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Abstract—This paper deals with the problem of integrated 

maintenance/production strategy for multiple-product 

manufacturing system. We consider a manufacturing system 

consisting of one machine which ensures the production of 

several types of products in order to satisfy randomly demands 

corresponding to every type of product. At any given time, the 

machine is able to produce one type of product, and then 

switches to another. From the point of view of reliability, the 

manufacturing system is subject to random failures. The goal 

of this study is to establish an economical production planning 

followed by an optimal maintenance strategy, taking into 

account the influence of production rate on the system 

degradation. Compared to previous works dealing with the 

same subject, the first contribution of this study consists of the 

considering a variable setup costs according to the type of 

product to switch. More than that, we adopt an increased 

preventive maintenance cost according the system 

degradation.  Analytical models are developed in order to 

minimize sequentially the production/holding cost and the 

total maintenance cost. Finally, a numerical example is 

presented to illustrate the usefulness of the proposed approach. 

Keywords—Maintenance/production policy; multiple-

product; optimization; setup cost. 

I.  Introduction and literature review  

The Manufacturing companies have to cope successfully 
with several functional capacities, such as production, and 
maintenance. One of the keys to accomplishment consists of 
treating simultaneously all services. We note that the 
satisfaction of the customer is one of the important objectives 
of a business.  Therefore, it becomes compulsory to develop a 
new integrated maintenance policies relating to production, 
which reduce the total costs integrating maintenance and 
production. This objective is needed in the case of multiple 
product manufacturing systems.  

Establishing an optimal production planning and 
maintenance strategy has always been the great challenge for 
industrial companies. Moreover, during the last few decades, 
the integration of production and maintenance policies problem 
has attracted much research attention. In fact, integrated 
maintenance-production strategies which take into 
consideration subcontracting have been studied by [1]. They 
developed and optimized a maintenance policy incorporating 

subcontractor constraints. They demonstrated through a case 
study, the influence of the subcontractor constraints on the 
optimal integrated maintenance-production strategy.  

An analytical model and a numerical procedure which 
allow to determine a joint optimal inventory control and an age 
based on preventive maintenance policy for a randomly failing 
production system was presented by [2].  

 The present study examined both of the problems of the 
optimal production planning formulation and the optimal 
maintenance strategy of a manufacturing system. The system 
considered is composed of a single machine which produces 
several products in order to meet corresponding several random 
demands. The problem is presented in (Fig. 1).
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Fig.  1. Problem description 
 
This type of problem, concerning multiple products or 

multiple machines, was treated by [3]. They presented an 
analysis of production control and corrective maintenance 
problem in a multiple-machine, multiple-product 
manufacturing system. They realized a near optimal control 
policy of the system through numerical techniques by 
controlling both production and repair rates. Sloan el al. [4] 
treated a Markov decision process model that simultaneously 
established maintenance and production schedules for a 
multiple-product, single-machine production system. They 
considered that the equipment condition can affect the yield of 
different product types differently.  



In other hand, the literature on integrated maintenance 
policies, we noticed that the influence of the production rate on 
the system degradation over a finite planning horizon was 
rarely addressed in depth. Hajej et al. [5] took into account the 
influence of production plan on the equipment degradation, but 
in the case of a system composed by single machine producing 
one type of product under randomly failing and satisfying a 
random demand over a finite horizon. In the same context [6] 
presented a model, where the failure rate of a machine depends 
on its age; hence, maintenance policies are machine-age 
dependent.  

Motivated by the work of [5], we treated the production and 
maintenance problem in another context that we consider a 
more complex and real industrial system, composed by one 
machine that produces several products during a finite horizon 
divided into periods.  This study shows that it has a novelty and 
originality relative to this type of problem which reflects the 
influence of several products on the degradation state of the 
considered manufacturing system. More than keys study 
consists of, firstly, considering a variable setup cost between 
products; secondly we adopt an increased preventive 
maintenance cost according to the system degradation. 

We note that, our problem can easily adopted to case of 
multiple machine with multiple product, and the same 
methodology will adopted considering every machine  

This paper is organized as follows: In the next section we 
specify the targeted contributions of this work. Section 3 
presents the notations and assumptions. The production and 
maintenance models are developed respectively in section 4 
and 5. A numerical example is presented in section 6. Finally, 
the conclusion is included in Section 7. 

