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Brief epochs of beta oscillations have been implicated in sensorimotor control in the basal ganglia of task-performing healthy animals.
However, which neural processes underlie their generation and how they are affected by sensorimotor processing remains unclear. To
determine the mechanisms underlying transient beta oscillations in the LFP, we combined computational modeling of the subthalamo-
pallidal network for the generation of beta oscillations with realistic stimulation patterns derived from single-unit data recorded from
different basal ganglia subregions in rats performing a cued choice task. In the recordings, we found distinct firing patterns in the
striatum, globus pallidus, and subthalamic nucleus related to sensory and motor events during the behavioral task. Using these firing
patterns to generate realistic inputs to our network model led to transient beta oscillations with the same time course as the rat LFP data.
In addition, our model can account for further nonintuitive aspects of beta modulation, including beta phase resets after sensory cues and
correlations with reaction time. Overall, our model can explain how the combination of temporally regulated sensory responses of the
subthalamic nucleus, ramping activity of the subthalamic nucleus, and movement-related activity of the globus pallidus leads to transient
beta oscillations during behavior.
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Introduction
Exaggerated cortico-basal ganglia oscillations in the beta band
(15–30 Hz) are a common feature of Parkinson’s disease (PD)
(Brown et al., 2001; Levy et al., 2002; Hammond et al., 2007).

However, beta oscillations are not always pathological. Brief ep-
ochs of beta oscillations have been implicated in sensorimotor
control in the healthy basal ganglia (Courtemanche et al., 2003;
Berke et al., 2004; Leventhal et al., 2012; Feingold et al., 2015).
These studies suggest that temporally regulated transient beta
oscillations are important for normal functioning of the motor
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Significance Statement

Transient beta oscillations emerge in the normal functioning cortico-basal ganglia loop during behavior. Here, we used a unique
approach connecting a computational model closely with experimental data. In this way, we achieved a simulation environment
for our model that mimics natural input patterns in awake, behaving animals. We demonstrate that a computational model for
beta oscillations in Parkinson’s disease (PD) can also account for complex patterns of transient beta oscillations in healthy
animals. Therefore, we propose that transient beta oscillations in healthy animals share the same mechanism with pathological
beta oscillations in PD. This important result connects functional and pathological roles of beta oscillations in the basal ganglia.
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The origin of beta oscillations in the cortico-basal ganglia
system remains unknown. However, interactions between sub-
thalamic nucleus (STN) and globus pallidus externa (GPe) can
generate beta oscillations, as has been shown in experimental
(Bevan et al., 2002; Tachibana et al., 2011) and computational
(Terman et al., 2002; Kumar et al., 2011, Pavlides et al., 2015; Wei
et al., 2015) studies. Anatomically, STN and GPe are densely and
reciprocally interconnected (Shink et al., 1996). STN cells excite
neurons in GPe (Kitai and Kita, 1987), which in turn receive
inhibitory input from GPe (Smith et al., 1990; Parent and Haz-
rati, 1995). Such recurrent excitation-inhibition can generate os-
cillations (Plenz and Kital, 1999; Brunel, 2000), which may then
propagate to other regions in the cortico-basal ganglia loop.

Beta oscillations have been proposed to play a functional role
in maintaining the status quo in the motor system (Gilbertson et
al., 2005; Engel and Fries, 2010). This idea has been supported by
increased cortical beta-band activity during maintenance of a
static position (Baker et al., 1997), active suppression of move-
ment initiation (Swann et al., 2009), and postmovement hold
periods (Pfurtscheller et al., 1996). Accordingly, beta power de-
creases in the cortico-basal ganglia loop during movement prep-
aration and execution (Pfurtscheller et al., 2003; Sochurkova and
Rektor, 2003; Kühn et al., 2004; Alegre et al., 2005). However,
recent studies have indicated a more complex picture in which
beta oscillations affect behavior through motor adaptation (Tan
et al., 2014) and modulation of task performance (Feingold et al.,
2015).

Supporting a more complex picture of beta oscillations, we
provided evidence that basal ganglia beta oscillations are involved
in sensorimotor processing and the utilization of cues for behav-
ior (Leventhal et al., 2012). In particular, we found that beta
power increases after sensory cues and movement initiation de-
pended on how fast the animals reacted to a sensory cue. For
short reaction times, LFP beta emerged after movement initia-
tion, whereas for long reaction times, two separate beta epochs
occurred, one before and one after movement initiation. In ad-
dition to modulation of beta power, we also observed that beta
phases were affected by task events differently. Sensory cues, but
not movement initiation, led to a short-latency phase reset in the
beta band (Leventhal et al., 2012).

These complex oscillatory dynamics present both a challenge
and an opportunity for understanding underlying cortico-basal
ganglia circuit mechanisms. Currently, it is unknown whether
pathological beta oscillations in PD share the same mechanisms
with transient beta oscillations in healthy animals. If this is the
case, then computational models for beta oscillations should be
able to account for the complex beta dynamics in both healthy
and parkinsonian animals. Recent network models of beta oscil-
lations in PD have emphasized that, in addition to structural
changes (e.g., connection strengths), changes in spiking activity
of external inputs can promote beta oscillations (Kumar et al.,
2011), which might drive transient beta oscillations. Here, we
exploit this property by using activity patterns recorded in
healthy rats during task performance (Schmidt et al., 2013; Mallet
et al., 2016) as input to our computational model to study the
resulting impact on the beta dynamics. Using this novel ap-
proach, we find that our model can account for the complex beta
dynamics in the healthy rat LFP. Our results support overlapping
mechanisms for pathological and healthy beta oscillations and
provide the basis for studying the functional role of beta oscilla-
tions in network models.

Materials and Methods
Network model. The basic model structure and the parameter settings are
the same as in Kumar et al. (2011). Briefly, the model includes 1000
excitatory STN neurons and 2000 inhibitory GPe neurons. Neurons were
implemented as leaky integrate-and-fire neurons. Synaptic input was
modeled as transient exponential conductance changes. All model neu-
rons receive uncorrelated Poisson spike trains as inputs so as to achieve
previously reported baseline activities for STN (15 Hz) and for GPe
(45 Hz) (Bergman et al., 1994; Raz et al., 2000;). All network simulations
were written in Python using pyNN as an interface to the simulation
environment NEST (Gewaltig and Diesmann, 2007). Analysis of the sim-
ulation results and the LFP and single-unit data were performed using
MATLAB R2013b (version 8.2.0.701; The MathWorks).

