy is dissipated mainly through viscous effects. This frequency, known in
literature as the critical frequency, is commonly defined as [9]:

fc =
φσ

2πρ0
. (5)

The critical frequency for the optimized foam of single inclusion PUC is fc = 129 Hz. Moreover, it was
shown previously that at 700 Hz a perfect absorption coefficient can be achieved due to the mass-spring
effect. This seems to contradict the assumption that the mass-spring effect is efficient in the viscous regime,
since 700 Hz is above the critical frequency for the optimized foam. Therefore, the decoupling frequency is
reevaluated using the inverse quality factor [25]:

Q−1 =

∣∣∣∣Im(kLi)

Re(kLi)

∣∣∣∣ (i = 1, 2), (6)

where kLi (i = 1, 2) is the wavenumber associated to the slow (L1), and fast (L2) longitudinal waves
propagating in the poro-elastic layer. The inverse quality factor measures the amount of damped energy with
respected to the total wave energy for each wave type. Therefore, the inverse quality factor value for L1
is high at low frequencies since this wave corresponds to the relative motion of the two phases. Its value
decreases around the decoupling frequency, where the energy dissipation is mainly due to the inertial effect
rather than viscous effect. At the same time, the value of the inverse quality factor for L2 starts to increase
and reaches a maximum at the decoupling frequency. Above the decoupling frequency its value drops down
reaching to zero at high frequencies. Therefore, the peak in the inverse quality factor for L2 can be used as
a criterium to define the decoupling frequency. The inverse quality factor of the two longitudinal waves of
a homogeneous layer of the optimized foam are shown in Figure 5 where the frequency range of the study
is normalized with respect to the critical frequency (fc), computed using Eq. (5), for a better comparison. It
can be seen that for the optimized foam, the transition from viscous regime to inertial regime occurs around
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f
fc
≈ 200. This is due to the fact that the critical frequency (fc) definition does not consider the viscous

characteristic length, which also contributes to the amount of viscous losses. The optimized foam has a very
low viscous characteristic length leading to a very high viscous loss in case of out-of-phase motion of the
two phases.

To further clarify that the decoupling of the fluid and solid phase for the optimized foam occurs at a much
higher frequency as compared to the critical frequency, the absorption curve of a homogeneous layer of the
optimized foam with 24 mm thickness is calculated using theory of Biot and the equivalent fluid model.
Since the frame acts as rigid above the decoupling frequency, the two models should be in agreement in
the inertial regime. This comparison is shown in Figure 6. As expected, there is a significant discrepancy
between the two models for frequencies much higher than the fc. This confirms that the mass-spring effect
noticed at 700 Hz is in the viscous regime.
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Figure 6: The absorption coefficient of a homogeneous layer of the optimized foam calculated using the
theory of Biot and the equivalent fluid model.

4 Conclusions

In this paper, a perfect absorption coefficient is achieved at a single frequency in a meta-poro-elastic system
below the decoupling frequency by exploiting the mass-spring effect. It is shown that embedding a mass
inclusion in foams with specific material properties can lead to perfect absorption at tuned frequencies.
In this study, only the inertial contribution of the inclusion is considered to ensure that the changes in the
absorption behavior of the system are due to the mass-spring effect. An optimization routine is used to derive
the material properties that magnify the viscous losses induced by the mass-spring effect. The feasibility of
achieving broadband near-perfect or perfect absorption behavior is evaluated by considering a super-cell of
the optimized foam with multiple inclusions such that a multi-degree-of-freedom mass-spring system can



be created. It is shown that the mass-spring effect is efficient in the viscous regime and it is important to
use a correct criterion to identify the decoupling frequency. The commonly used definition of decoupling
frequency, based on the porosity and the flow resisitivity of the foam, is valid for a wide range of materials,
however, it is not accurate for foams with very short viscous characteristic length. On the other hand, the
inverse quality factor, which corresponds to the amount of damped energy by the two longitudinal waves,
seems to be a good indicator for the decoupling frequency.
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