II. Targeted contribution  

The present study examined a problem of the optimal 
production planning formulation of a manufacturing system 
consisting of one machine producing several products in order 
to meet several random demands. Then we find the optimal 
maintenance strategy according to the optimal production plan 
established for every product. In fact we take into account the 
impact of the production rate on the system degradation. We 
note that we considered a variable setup cost between products; 
and we adopt an increased preventive maintenance cost 
according to the system degradation. In fact, the variable setup 
and maintenance costs, which present the industrial reality, are 
rarely treated in literature.  

III. Notations and assumptions 

In this paper, we use the following notations and 
assumptions: 

A. Notations 

𝐶𝑝(𝑖) : The unit production cost of product 𝑖 

𝐶𝑠(𝑖) : The unit holding cost of one unit of product 

𝑖 during ∆𝑡 

𝑆𝑡(𝑖, 𝑙) : Changeover cost from product 𝑖 to product 𝑙 

𝑀𝑐 : Corrective maintenance action cost 

𝑀𝑝 : Preventive maintenance action cost 

𝐻 : Total number of periods 

𝑛 : Total number of products 

𝑝 : Total number of sub-periods during each 

period 

∆𝑡 : Production period duration 

𝑈𝑖𝑛𝑜𝑚 : Nominal production rate of product 𝑖 during 

∆𝑡 

𝑖  : Probabilistic index (related to customer 

satisfaction) of product 𝑖 

𝜑−1(. ) : Inverse distribution function  

�̂�𝑖(𝑘) : The average demand of product 𝑖 during 

period 𝑘 

𝜎(. ) : The standard deviation 

�̂�𝑖,(𝑘×𝑝)−(𝑝−𝑗) : The average stock level of product 𝑖 at the 

end of sub-period 𝑗 of period 𝑘  

𝑍 (𝑈) : The total expected cost of production and 

holding over the finite horizon  

(𝑁) : The total cost of maintenance 

𝜆(𝑘×𝑝)−(𝑝−𝑗)(. ) : Failure rate function at sub-period  𝑗 of the 

period 𝑘 

𝜆𝑛(. ) : Nominal failure rate 

(. ) : The average number of failures 

𝑁 : The number of actions of preventive 

maintenance 

𝑇 : The intervention period for preventive 

maintenance actions 

Decision variables: 

𝑈𝑖,𝑗,𝑘 : The production rate of product 𝑖 during sub-

period 𝑗 of period 𝑘 

𝛿(𝑘×𝑝)−(𝑝−𝑗) : The duration of sub-period 𝑗 at period 𝑘 

𝑦𝑖,𝑗,𝑘 : A binary variable, which is equal to 1 if 

product 𝑖 is produced in sub-period 𝑗 of 

the period 𝑘, and 0 otherwise 

𝑁 : The number of preventive maintenance 

actions during the finite horizon 

B. Assumptions 

To develop the production model, the following assumptions 
are specifically adopted: 

• setup costs, holding and production costs of each 
product are assumed constant; 

• Only a single product can be produced in each sub-
period;  

• As described in (Fig. 2), the period 𝑘 is divided in 

exactly 𝑝 sub-periods, in order to simplify the 
mathematical model developed; 

• The standard deviation of demand (𝑑𝑖)  and the 

average demand �̂�𝑖 for each product and each period k 
are known and constant. 



 

Fig.  2. Split of production horizon 

To develop the maintenance model, it was assumed that 

• Durations of maintenance actions are negligible; 

• 𝑀𝑝 and 𝑀𝑐 costs incurred by the preventive and 
corrective maintenance actions are known and constant, 

with 𝑀𝑐 >> 𝑀𝑝 . 

• Preventive maintenance actions are always performed at 
the end of the sub-periods of production. 

IV. Production Policy 

The aim of this section is to develop an analytical model that 

allows us to determine the economical production plan for a 

finite time horizon 𝐻 × Δt . The decision variables are the 

production rates 𝑈𝑖,𝑗,𝑘, the duration of sub-periods 𝛿(𝑘×𝑝)−(𝑝−𝑗) 

and the binary variable 𝑦𝑖,𝑗,𝑘 . 