For the model variant without recurrent connections in STN (see Fig.
8), we used slightly different parameters for the connection probabilities,
synaptic weights, and transmission delays (Table 1). Furthermore, the
background Poisson input to the model neurons was adjusted so that the
neurons had a broader distribution of baseline firing rates that closer
matched the firing rate distribution in the rat data (Schmidt et al., 2013;
Mallet et al., 2016).

Experimental design and statistical analysis. We combined previously
recorded datasets of tetrode recordings in different basal ganglia subre-
gions of rats performing a stop-signal task (for details, see Leventhal et al.,
2012; Schmidt et al., 2013; Mallet et al., 2016). To exclude potential
multiunit activity from our recordings, we only included units with �1%
of interspike intervals shorter than 1 ms in our dataset. The combined
dataset contained 226 STN units from overall 40 recording sessions in
five different rats, 149 putative prototypical GPe units from 41 recording
sessions in four different rats, and 326 putative medium spiny neurons
(MSNs) from 97 recording sessions in nine different rats. Between two
recording sessions, tetrodes were typically moved by at least 80 �m and
we therefore considered units recorded in different sessions as different
units. Animals performed a stop-signal task, but we only analyzed the
subset of correct Go trials in which the animal moved contralateral to the
recording site.

To identify STN neurons responding to the Go cue instructing con-
tralateral movement (Fig. 1C,D), we used a shuffle test to determine
whether neural activity increased significantly within 150 ms after the Go
cue. The time of each spike within �500 ms to �200 ms relative to the Go
cue was changed to a random spike time within the same time window.
We then compared the number of actual spikes with the number of
shuffled spikes in small time windows after the Go cue (15 nonoverlap-
ping 10 ms windows 0 –150 ms after the Go cue). We repeated this
procedure 10,000 times and used the fraction of shuffles in which the
number of shuffled spikes exceeded the number of actual spikes as the
p-value to estimate statistical significance. STN neurons showing a
p-value �0.05/15 for at least one bin after the time of the Go cue were
considered sensory responsive. We performed the same shuffling
method on GPe neurons to select movement-responsive GPe neurons
(Fig. 1F ), using all spikes within �1 s to �1 s relative to movement onset
to detect firing rate changes for 50 ms time windows from 0 –250 ms after

Table 1. Comparison of model parameters in Kumar et al. (2011) and the modified
model without recurrent STN connections

Kumar et al. (2011) Modified model

CPSTN–STN � 0.02 CPSTN–STN � 0
CPSTN–GPe � 0.02 CPSTN–GPe � 0.022
CPGPe–STN � 0.02 CPGPe–STN � 0.035
CPGPe–GPe � 0.02 CPGPe–GPe � 0.02
JSTN–STN � 1.2 JSTN–STN � —
JSTN–GPe� 1.2 JSTN–GPe� 1.2
JGPe–STN � �1.135 JGPe–STN � �0.8
JGPe–GPe � �0.725 JGPe–GPe � �0.725
dSTN–STN � 2 dSTN–STN � —
dSTN–GPe � 5 dSTN–GPe � 6
dGPe–STN � 5 dGPe–STN � 6
dGPe–GPe � 2 dGPe–GPe � 3

CP, Connection probability; J, synaptic weight; d: delay (in ms).
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movement onset (i.e., five nonoverlapping
time bins). GPe neurons showing a p-value
�0.05/5 for at least one bin after movement
onset were considered movement responsive.

To identify movement-responsive MSNs in
our single-unit data, average firing rates of
MSNs were sorted based on their peak time
within the interval from 1 s before to 1 s after
movement initiation. MSNs with a peak firing
rate between 150 ms before to 150 ms after
movement onset were considered movement
responsive MSNs (n � 100; Fig. 1E).

To determine whether a recorded unit
showed a ramping firing pattern, we computed
the average firing rates of each unit from one
subregion over trials with a 50 ms sliding time
window moving in steps of 10 ms from 1 s be-
fore the time of Go cue to the time of Go cue.
Each resulting average firing rate was then nor-
malized to values between 0 and 1 and then mean
subtracted before applying principal component
analysis. First, we computed the corresponding
covariance matrix of all normalized zero-mean
firing rates; then, we performed Eigen decom-
position on the covariance matrix using the eig
function of MATLAB. The projection p of each
normalized zero-mean average firing rate r to
the first eigenvector (corresponding to the
maximum eigenvalue) was then computed as
the normalized dot product: pi � �ri, vi�/�1,
where i is the unit index and v1 the eigenvector
with the largest eigenvalue �1. This yielded one
projection value pi for each recorded unit. Be-
cause the first eigenvector had a positive ramp
over time, positive and negative projection val-
ues corresponded to positive and negative ac-
tivity ramps of a recorded unit over time,
respectively. The SD of the projection distribu-
tion from a random covariance matrix is 1/�n
(Anderson, 2003), with n being the number of
units. We considered neurons with a projec-
tion larger than 2/�n or smaller than � 2/�n
as positive and negative ramp neurons, respec-
tively (Fig. 2 A, B). This analysis method was
applied to determine positive and negative
ramps in GPe and STN.

Modeling of sensory responses. To simulate
sensory responses of STN neurons to the Go cue (Fig. 1C,D), we used
inhomogeneous Poisson generators, each of which targeted one STN
neuron in the model. The firing rate modulation of each inhomogeneous
Poisson generator was a half-sine wave with a duration of 20 ms and
maximum amplitude of 180 Hz. The latency of the sensory stimulation
for each STN neuron in the model was considered as the time interval
between the peak of the half-sine wave and the time of the Go cue, which
was taken randomly from the latency distribution of the sensory STN
neurons in our experimental data (Fig. 1D). Because, in our single-unit
data, 30% of the STN neurons responded to the Go cue, for each simu-
lation, we targeted 30% of randomly chosen STN neurons as “sensory”
STN neurons in the network model. Therefore, sensory responses in STN
neurons could propagate in our network model to GPe, similar to some
short latency responses we reported previously in GPe (Schmidt et al.,
2013).

Modeling of motor responses. Firing rates of the movement-responsive
MSNs (Fig. 1E) were summed up and used as the firing rate pattern of an
inhomogeneous Poisson generator representing striato-pallidal movement-
related inhibition in the network model. Because 38% of the GPe neurons in
our experimental data showed movement-related inhibition (Fig. 1F), for
each simulation, we targeted a randomly chosen 38% of the GPe neurons
as “motor” GPe neurons in the network model.

Modeling of firing rate ramps. To simulate the positive and negative
ramps in the activity of the STN neurons observed before the Go cue (Fig.
2 A, B), for each simulation, we divided STN neurons in the network
model into two nonoverlapping subpopulations. The fraction of STN
neurons in each subpopulation in the network model was similar to the
fraction we obtained from our experimental data (i.e., 34% of neurons
exhibited a positive ramp, 43% a negative ramp). We used an inhomo-
geneous Poisson generator with a positive ramp firing rate pattern as
excitatory input to the positive ramp STN subpopulation in the model.
The positive ramp in the firing rate of the inhomogeneous Poisson gen-
erator started 500 ms before the Go cue at 0 Hz, reached 250 Hz at the
time of the Go cue, and stayed constant until the movement onset
(Fig. 3B). Such a stimulation lead to a 4 Hz increase in the activity of
the positive ramp STN subpopulation in the network model during
the 500 ms time interval preceding the Go cue, similar to what we
observed in our experimental data (Fig. 2A).

Similarly, to simulate the negative ramp in the activity of STN neurons,
we used another inhomogeneous Poisson generator with a positive ramp
firing rate pattern as inhibitory input to the negative ramp STN model
neuron subpopulation. The positive ramp in the firing rate of the inhib-
itory inhomogeneous Poisson generator started 500 ms before the time
of Go cue at 0 Hz, reached 350 Hz at the time of the Go cue, and stayed
constant until the movement onset. Such a stimulation pattern lead to a

A

B

C

D

E

F

Figure 1. Single-unit responses to sensory and motor events during performance of the behavioral task. A, Sequence of
behavioral events during the experiment. Thick black bars show the position of the animal and thick green bar shows the occur-
rence of the sensory cue. Holding time refers to a random time delay (500 –1200 ms) in which the animal waits in one of the three
central ports for the sensory cue. Reaction time is measured as the time between the onset of the Go cue and movement initiation
(Nose-out). B, Scheme of the operant chamber with five nose ports in front and a food port in the back. C, Top, Normalized mean
firing rates of single STN units responding to the Go cue with an increase in firing rate (sorted by peak latency; each row shows
activity of one unit). Bottom, Corresponding mean firing rate of the STN subpopulation. D, Distribution of peak latencies relative to
the time of Go cue for STN neurons shown in C. E, Top, Normalized firing rates of single units in the striatum (putative MSNs)
increasing their activity around movement onset (sorted by time of peak activity). Bottom, corresponding mean firing rate of the
subpopulation. F, Same as E but for the GPe subpopulation decreasing activity around movement onset
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1 Hz decrease in the activity of the negative ramp STN neurons in the
network model during the 500 ms time interval preceding the Go cue,
similar to what we observed in our experimental data (Fig. 2B).

Time–frequency analysis. The power spectrogram was computed by
convolving 10 s of the GPe population firing rate (from �5 to �5 s
relative to the time of movement onset) in the model with a standard
Morlet wavelet (� � 0.849/f ) of integer frequencies (f � 1 to 500 Hz) and
taking the logarithm of the squared magnitude of the resulting time
series. To generate Figure 3C, bottom, we computed the mean spectro-
gram across 400 simulations of the model. The same method was used for
GPe LFP data to generate Figure 3C, top. For each time point in the
spectrogram, we summed the power in the beta range (15–30 Hz) and
divided it by the summed power across all frequencies (1–500 Hz) to
obtain continuous relative beta power, as shown in Figure 4, A, B, E, F,
and Figure 6B.

Mean resultant length. The GPe population firing rate in the network
model was convolved with the standard Morlet wavelet of each integer
frequency in the beta band (15–30 Hz). For each frequency, the Hilbert
transform of the filtered signal was computed to obtain a phase over time.
The phase spread for each time point was then calculated by computing
the length of the mean resultant vector over all trials using MRL�t	

�
1

n
�

n
ei� �n,t	, where �(n,t) is the phase of the nth trial at time t (n � 400

for the model). This results in a continuous measure of phase spread for
each frequency in the beta range. The mean resultant lengths shown in
Figure 4 were computed by taking the average across all beta frequencies.

Results
To determine whether a computational
model for pathological beta oscillations in
the STN-GPe network (Kumar et al.,
2011) can account for complex beta dy-
namics during behavior in healthy ani-
mals, we devised realistic stimulation
patterns for the network model based on
single-unit recordings in rats performing
a cued choice task (Schmidt et al., 2013;
Mallet et al., 2016). At the beginning of
each trial, the rat entered one of three cen-
ter nose ports in an operant chamber
(“Nose-in” event; Fig. 1A,B). The rat was
trained to then hold its position for a vari-
able time interval (“Holding time”; 500 –
1200 ms) until a Go cue instructed the rat
to move its head quickly to the adjacent
left or right side port (“Nose-out” event;
Fig. 1A,B). Correct performance of the
task was rewarded with a sugar pellet.
While the animals performed the task, we
recorded GPe and STN in the striatum to
determine activity patterns of single units
during the time of the Go cue and during
movement initiation. Then, we used these
activity patterns to construct realistic input
patterns for our network model. The net-
work model that we use here is a large-scale
spiking network model consisting STN and
GPe populations with conductance-based
synapses (Kumar et al., 2011; see Materials
and Methods). Stimulating the network
model via the realistic stimulation patterns
allowed us to compare the resulting oscilla-
tory dynamics in the model with properties
of oscillations in the rat LFPs.

Brief, short-latency sensory responses in STN
Thirty percent (70/226) of STN units responded to the Go cue
with an increase in firing rate (Fig. 1C; shuffle test, p � 0.05/15;
see Materials and Methods). Consistent with our previous reports
on a subset of the same data (Schmidt et al., 2013), this included
units with a very short latency (
10–30 ms) and responses of indi-
vidual units were typically very brief (Fig. 1C, top). A potential
source of such short-latency sensory responses of the STN units is
the pedunculopontine tegmental nucleus (Pan and Hyland, 2005).
In addition to the short-latency responses of the STN units, some
STN units responded with a longer latency (
40–100 ms), so that
the overall distribution of peak response latencies had a bimodal
shape (Fig. 1D). To mimic this STN response pattern to salient sen-
sory stimuli, individual STN units received brief excitatory pulses
with a fixed latency sampled from the latency distribution. These
pulses were then used as input to 30% randomly chosen STN model
neurons (sensory STN neurons) to match the fraction of responding
STN units in our single-unit data.