 
The mathematical formulation of the proposed problem is 

based on the extension of the model described by [7].  The 
difference is that we considered that the setup costs are 
variable. 

𝑀𝑖𝑛 (Ζ(𝑈)) 

𝑈 = 𝑈𝑖,𝑗,𝑘  ∀ {𝑖 = 1…𝑛}, {𝑗 = 1… 𝑝}, {𝑘 = 1…𝐻} 
(1) 

With: 

Ζ(𝑈)

= ∑ ∑∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑦𝑖,𝑗,𝑘 × (
𝑆𝑡 (𝑖, 𝑞((𝑘 × 𝑝) − (𝑝 − 𝑗) − 1))

+(𝐶𝑝(𝑖) × ( 𝑈𝑖,𝑗,𝑘)
2
)

)

+𝐶𝑠(𝑖) ×
𝛿𝑡(𝑘×𝑝)−(𝑝−𝑗)

Δ𝑡
×

[
 
 
 
 
 
 
 
 
 
 

𝜎2(𝑆𝑖,0)

+(∑ ∑𝐸𝑛𝑡 (
𝑙

𝑝
)

𝑝

𝑙=1

𝑘−1

𝑄=1

× 𝜎2(𝑑𝑖(𝑄)))

+(∑𝐸𝑛𝑡 (
𝑙

𝑝
)

𝑗

𝑙=1

× 𝜎2(𝑑𝑖(𝑘)))

+(�̂�𝑖,(𝑘×𝑝)−(𝑝−𝑗) )
2

]
 
 
 
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛

𝑖=1

𝑃

𝑗=1

𝐻

𝑘=1

 
(2) 

Under the following constraints: 

�̂�𝑖,(𝑘×𝑝)−(𝑝−𝑗) = �̂�𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1 + (𝑦𝑖,𝑗,𝑘 × 𝑈𝑖,𝑗,𝑘)

− 𝐼𝑛𝑡 [
𝑗

𝑝
] × �̂�𝑖(𝑘) 

∀ {𝑖 = 1 …𝑛}, {𝑗 = 1…𝑝}, {𝑘 = 1… 𝐻} 

(3) 

This first constraint represents the stock balance equation 
for each product 𝑖,  during each sub-period 𝑗, of period 𝑘. 

0 ≤ 𝑈𝑖,𝑗,𝑘 ≤
𝛿(𝑘×𝑝)−(𝑝−𝑗)

Δ𝑡
× 𝑈𝑖𝑛𝑜𝑚   (4) 

∀ {𝑖 = 1 …𝑛}, {𝑗 = 1…𝑝}, {𝑘 = 1… 𝐻} 

The second constraint is defined by (4). This constraint 
expresses the upper production rate of the machine for each 

product 𝑖. 

∑(𝑦𝑖,𝑗,𝑘 × 𝑈𝑖,𝑗,𝑘) ≥ 𝜎2(𝑑𝑖(𝑘)) × 𝜑−1(𝜃𝑖) + �̂�𝑖(𝑘)

𝑝

𝑗=1

− 𝑆𝑖,(𝑘−1)×𝑝   

∀ {𝑖 = 1…𝑛}, {𝑘 = 1…𝐻} 

(5) 

The above constraint refers to the satisfaction level of 
demand of product 𝑖 in each period k. This equation is obtained 
on the basis of the stochastic formula below: 

𝑃𝑟𝑜𝑏(𝑆𝑖,(𝑘×𝑝) ≥ 0) ≥ 𝜃𝑖         

 ∀  {𝑖 = 1…𝑛}, {𝑘 = 1…𝐻} 
(6) 

 Where 𝑆𝑖,(𝑘×𝑝) represents the stock level of product 𝑖 at the 

end of sub-period 𝑗 of period 𝑘. 

∑𝛿(𝑘×𝑝)−(𝑝−𝑗) = Δ𝑡       ∀  {𝑘 = 1… 𝐻}

𝑝

𝑗=1

 (7) 

0 < 𝛿𝑡(𝑘×𝑝)−(𝑝−𝑗) ≤ ∆𝑡   ∀  {𝑗 = 1… 𝑝}, {𝑘 = 1…𝐻} (8) 

The aim of (7) and (8) is to divide each period 𝑘 into 𝑝 
different sub-periods and the sub-periods duration must be 
between 0 and ∆𝑡.    