Movement-related activity in striatum and GPe
Thirty percent (100/320) of putative MSNs in the striatum in-
creased their activity during contralateral movements (Fig. 1E;
see Materials and Methods; also see Schmidt et al., 2013). We

A B

C D

Figure 2. Ramping activity in STN and GPe while the animal is waiting for the Go cue. A, Top, Normalized mean firing rate of
single STN units with a positive ramp in firing rate before the Go cue. Bottom, Corresponding mean firing rate of the STN subpop-
ulation in all trials (black) and subsets of long (cyan) and short (magenta) reaction time trials. B, Same as A but for single STN units
with a negative ramp in their firing rate before the Go cue. Inset, Direct comparison between average firing rates of neurons in A
and B corresponding to the areas inside the black rectangles. C, D, Similar to A and B, respectively, for GPe units.
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focused here on contralateral movements because most neurons
typically responded more during contralateral than ipsilateral
movements (Gage et al., 2010; Schmidt et al., 2013). In GPe, 38%
(56/149) of the units decreased their activity during contralateral
movements (Fig. 1F; shuffle test, p � 0.05/5; see Materials and
Methods), possibly reflecting input from indirect pathway MSNs.
Therefore, we assumed in the network model that striato-pallidal
inhibition drives the GPe firing rate decreases during movement.
We implemented this by generating inhomogeneous Poisson
spike trains with a rate modulation following the MSN firing
pattern during movement (Fig. 1E). These spike trains were then
used as inhibitory inputs to 38% of the network model GPe neu-
rons (motor GPe neurons) to match the fraction of GPe units
with movement-related firing rate decreases in the single-unit
data. Note that we restricted our analysis of GPe units to putative
prototypical neurons (Mallet et al., 2016) because they receive
input from MSNs and project to STN, whereas arkypallidal GPe
neurons probably receive different inputs and do not project to
STN (Mallet et al., 2016; Dodson et al., 2015).

Ramping activity in STN and GPe while rats wait for the Go cue
In addition to single-unit responses that could be classified as sen-
sory or motor, in STN and GPe, we found many units that exhibited
a firing pattern that resembled a “ramp,” a continuous change in
firing rate. A ramping pattern was present in the activity of 77%
(176/226) of the STN units with either significantly increasing (pos-
itive ramp) or decreasing (negative ramp) firing rate while the ani-
mal was waiting for the Go cue (Fig. 2A,B). Among the 176 ramping
STN units, 44% (78/176) showed positive ramps (Fig. 2A) and 55%

(98/176) showed negative ramps (Fig. 2B). However, the mean firing
rate increase for the positive ramp units was four times as high as the
mean firing rate decrease for the negative ramp units (4 vs 1 Hz
decrease, respectively; Fig. 2B, bottom, inset). The positive ramp was
also observed in the average firing rate of the whole STN population
starting 500 ms before the Go cue (data not shown). Functionally,
these ramps may correspond to a brake signal, preventing premature
movement initiation (Frank, 2006).

We found a similar pattern in the GPe with 71% (106/149) of the
units exhibiting a significant ramping activity before the Go cue (Fig.
2C,D). Among these, 47% (50/106) showed positive ramps (Fig. 2C)
and 52% showed negative ramps (Fig. 2D). Similar to the STN units,
on average, the amplitude of the positive ramp in GPe was four times
as high as the amplitude of the negative ramp, resulting in a net
positive ramp in the population activity (data not shown). One
property of the positive ramp STN and GPe units was that in long
reaction time trials their activity remained elevated after the Go cue
(Fig. 2A,C, bottom). This property played a key role for the beta
dynamics in the model below.

Based on these ramping patterns in STN and GPe, we designed
inputs to the model STN neurons that lead to similar activity
ramps (see Materials and Methods). Due to the excitatory drive
from STN to GPe, in the model, the ramps in STN activity re-
sulted in corresponding ramps in GPe.

Sensorimotor model inputs modulate time course of
beta oscillations
Because a previous modeling study demonstrated that excitatory
input to STN or inhibitory input to GPe can induce transient beta

Figure 3. Computational model of beta oscillations stimulated with biologically realistic input patterns. A, Scheme of the STN-GPe spiking neuronal network model. Motor input is provided as
striatal inhibitory input to the GPe, whereas sensory input is provided as excitatory input to the STN. Ramp input comprises separate excitatory and inhibitory inputs to separate STN subpopulations
(see Materials and Methods). B, Schematized temporal sequence of inputs to the network model during simulation of the behavioral task. C, Top, Mean spectrogram of GPe LFP data showing
modulation of LFP beta power during movement initiation. Bottom, Mean spectrogram (over 400 simulations) of GPe average firing rates for simulation of correct Go trials in the network model
matching the time course of beta power in the experimental data.
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oscillations (Kumar et al., 2011), we hypothesized that the se-
quence of ramp, Go cue, and movement-related activity patterns
(Fig. 3A,B) accounts for the complex beta dynamics in the LFP
(Leventhal et al., 2012). First, we reproduced the time course of beta
power modulation during movement initiation (Leventhal et al.,
2012) using an extended dataset of GPe recordings (Schmidt et al.,
2013; Mallet et al., 2016). In the rat LFPs, beta power started to
increase before the time of movement initiation and then showed a
pronounced peak just after movement onset (Fig. 3C, top). The time
course of beta power in the network model exposed to our single-
unit stimulation patterns (Fig. 3B) matched the experimentally ob-
served results (Fig. 3C, bottom), including the premovement beta-
power increase, the pronounced beta peak during movement, and
the second beta peak related to the movement out of the side port
(see Materials and Methods). The network model beta time course
was in this case determined by the STN ramping activity, combined
with the sensory responses of the STN neurons and the striato-
pallidal motor inputs (Fig. 3B). This is an important result because it
connects single-unit activity during task performance with oscilla-
tory network dynamics.

We compared the experimental LFP data with the model pop-
ulation firing rate (Fig. 3C). However, the origin of the LFP and
its relation to spiking activity are not well understood in the basal
ganglia. It seems that the LFP mostly reflects synchronized post-
synaptic currents (Niedermeyer and Lopez da Silva, 1998; Jensen
et al., 2005; Nunez and Srinivasan, 2005; McCarthy et al., 2011).
However, we found that the time course of beta oscillations was
very similar regardless of whether we used the population firing
rate or the summation of IPSCs or EPSCs to represent the experi-
mental LFP data (data not shown). Therefore, to stay consistent with
previous models (Kumar et al., 2011; Nevado-Holgado et al., 2014;

Pavlides et al., 2015), we continue to use the population firing rate in
the model to determine the presence of beta oscillations.

Sensory responses in STN lead to a beta-phase reset
In addition to the described changes in beta power, the phases of
beta oscillations can be modulated by specific events in the be-
havioral task. Sensory cues (like the auditory Go cue) that did not
lead to a distinctive increase in beta power were nevertheless
followed by a short-latency phase reset in the LFP (Leventhal et
al., 2012). In contrast, beta-power increases during movement
were not accompanied by a phase reset in the beta band (Lev-
enthal et al., 2012). We confirmed this result for GPe recording
sites using an extended dataset (Schmidt et al., 2013; Mallet et al.,
2016; Fig. 4A,E). To determine which properties of the neural
signal lead to a phase reset or to a power increase in the beta band,
we calculated grand averages of raw LFP traces (Fig. 4C). We
found that, briefly after the Go cue, a single beta cycle was visible.
This short oscillation was rather weak and could only be visible
when looking at the mean of the LFP data over many trials (Fig.
4C). This brief beta epoch was associated with beta phase reset
in the LFP data after the Go cue (Fig. 4A). Interestingly, pro-
viding brief stimulation to the sensory STN neurons in the
model leads to a brief, low-amplitude beta oscillation, which
also only became visible when inspecting the mean population
firing rate over many stimulations (Fig. 4D). Similar to the
experimental data, sensory stimulation of the model STN
leads to beta-phase reset in the ongoing activity of the network
model (Fig. 4B). Therefore, we conclude that brief excitatory
inputs to STN can induce weak, brief, phase-locked beta oscil-
lations in the STN-GPe network, mimicking the experimen-
tally observed results.

A

B

C

D

E

F

Figure 4. Sensory cues lead to a beta phase reset in both experimental data and in the network model. A, B, Time-resolved beta mean resultant length (left axes, green) and beta power (right
axes, gray) of GPe LFP data during correctly performed contralateral go trials averaged across all rats (A) and of the network model GPe population firing rate (B) (average of 400 simulations). Note
that sensory input is associated with a phase reset in both experimental data and in the model, shown as a brief increase in the value of the mean resultant length after the Go cue. C, Mean of the
raw experimental STN LFP data over all correctly performed contralateral go trials aligned to the Go cue. D, Mean of the STN population firing rates in response to the Go cue in the network model
(average of 400 simulations). E, F, Same analysis and simulations as in A and B, respectively, but aligned to movement onset. Note that the phase distribution is random during initiation and
execution of movement in both the rat and the network model (i.e., there was no increase in the mean resultant length around movement onset).
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Beta elevation around the time of
movement onset was not accompanied by
a phase reset in either the rat LFP data or
in the model (Fig. 4E,F). It might seem
counterintuitive that a strong stimulation
leading to a clear increase in beta power
did not reset the phase, whereas a weaker
stimulation did. However, STN neuronal
responses to the Go cue are brief com-
pared with the longer movement-related
increases in the activity of MSNs (Fig. 1C–
E). Therefore, we hypothesized that the
duration of neural responses to sensory
and motor events might be the key differ-
ence. To test this, we varied the duration
of the inputs to the model sensory STN
neurons and motor GPe neurons system-
atically (note that the inputs are inhomo-
geneous Poisson spike trains with firing
rate patterns of a half-cosine wave; see
Materials and Methods). We found that,
for brief inputs (leading to brief changes
in the neuronal activity), there was a phase
reset in the ongoing activity of the net-
work model (Fig. 5). Longer stimulations
of motor GPe neurons elevated the beta
power without phase reset (Fig. 5C,D).
For stimulation durations longer than a
single beta period in the model (i.e., ap-
proximately 50 ms), we only observed
beta-power elevation without phase reset (Fig. 5C,D). In fact, the
maximal phase reset in the network model occurred when the
stimulation duration was 25 ms, equaling half the beta cycle (Fig.
5B,D). For the short stimulation duration, the time to get to the
maximum of the half-cosine firing rate pattern is short (i.e., the
slope is steeper). This effectively leads to no trial-to-trial variabil-
ity because all realizations of the Poisson process with such a brief
firing rate pattern are very similar (with respect to the spike
times). This similarity in the input then leads to a similar re-
sponse in the network model and therefore a phase reset across
trials. In contrast, for longer stimulations, the time to get to the
maximum of the half-cosine firing rate pattern is longer (with shal-
lower slope). This leads to more trial-to-trial variability with respect
to the spike times in the realization of the Poisson process. Corre-
spondingly, this translates into trial-to-trial variability in the re-
sponse of the network model to the long stimulation and therefore
a random phase across trials.

Longer stimulations of the sensory STN neurons did not elevate
the beta power in the network model (Fig. 5A). This is because sen-
sory STN units made up a smaller fraction (30%) of the STN popu-
lation in our model compared with 38% motor GPe units (above).
The long stimulation of a small fraction of the STN neurons was not
sufficient to bring the network model into the oscillatory state. In
general, for a certain stimulation strength, the fraction of stimulated
neurons in the network model is a key parameter determining the
amount of evoked beta power (Kumar et al., 2011).

Disentangling the complex relationship between reaction
time and beta dynamics
The time course of beta oscillations depends on how fast the
animal initiates movement in response to the Go cue (Leventhal
et al., 2012). For short reaction times, the mean LFP beta power
shows a single peak after movement initiation. For long reaction

times, the mean LFP beta power shows two peaks, the first before
and the second after movement initiation (highlighted 300 ms
epochs preceding and after “Nose-out” in Fig. 6A, right; see also
Leventhal et al., 2012). The bimodal shape of the mean beta
power for long reaction time trials is also visible when aligned to
the Go cue (Fig. 6A, left). A straightforward idea would be that the
first peak of the mean beta power for long reaction time trials is
mostly driven by the Go cue or, alternatively, by the upcoming
movement. However, if the beta peak were driven by the Go cue,
then we would expect a higher peak for the data aligned to the Go
cue than for the data aligned to movement onset. Accordingly, if
the beta peak were related to the movement, then we would in-
stead expect a higher peak for the data aligned to the movement
onset. In contrast, despite variability in reaction time, this peak
had a similar shape and amplitude for alignment to both the Go
cue and movement onset. Therefore, this beta peak does not seem
to be simply driven by a sensory or motor event. With the help of
our network model, we disentangled the mechanisms underlying
these reaction-time-dependent complex features of beta.