𝑞((𝑘 × 𝑝) − (𝑝 − 𝑗)) = ∑ 𝑦𝑖,𝑗,𝑘

𝑛

𝑖=1

× 𝑖             

∀ {𝑗 = 1…𝑝} {𝑘 = 1…𝐻} 

(9) 

The purpose of (9) is to memorize the treated product at 
each sub-period 𝑗of period 𝑘. 

The constraints below should also be taken into account. 

∑𝑦𝑖,𝑗,𝑘 = 1       ∀  {𝑗 = 1… 𝑝} 𝐹𝑜𝑟 {𝑘 = 1… 𝐻}

𝑛

𝑖=1

 (10) 

∑ 𝑦𝑖,𝑗,𝑘 = 1       ∀{𝑖 = 1… 𝑛} 𝐹𝑜𝑟 {𝑘 = 1… 𝐻}  

𝑝

𝑗=1

 (11) 

𝑦𝑖,𝑗,𝑘𝜖 {0,1}        

∀ {𝑖 = 1… 𝑛}, {𝑗 = 1…𝑝}, {𝑘 = 1… 𝐻} 
(12) 

The equations (10) and (11) indicate that only one type of 
product will be produced in each sub-period 𝑗 of period 𝑘. 

The constraint (12) states that  𝑦𝑖,𝑗,𝑘 is a binary variable.  

  



V. Maintenance Policy 

A. Description 

In this study we adopted a maintenance strategy with 

minimal repair.  As illustrated in the figure below, the 

preventive maintenance actions are carried out at each instant 

𝑞 ×  𝑇 (𝑞 =  1, 2 . . . ) in order to replace the system by a new 

one (as good as new).  If the system fails between preventive 

maintenance actions, only minimal repair is implemented. 
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Fig.  3. The degradation rate 

If we note  𝑀𝑐 the cost of corrective maintenance actions, 

𝑀𝑝 the initial cost of preventive maintenance actions. It’s 

clear that’s difficult to make a perfect preventive maintenance 

action with restoring the system as good as new with adopting 

the usually the initial cost of preventive maintenance 

action 𝑀𝑝. That’s why we will consider an increased 

preventive maintenance cost.  

Formally we assume that the preventive maintenance 

action increased between successive actions according to the 

geometric sequence with constant rate . Since that the total 

cost of maintenance is expressed as follows: 

𝛤(𝑁) = 𝑀𝑐 × 𝜙(𝑁,𝑈) + ∑ 𝑀𝑝𝑖

𝑁

𝑖=1

 (13) 

The aim of this maintenance strategy is to determine the 

optimal number of preventive maintenance actions 𝑁∗(𝑁 =
1, 2 . . . ) minimizing the total cost of maintenance over a given 

horizon 𝐻 × ∆𝑡. 

Nakagawa et al. [8] has proven that there is an optimal 

number of partitions 𝑁∗ and therefore, the optimal preventive 

maintenance period 𝑇∗, in the case of increased failure rate. 

B. The expression of the average number of failures 

As illustrated in “Fig. 3”, we assume that the actions of 
preventive maintenance are made at the end of sub-periods, in 
order to reduce the complexity of the generation of the optimal 
number of preventive maintenance. 

Hence, the function of the intervention period for 
preventive maintenance actions is presented as follows: 

𝑇 = 𝑅𝑜𝑢𝑛𝑑 [
𝐻 × 𝑝

𝑁
] (14) 

 𝑅𝑜𝑢𝑛𝑑[𝑥]: A round number of 𝑥 

Lemma1: 

 𝜙(𝑈,𝑁)

= ∑

[
 
 
 
 
 
 
 
 
 
 
 

∑ ∫ 𝜆
(𝐼𝑛[

(𝑞−1)×𝑇
∆𝑡

]+1)×𝑝−(𝑝−𝑗)
(𝑡)𝑑𝑡

𝛿
(𝐼𝑛[

(𝑞−1)×𝑇
∆𝑡

]+1)×𝑝−(𝑝−𝑗)