Using our stimulation patterns based on single-unit record-
ings, we studied how different reaction times affect the time
course of beta power. We found a strikingly similar effect of
reaction time on the time course of beta power in the network
model (Fig. 6B). For long reaction time trials, the model exhib-
ited two separate peaks in the mean beta power with the same
time course as the experimental LFP data (Fig. 6B). Furthermore,
the peak of the mean beta power in the model after movement
onset for short reaction time trials had a higher amplitude than in
long reaction time trials, similar to the experimental LFP data
(Fig. 6A,B, right). The ability of the model to capture the fine
details of the complex beta-power modulation became visible
even at the single-trial level (Fig. 6C,D). As in the experimental
data, changes in mean power modulation were reflected as a

A

B

C

D

Figure 5. Effect of stimulation duration on beta power and phase reset in the network model. A, B, Relative beta power (A) and
beta-phase reset (B; measured by the mean resultant length) in the model GPe caused by excitatory input to the 30% sensory STN
neurons of varying duration (x-axis) and strength ( y-axis). C, D, Relative beta power (C) and phase reset (D) in the model GPe
caused by inhibitory input to the 38% motor GPe neurons (see Materials and Methods) of varying duration (x-axis) and strength
(y-axis). Note that, in all panels, we measured beta oscillations based on the GPe population firing rate.
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Figure 6. Relationship between beta oscillations and reaction time. A, Mean beta power of striatal LFP data for short (�500 ms) and long (�500 ms) reaction time trials aligned to the Go cue
(left) and movement onset (right) averaged across rats (adapted with permission from Leventhal et al., 2012). B, Mean relative beta power of GPe population firing rates in the network model
(averaged over 400 simulations) exposed to ramp, sensory, and motor stimulation patterns (solid lines). For comparison, if the striatal motor input to GPe is withheld in the model (dashed lines), then
the second beta peak disappears for long reaction time trials (right, blue dashed line). C, Single-trial striatal LFP traces from a single recording session sorted by (Figure legend continues.)
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change in the probability of a transient beta oscillation rather
than as only a gradual increase in the oscillation amplitude.

To understand the mechanisms underlying the complex rela-
tionship between beta and reaction times, we can now use our
network model to determine the contribution of each stimula-
tion component. Before the Go cue, ramping activity of the STN
neurons in the model causes a gradual increase in beta power
(mostly because of an increase in the probability of a beta event),
starting almost 600 ms before the Go cue (Figs. 6B,D, 7). At the
time of the Go cue, the sensory responses of the STN neurons
generate a weak and brief beta oscillation in the model (Fig. 7,
green traces). In short reaction time trials, this brief beta oscilla-
tion overlaps with beta oscillations driven by “ramp” and motor

inputs (because sensory and motor events are temporally close).
This overlap results in an interaction of ongoing beta (driven by
ramp input) with beta driven by motor input, leading to high beta
power around the time of movement onset (Figs. 6B, 7, top). For
long reaction time trials, after the Go cue but before movement
initiation, the sensory and ramp inputs determine the beta dy-
namics in the model. The interaction between the sensory and
ramp inputs leads to the first, high-amplitude beta peak for long
reaction time trials (Figs. 6B, 7, bottom). Because Go cue and
Nose-out events are temporally distant for long trials, this high-
amplitude beta power starts to decay before the time of move-
ment onset. This is followed by another beta epoch due to motor
input, which leads to the second peak of beta power after the time
of movement onset for long reaction time trials (Figs. 6B,D, 7).
The amplitude of this second peak is smaller compared with the
peak after movement onset for short reaction time trials (Fig. 6B,
right) because it lacks the interaction with STN excitation due to
the Go cue (Fig. 7). Functionally, the first beta peak in long reac-
tion time trials may be linked to the prolongation of movement
initiation in high-beta states (Brown et al., 2001; Levy et al., 2002;
Chen et al., 2007; Pogosyan et al., 2009). Therefore, our model
connects ramp activity in STN with the generation of beta oscil-
lations and potential functional roles as a “brake” (Frank, 2006).

Our results are robust to the STN–STN recurrent connectivity
in the network model
In the network model that we used, the STN neurons receive
excitatory synaptic inputs from other STN neurons with a con-
nection probability of 2% (Kumar et al., 2011). However, several
experimental studies indicated that the STN–STN recurrent con-
nectivity is very rare or does not exist (Hammond and Yelnik,
1983; Sato et al., 2000; Parent and Parent, 2007; Koshimizu et al.,
2013). Therefore, we modified the network model parameters to
determine whether the model without STN–STN connections is
also able to capture the behaviorally relevant dynamics of the
LFP beta oscillations. Indeed, with slight modifications of pa-
rameters (see Materials and Methods), all key results, includ-
ing the time course of beta around the time of movement
preparation and execution (Fig. 8A), the beta phase reset (Fig.
8B,C) and the complex relationship between beta and reaction time
(Fig. 8D,E), were reproduced. This demonstrates that our model
account of transient beta oscillations does not depend on STN–STN
recurrent connectivity.

In summary, our results show that the combination of sensory
responses of STN neurons, movement-related inhibition of GPe
neurons, and ramping activity in STN account for the complex
properties of beta-power modulation over time, beta-phase reset,
and correlations with reaction time of rat electrophysiological
recordings in the basal ganglia. Therefore, the model allows us to
make clear predictions about the underlying mechanisms and
provides the basis for studying functional consequences on neu-
ral processing and behavior.

Discussion
Oscillations in the LFP often reflect sensory, cognitive, and motor
aspects of neural processing, but we lack understanding of how
and why network oscillations emerge. Furthermore, we face a gap
between firing patterns of single neurons and network dynamics.
Here, we addressed this by combining experimental data with
computational modeling to study how firing patterns in single
units of task-performing healthy rats affect basal ganglia network
dynamics. Although our computational model was originally
used to describe beta oscillations in PD, this model also ac-

4

(Figure legend continued.) reaction time and aligned to the Go cue (left) and movement onset
(right) with beta epochs marked in red (adapted with permission from Leventhal et al., 2012).
D, Same visualization for single-trial model simulations with each trace showing the population
firing rate of GPe neurons in the network model. For simulation of each trial, the model reaction
time was selected randomly from the experimental data.

A

B

Figure 7. Scheme of contribution of each stimulation component to the generation of beta
oscillations in short (A), and long (B) reaction time trials. Red, green, and blue schematized beta
oscillations show the contribution of each individual input (ramp, sensory, and motor inputs,
respectively) without the other one. Note that, for short reaction time trials, interaction be-
tween beta oscillations due to ramp, sensory, and motor inputs leads to transient increase in
beta power around the time of movement onset (black trace shows the net effect of the inter-
action). For long reaction time trials, interaction between beta oscillations due to sensory and
ramp inputs leads to transient increase in beta power before the time of movement onset,
which is followed by another beta epoch due to motor input (black traces show the net effect of
the interaction).

11228 • J. Neurosci., November 15, 2017 • 37(46):11220 –11232 Mirzaei et al. • Basal Ganglia Beta Oscillations during Behavior



counted for properties of beta in healthy animals. We character-
ize potential neuronal mechanisms underlying oscillations, relate
healthy to pathological beta oscillations, and provide avenues for
studying functional roles of beta in behavior.

Neuronal mechanisms of beta oscillations
Computational and experimental studies have implicated the
STN-GPe network in beta oscillations in PD (Brown et al., 2001;
Magill et al., 2001; Bevan et al., 2002; Terman et al., 2002; Rubin
and Terman, 2004; Brown and Williams, 2005; Mallet et al., 2008;
Tachibana et al., 2011; Stein and Bar-Gad, 2013; Nevado-Holgado et
al., 2014; Pavlides et al., 2015; Wei et al., 2015). Moreover, cortico-
subthalamic excitation and striato-pallidal inhibition can generate
beta oscillations in network models of the subthalamo-pallidal
loop (Gillies et al., 2002; Kumar et al., 2011; Nevado-Holgado et
al., 2014; Pavlides et al., 2015; Wei et al., 2015; Ahn et al., 2016).
Consistently, we show that temporally regulated subthalamic ex-
citation and pallidal inhibition reproduces the dynamics of tran-
sient beta oscillations observed in the healthy basal ganglia during
behavior. Therefore, the same network that is responsible for beta
oscillations in PD may also be involved in the generation of
healthy beta.

As an alternative to the STN-GPe network, striatal MSNs
(McCarthy et al., 2011), feedback projections from GPe back to
striatum (Corbit et al., 2016), or spread of cortical beta to STN
may be involved in basal ganglia beta oscillations. However, our
model supports the role of the STN-GPe network due to the close
correspondence between single-unit activity and the resulting

complex time course of beta oscillations. Whether other models
for the generation of beta would be able to account for the com-
plex time course and behavioral correlates of beta remains to be
shown. Although increased striatal spiking increases beta oscilla-
tions in several models (Kumar et al., 2011; McCarthy et al., 2011;
Corbit et al., 2016), our model emphasizes the role of excitatory
inputs to STN for the transient dynamics of beta oscillations.
Overall, because beta oscillations are a heterogeneous phenome-
non (Szurhaj et al., 2003; Kilavik et al., 2012; Feingold et al.,
2015), the cortical and subcortical circuit may contain several mech-
anisms for the generation of beta, for example, to permit long-range
communication (Fries, 2005). Therefore, these models are not nec-
essarily exclusive and a key future challenge will be to disentangle the
different circuits and their interaction. Nonetheless, we have shown
that the STN-GPe network is sufficient to explain many features of
beta oscillations in awake, behaving animals.

Direct and indirect pathway MSNs
Activity of direct pathway MSNs (striato-nigral) promote ac-
tions, whereas indirect pathway MSNs (striato-pallidal) suppress
actions (Albin et al., 1989; Alexander and Crutcher, 1990; Kravitz
et al., 2010; Freeze et al., 2013; Roseberry et al., 2016). Here, we
considered movement-related increases in MSN activity (Fig. 1E)
as inhibitory input to the model GPe (Fig. 3A,B) without know-
ing whether the recorded MSNs are part of the direct or indirect
pathway. This assumption is supported by evidence that direct
and indirect pathway MSNs are concomitantly active during
movements (Cui et al., 2013; Isomura et al., 2013). Nevertheless,
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Figure 8. Network model without recurrent connections in STN reproduces all key results. A, Mean spectrogram (over 400 simulations) of GPe average firing rates for simulation of correct Go trials
in the modified network model matching the time course of beta power in the experimental data. B, C, Time-resolved beta mean resultant length (left axes, green) and beta power (right axes, gray)
of the GPe population firing rate in the modified network model aligned to the movement onset (B) and to the Go cue (C; average of 400 simulations). D, Mean relative beta power of GPe population
firing rates in the modified network model aligned to the Go cue (left) and movement onset (right) averaged across 400 simulations. E, Single-trial simulations of the modified network model sorted
by reaction time, with each trace showing the population firing rate of GPe neurons aligned to the Go cue (left) and movement onset (right; beta epochs are marked in red).
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there might be important activity differences between direct and
indirect pathway neurons coordinating behavior. Whether co-
activation of indirect pathway MSNs during movement reflects
the suppression of alternative actions (Hikosaka et al., 2006; Red-
grave et al., 2010) or activates specific neural assemblies in motor
cortex (Oldenburg and Sabatini, 2015) remains unclear. Further-
more, almost 60% of direct pathway MSNs possess collateral ter-
minal fields in GPe (Cazorla et al., 2014). Therefore, during
movements, GPe likely receives increased inhibitory input from
striatal MSNs, as incorporated in the model.

STN as a brake
We found ramps in the activity of STN units while the animal was
waiting for the Go cue. During this time, the animal has to pre-
vent premature movements to receive the food reward. Building
on “hold-your-horses” models of STN (Frank, 2006), these ramps
might prevent or delay movements. Correspondingly, in our ex-
perimental data, the ramps reached a plateau after the Go cue,
which was linked to the reaction time (i.e., the plateau persisted
longer in trials with a long reaction time; Fig. 2A, bottom). There-
fore, these ramps might modulate the readiness for movement
initiation. However, we also observed (data not shown) that the
population activity of the STN ramps typically did last until
movement initiation, indicating that the offset of this STN ramp
does not provide a motor command itself. Instead, high STN activity
might ensure that only coordinated movement commands (poten-
tially signaled by striatal output), but not premature movement im-
pulses, lead to motor output.

Conceptually, our model provides an important link among
putative hold-your-horses ramping activity in STN, beta oscilla-
tions, and reaction times. The ramping activity increased spiking
activity of the STN neurons and, consequently, also led to more
beta oscillations in the model (Kumar et al., 2011). This was key
in accounting for the bimodal shape of the mean beta power for
long reaction time trials (Fig. 6B).

The STN ramps might be due to cortical drive. For example, in
the motor cortex of monkeys, ramping activity has been observed
while the animals anticipated sensory cues and needed to prevent
premature movements (Confais et al., 2012). Furthermore, other
cortical areas including right inferior frontal cortex and the pre-
supplemental motor area project to STN and have been impli-
cated in motor suppression (Wessel and Aron, 2017). In general,
cortico-subthalamic excitation has been proposed to be impor-
tant for the generation of beta oscillations (Tachibana et al., 2011;
Pavlides et al., 2015). Importantly, the STN ramps during the
hold period increased the probability of transient beta in our
model. This fits well with antikinetic aspects of beta (Brown and
Williams, 2005) and with STN activity correlating with slowness
of movement observed during the progression of PD (Bergman et
al., 1994; Remple et al., 2011).