0

𝑝

𝑗=((𝑞−1)×𝑇+1)−(𝐼𝑛[
(𝑞−1)×𝑇

∆𝑡
]×𝑝)

+ ∑ ∑∫ 𝜆(𝑘×𝑝)−(𝑝−𝑗)(𝑡)𝑑𝑡
𝛿(𝑘×𝑝)−(𝑝−𝑗)

0

𝑝

𝑗=1

𝐼𝑛[
𝑞×𝑇
∆𝑡

]

𝑘=𝐼𝑛𝑠𝑢𝑝[
(𝑞−1)×𝑇+1

∆𝑡
]+1

+ ∑ ∫ 𝜆
(𝐼𝑛[

𝑞×𝑇
∆𝑡

]+1)×𝑝−(𝑝−𝑗)
(𝑡)𝑑𝑡

𝛿
(𝐼𝑛[

𝑞×𝑇
∆𝑡

]+1)×𝑝−(𝑝−𝑗)

0

𝑞×𝑇−𝐼𝑛[
𝑞×𝑇
∆𝑡

]×𝑝

𝑗=1 ]
 
 
 
 
 
 
 
 
 
 
 

𝑁+1

𝑞=1

 

𝐼𝑛[𝑥]: Integer part of number 𝑥 

𝐼𝑛𝑠𝑢𝑝[𝑥]: Superior integer part of number 𝑥 

Proof: See [7] 

C. The expression of failure rate  

Recall, that the failure rate is influenced by the variation of 
the production rates. As illustrated in “Fig. 3”, the failure rate 
is reset after each 𝑞 × 𝑇. 

 Thus, the expression of the failure rate can be written as 
follows: 

Lemma2: 

𝜆(𝑘×𝑝)−(𝑝−𝑗)(𝑡)

=

[
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 

𝜆0

+ ∑ ∑∑
𝑈𝑖,𝑙,𝑄 × ∆𝑡

𝑈𝑖𝑚𝑎𝑥 × 𝛿(𝑄×𝑝)−(𝑝−𝑙) 

𝑛

𝑖=1

𝑝

𝑙=1

𝑘−1

𝑄=1

× 𝜆𝑛(𝛿(𝑄×𝑝)−(𝑝−𝑙))

+∑∑
𝑈𝑖,𝑙,𝑘 × ∆𝑡

𝑈𝑖𝑚𝑎𝑥 × 𝛿(𝑘×𝑝)−(𝑝−𝑙)
× 𝜆𝑛

𝑛

𝑖=1

𝑗−1

𝑙=1

(𝛿(𝑘×𝑝)−(𝑝−𝑙))
)

 
 
 
 
 

× (1 − 𝐼𝑛 [
(𝑘 × 𝑝) − (𝑝 − 𝑗 + 1)

𝑞 × 𝑇
])

+∑
𝑈𝑖,𝑗,𝑘 × ∆𝑡

𝑈𝑖𝑚𝑎𝑥 × 𝛿(𝑘×𝑝)−(𝑝−𝑗) 

𝑛

𝑖=1

× 𝜆𝑛(𝑡)
]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

𝑡 𝜖 [0, 𝛿(𝑘×𝑝)−(𝑝−𝑗)]       ∀ {𝑘 = 1… 𝐻} , {𝑗 = 1…𝑝} 

Proof: See [7] 

D. The expression of the total cost of maintenance  

We recall that we considered we will consider an increased 
preventive maintenance cost to determine the total cost of 
maintenance.  

Therefore: 

𝑀𝑝𝑖+1 = 𝑀𝑝𝑖 × 𝛼   (𝑤𝑖𝑡ℎ 𝛼 > 1) (15) 

Supposed that the initial preventive maintenance cost is: 

𝑀𝑝1 = 𝑀𝑝 (16) 

The total cost of maintenance expressed in (13) can be 
represented as follows: 



 

𝛤(𝑁) = 𝑀𝑐 × 𝜙(𝑁,𝑈) + 𝑀𝑝1 × (1 + 𝛼 + 𝛼2 + ⋯+ 𝛼𝑁) (17) 

Thus: 

𝛤(𝑁) = 𝑀𝑐 × 𝜙(𝑁,𝑈) + 𝑀𝑝 ×
1 − 𝛼𝑁

1 − 𝛼
 (18) 

Using the average number of failure 𝜙(𝑈,𝑁) established in 

lemma 1, we can deduce that the analytical expression of the 

total maintenance cost is expressed as follows:  

𝛤(𝑁)

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑀𝑐 × ∑

[
 
 
 
 
 
 
 
 
 
 
 

∑ ∫ 𝜆
(𝐼𝑛[

(𝑞−1)×𝑇
∆𝑡

]+1)×𝑝−(𝑝−𝑗)
(𝑡)𝑑𝑡

𝛿
(𝐼𝑛[

(𝑞−1)×𝑇
∆𝑡

]+1)×𝑝−(𝑝−𝑗)

0

𝑝

𝑗=((𝑞−1)×𝑇+1)−(𝐼𝑛[
(𝑞−1)×𝑇

∆𝑡 ]×𝑝)

+ ∑ ∑∫ 𝜆(𝑘×𝑝)−(𝑝−𝑗)(𝑡)𝑑𝑡
𝛿(𝑘×𝑝)−(𝑝−𝑗)

0

𝑝

𝑗=1

𝐼𝑛[
𝑞×𝑇
∆𝑡

]

𝑘=𝐼𝑛𝑠𝑢𝑝[
(𝑞−1)×𝑇+1

∆𝑡
]+1

+ ∑ ∫ 𝜆
(𝐼𝑛[

𝑞×𝑇
∆𝑡

]+1)×𝑝−(𝑝−𝑗)
(𝑡)𝑑𝑡

𝛿
(𝐼𝑛[

𝑞×𝑇
∆𝑡

]+1)×𝑝−(𝑝−𝑗)

0

𝑞×𝑇−𝐼𝑛[
𝑞×𝑇
∆𝑡

]×𝑝

𝑗=1 ]
 
 
 
 
 
 
 
 
 
 
 

𝑁+1

𝑞=1

+𝑀𝑝 ×
1 − 𝛼𝑁

1 − 𝛼 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

VI. Numerical Exemple 

A simple example of a system that produces three different 

types of products is considered in order to satisfy three 

random demands according to every type of product.  

 

Using the models described in previous sections, we will 

determine first the economical production plan followed by 

the optimal strategy of maintenance over a finite planning 

horizon: 𝐻 =  8 𝑡𝑟𝑖𝑚𝑒𝑠𝑡𝑒𝑟𝑠 (two years). We consider that the 

duration of periods Δ𝑡 = 3 𝑚𝑜𝑛𝑡ℎ𝑠.  

A. Numerical data 

• The data relating to production: 

 

We supposed that the standard deviation of demand of each 

product 𝑖, is the same for all periods (𝜎(𝑑𝑖(𝑘)) =

𝜎(𝑑𝑖(𝑘 + 1)) = 𝜎(𝑑𝑖)). 

TABLE  I. The average demands 

 Average demand Standard deviation 

Product 1 200 1.5 

Product 2 110 0.9 

Product 3 320 1.2 

 
 The demands for each product by trimester are presented 

in the following table: 

TABLE  II. Demands 

 Tr1 Tr2 Tr3 Tr4 Tr5 Tr6 Tr7 Tr8 

Prod1 201 199 198 199 201 202 200 199 

Prod2 111 119 108 201 111 112 110 119 

Prod3 321 322 323 319 321 317 320 319 

The setup costs are represented as follows: 

TABLE  III. Setup costs 

  To 

  Product 1 Product 2 Product 3 

F
ro

m
 Product 1 0 60 55 

Product 2 65 0 45 

Product 3 40 35 0 

The other data are represented as following: 

TABLE  IV. Other data relating to production  

 𝑆𝑖,0 

(𝑝𝑢) 

𝑈𝑖𝑛𝑜𝑚   
(𝑝𝑢/∆𝑡) 

𝐶𝑝(𝑖) 

 (𝑚𝑢) 
𝐶𝑠(𝑖) 

(𝑢𝑚/𝑢𝑡) 
Ө𝐢 (%) 

Prod1 110 750 13 3 87 

Prod2 85 530 17 5 95 

Prod3 145 1150 9 2 90 

• The data relating to maintenance: 

 
System reliability law (Weibull) and preventive/corrective 

maintenance costs are defined by the following data: 

TABLE  V. Parameters of weibull function 

Scale parameter 

(η) 

Shape parameter 

(β) 

Position 

parameter (γ) 
12 months 2 0 

 
The other data are given in the table below: 

TABLE  VI. Other data relating to maintenance 

𝑀𝑝 (𝑚𝑢) 𝑀𝑐 (𝑚𝑢) 𝜆0 𝛼 

800 1500 0 0.05 

 

B. The economical production plan obtained 

The production rates and the duration of sub-periods are given 

in the table below. 