Behavioral relevance and predictions
Beta oscillations seem to comprise a heterogeneous phenomenon
with potentially different functions and mechanisms depending
on the brain region (Szurhaj et al., 2003; Kilavik et al., 2012;
Feingold et al., 2015). Here, we extend this view by proposing that
transient, nonpathological basal ganglia beta can be driven by
two distinct inputs. First, beta oscillations were driven by excit-
atory inputs to STN, including the ramping activity that might be
linked to preventing premature movements. Second, beta oscil-
lations were also driven by striato-pallidal inhibition during
movement. Therefore, our model provides an explanation for
why beta in some cases can be “antikinetic” (Brown and Williams,

2005), but in other cases can also appear during movement (Lev-
enthal et al., 2012). Whether and how these two modes of beta make
different functional contributions, for example, by differential com-
munication with other brain regions (Fries, 2005), is an open
question.

Based on our model, we make several experimentally testable
predictions. First, the two modes of beta generation, GPe inhibi-
tion and STN excitation, might have different signatures in LFP
recordings. If the beta is generated by GPe inhibition, then the
oscillation begins with a decrease in GPe activity. If beta is gener-
ated by STN excitation, then the beta oscillation begins with an
increase in STN. Although we do not know yet how spiking in the
STN and GPe relates to patterns in the LFP, these two modes
could translate into different onset phases of beta. Therefore, we
presume that transient beta oscillations could be classified based
on their onset phase and that this is indicative of whether the
oscillation was driven by input to GPe or STN. Despite practical
challenges such as detecting the exact onset phases of beta in noisy
LFPs, this might provide valuable insights into whether the two
modes of beta generation have distinct behavioral correlates.

Second, our model makes specific predictions about the rela-
tion between activity of MSNs projecting to GPe and the timing
of beta oscillations (McCarthy et al., 2011). In recordings of iden-
tified direct and indirect pathway MSNs, our model predicts that
the activity of the D2 MSNs predicts the timing of beta more
accurately than the activity of the D1 MSNs. One complicating
factor is that this distinction does not apply to beta driven by
cortical excitation of STN.

Another model prediction arises from our observation that
the duration of excitatory inputs to STN determines whether a
phase reset occurs in the LFP. Sensory neuronal responses (Fig.
1C,D) are typically brief. We propose that sensory cues from
other modalities have the same effect so that, for example, visual
cues that lead to brief excitations of STN also lead to a phase reset
in the LFP signal. Furthermore, in addition to sensory cues, brief
optogenetic stimulation of STN might yield the same effect.
Whether these cue-induced beta-phase resets play also a func-
tional role, for example, in the temporal coordination with inputs
from other regions remains to be shown.

Finally, we predict that changes in the structure of the STN
ramping activity affects the probability of beta oscillations. If the
STN ramps indeed reflect a hold-your-horses signal (Frank,
2006), then the changes in the behavioral paradigm that manip-
ulate the readiness for movement initiation should affect the
ramping activity directly. For example, if the cost for the animal
of a premature response is increased, then the corresponding
ramping activity might change its time course and amplitude. In
the model, this would translate directly into changes in the time
course and probability of transient beta.

In conclusion, the direct combination of our computational
model with experimental data provides a connection between
single-unit activity and network oscillations. This helps us to
study the functional contributions of transient beta oscillations
during sensorimotor processing in a behavioral context.

References
Ahn S, Zauber SE, Worth RM, Rubchinsky LL (2016) Synchronized beta-

band oscillations in a model of the globus pallidus-subthalamic nucleus
network under external input. Front Comput Neurosci 10:134. CrossRef
Medline

Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal
ganglia disorders. Trends Neurosci 12:366 –375. CrossRef Medline

Alegre M, Alonso-Frech F, Rodríguez-Oroz MC, Guridi J, Zamarbide I, Va-
lencia M, Manrique M, Obeso JA, Artieda J (2005) Movement-related

11230 • J. Neurosci., November 15, 2017 • 37(46):11220 –11232 Mirzaei et al. • Basal Ganglia Beta Oscillations during Behavior

http://dx.doi.org/10.3389/fncom.2016.00134
http://www.ncbi.nlm.nih.gov/pubmed/28066222
http://dx.doi.org/10.1016/0166-2236(89)90074-X
http://www.ncbi.nlm.nih.gov/pubmed/2479133


changes in oscillatory activity in the human subthalamic nucleus: ipsilat-
eral vs. contralateral movements. Eur J Neurosci 22:2315–2324. CrossRef
Medline

Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia
circuits: neural substrates of parallel processing. Trends Neurosci 13:266 –
271. CrossRef Medline

Anderson TW (2003) An introduction to multivariate statistical analysis, Ed
3. New York: Wiley.

Baker SN, Olivier E, Lemon RN (1997) Coherent oscillations in monkey
motor cortex and hand muscle EMG show task-dependent modulation.
J Physiol 501:225–241. CrossRef Medline

Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate
subthalamic nucleus. II. Neuronal activity in the MPTP model of parkin-
sonism. J Neurophysiol 72:507–520. Medline

Berke JD, Okatan M, Skurski J, Eichenbaum HB (2004) Oscillatory en-
trainment of striatal neurons in freely moving rats. Neuron 43:883–
896. CrossRef Medline

Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ (2002) Move to the
rhythm: oscillations in the subthalamic nucleus-external globus pallidus
network. Trends Neurosci 25:525–531. CrossRef Medline

Brown P, Williams D (2005) Basal ganglia local field potential activity: char-
acter and functional significance in the human. Clin Neurophysiol 116:
2510 –2519. CrossRef Medline

Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001)
Dopamine dependency of oscillations between subthalamic nucleus and
pallidum in Parkinson’s disease. J Neurosci 21:1033–1038. Medline

Brunel N (2000) Dynamics of sparsely connected networks of excitatory
and inhibitory spiking neurons. J Comput Neurosci 8:183–208. CrossRef
Medline

Cazorla M, de Carvalho FD, Chohan MO, Shegda M, Chuhma N, Rayport S,
Ahmari SE, Moore H, Kellendonk C (2014) Dopamine D2 receptors
regulate the anatomical and functional balance of basal ganglia circuitry.
Neuron 81:153–164. CrossRef Medline
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