TABLE  VII. The economical production plan 

 Trimester 1 Trimester 2 

 1 2 3 4 5 6 

Durations 0.85 0.71 1.44 0.65 1.21 1.14 

Prod1 0 129 0 0 298 0 

Prod2 120 0 0 0 0 185 

Prod3 0 0 507 230 0 0 

 Trimester 3 Trimester 4 

 1 2 3 4 5 6 

Durations 0.18 1.18 1.01 0.43 0.74 1.83 

Prod1 0 295 0 0 151 0 

Prod2 134 0 0 0 0 312 

Prod3 0 0 387 158 0 0 

 

  



 Trimester 5 Trimester 6 

 13 14 15 16 17 18 

Durations 1.82 0.87 0.31 0.56 0.55 1.89 

Prod1 0 212 0 0 138 0 

Prod2 0 0 52 58 0 0 

Prod3 354 0 0 0 0 542 

 Trimester 7 Trimester 8 

 19 20 21 22 23 24 

Durations 0.76 1.11 1.13 1.05 0.77 1.18 

Prod1 0 172 0 0 81 0 

Prod2 0 0 92 130 0 0 

Prod3 187 0 0 0 0 235 

 

C. The optimal strategy of maintenance obtained 

 
In the figure below, we represent the evolution of the total 

cost depending to the number of preventive maintenance 
actions. 

 

Fig.  4. The evolution of the total cost of maintenance 

We deduce that the optimal number of preventive maintenance 

actions is 𝑁∗ = 3 𝑡𝑖𝑚𝑒𝑠. Hence, the optimal period to apply 

the preventive maintenance is 𝑇∗ =  8 𝑚𝑜𝑛𝑡ℎ𝑠, ensuring a 

minimal total cost of maintenance Г∗(𝑁) =  3 469 𝑚𝑢.  

VII. Conclusion 

In this paper we have discussed the problem of integrated 
maintenance/production strategy for a manufacturing system 
consisting of a single machine which ensures the production of 
several types of products in order to satisfy random demands 
according to every product. The machine is subject to random 
failures, with increased failure rate according both time and 
production rate. Consequently, preventive maintenance actions, 
bloc type with minimal repair, are adopted in order to improve 
the system reliability. At failure, a minimal repair is carried out 
to restore the system into the operating state without changing 
its failure rate. In contrast to several studies in the literature, the 
originality of our study is the consideration of a variable setup 
cost and an increased preventive maintenance cost between 
successive actions. A variable setup costs used in our study and 
according to different product play an import role in the 

decision making in order to choose the order of product to 
produce at every period. More than that, the majority of the 
studies in maintenance frame in literature use a fixed cost of 
preventive maintenance action and assume that the system is 
restored to the state “as good as new” after every preventive 
maintenance action. It’s clear that this assumption is unreal. 
That’s why in this study, we considered an increased 
preventive maintenance cost between successive actions. A 
mathematical model is presented in order to formulate this 
assumption. 

According to the proposed problem we start by developing 
analytically   a stochastic production problem. Solving the 
analytical model expressing production, storage and setup cost 
and respecting proposed constraints, we obtained the 
economical production plan, presenting the quantity to produce 
for every product in each sub-period over a finite horizon. In 
the second phase, taking into account the economical 
production plan obtained, we have studied and optimized the 
maintenance policy. An analytical model, expressing the total 
maintenance cost is developed and optimized in order to   
determine the optimal number of preventive maintenance to do 
over a finite horizon, ensuring a minimal maintenance cost. We 
note that the maintenance policy adopted is characterized by 
considering the influence of production rate variation on the 
system degradation in the case of multiple products and an 
increased preventive maintenance cost between successive 
actions. 
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