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Modeling and Optimal Control for Rope-Assisted
Rappelling Maneuvers

Enrico Mingo Hoffman, Matteo Parigi Polverini, Arturo Laurenzi, and Nikos G. Tsagarakis

Abstract—Envisioning the employment of rope-assisted hu-
manoid robots to reduce human intervention for operations in the
heights, this work addresses the modeling and motion planning
problems for a rope-assisted bipedal robot. The mathematical
features of this system outnumber the ones of typical humanoid
robots, including: under-actuation of the floating-base joints, the
rope pulling effect and the passive connection between the robot
body and the rope master-point. These characteristics render
the study of a rope-assisted bipedal robot both fascinating and
unexplored, raising motion planning challenges when attempting
to plan dynamic suspended maneuvers, as rappelling. To this end,
we first introduce a template three-mass model of a bipedal robot
connected trough passive joints to an extensible rope, which is
in turn modeled as a two-mass body. Based on this, a family of
optimal control problems is presented to plan different rappelling
maneuvers.

Index Terms—Humanoid Robots, Climbing Robots, optimiza-
tion and optimal control, multi-contact motion planning

I. INTRODUCTION

THE Darpa Robotics Challenge (DRC) primarily aimed at
using humanoid robotics technology to enter dangerous

human-conceived environments, successfully encouraging the
development of complex legged systems to be employed in
disaster scenarios. The humanoid research community has
consequently started to explore novel techniques to enhance
and extend the capabilities of humanoids and legged systems.
In [1] a control framework is presented to push a heavy
object (more than 120 kg) with a quadrupedal humanoid
robot. Boston Dynamics showed the Atlas robot performing
the world-famous back flip and parkour demonstrators, al-
though theoretical nor practical details have not been com-
pletely disclosed. Note also that DRC assessed the danger
at environment-level rather than at task-level. The staged
tasks in fact, although performed in a dangerous environment,
were comparatively simple and safe for a human operator in
nominal working conditions. As a step forward, in the near
future we can imagine humanoid robots facing tasks with
an inherent level of danger for the human worker. Rope-
assisted operations such as: rescue, repair, maintenance and
autonomous inspection in the heights, fall in this category [2].
At the present time, these tasks are entirely performed by
human workforce, involving highly trained operators with
expert decision making skills working in high-risk and com-
plex environments, see Fig. 1. In this respect, the future
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Fig. 1. 1: flying gardeners take care of the Bosco Verticale towers in Milan.
2: After the collapse of the Morandi bridge (Genoa, August 14th, 2018),
rope-assisted fire-fighters successfully saved the life of a survivor stuck in his
vehicle several meters above the ground. 3: Search & rescue operations in the
heights and depths are generally carried out using rope-assisted techniques.
4: Wind turbine maintenance and inspection is a possible field of application
for robot climbing technologies.

employment of rope-assisted climbing humanoids could help
in reducing human intervention in the heights, thus improving
operators’ health and safety.

Climbing robots have been addressed in the robotics lit-
erature during the last three decades and a wide variety of
platforms have been proposed especially for vertical infras-
tructure inspection: Stickybot [3], SCAMP [4] or TAILS [5].
Unfortunately, the size and performance of these research
platforms restrict their applicability merely to inspection tasks.
Nevertheless, in recent years the readiness level of climbing
robots technology has produced an increasing number of
platforms for industrial applications [6]. Industrial companies
have also started to appear, using simple robotic systems
to accomplish rope-suspended tasks, e.g. the cleaning and
inspection of facades (WALL Robotics [7]) or turbine blades
(ROPE Robotics [8]). However, dealing with multiple kinemat-
ics chains, e.g. a humanoid topology, in the control problem
of a rope-assisted robotic system remains a comparatively
unexplored research direction. Very few works can be found
in the literature dealing with this topic. In [9] an impressive
rappelling experiment has been carried on the HRP-2 bipedal
humanoid. A simple strategy has been employed, consisting in
a transition motion for rappelling, with a sequential transition
of the Center of Mass (CoM) position and the contact states
of the robot’s limbs, while the rope is manipulated by both
hands. From the same research group, a strategy to let HRP-2
walk on a steep slope has been presented in [10]. Here
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a Quadratic Programming (QP) problem is used to find a
reference tension for the rope, which is then tracked by the
arms’ motion with an admittance controller, ensuring static
equilibrium. The locomotion part is left to a classical preview
control approach [11]. In this regards, note that, despite both
[9], [10] present remarkable experimental results, planning of
rope-assisted dynamic motions have not been addressed so
far, nor an exhaustive analysis of the underlying dynamics has
been provided.

Based on these considerations, and foreseeing the employ-
ment of rope-assisted humanoids for operations in the heights,
the main contribution of this work are:

1) a comprehensive description of the floating-based dy-
namics of a rope-assisted bipedal system, based on an
introduced template model;

2) a family of Optimal Control problems (OCP), relying
on the introduced template model, to plan rope-assisted
rappelling maneuvers.

II. MATHEMATICAL MODEL

This Section is dedicated to the derivation of the equation
of motion that describes the dynamics of a template model,
which simplifies the kinematics of a rope-assisted bipedal
aiming at generating complex motions. To this end, the biped
is modeled as a three-mass body with point feet, which is
connected through passive joints to an extensible rope, in
turn modeled as a two-mass body. A similar template model
can be found in [9] and relies on the assumption that rope-
assisted manoeuvres, e.g. rappelling, engage the motion of
the robot legs solely, while the robot arms are used for in-
place manipulation once a target location has been reached.
Note that, while this modelling choice simplifies the robot
kinematics, no further simplification will be introduced on the
robot dynamic model. In this respect, as common practice in
humanoids robotics, floating-base coordinates will be included
in the generalized coordinates vector. One of the advantages of
this choice, compared to a fixed-base approach in this regards,
is that the rope anchor-point location is free to change, e.g.
for climbing motions.

A. Template Model for a Rope-Assisted Bipedal Robot:
Floating-Base Approach

With reference to Fig. 2, let us consider a floating-base
system consisting of the actuated prismatic joint coordinates
qll ∈ R3 and qlr ∈ R3, enabling the positioning of the
left and right leg end-effectors, respectively. Assuming point
contacts, the corresponding Cartesian positions and contact
forces, expressed w.r.t. the world frame W , are denoted with
pCl(q) ∈ R3, FCl ∈ R3 and pCr(q) ∈ R3, FCr ∈ R3, respec-
tively. Three additional revolute joints qb ∈ R3 are introduced
to model the passively-driven spherical connection between the
robot body and the rope master-point, whose position w.r.t the
world frame W is denoted with pb(q) ∈ R3. The rope itself
is modeled as a two-mass system, where two thin rigid bodies
are connected by a prismatic joint qr ∈ R, enabling the rope
extension/contraction. The position of the rope anchor-point
w.r.t. the world frame W is denoted with pr(q) ∈ R3 and the

related contact force with Fr ∈ R3. The pose of the (under-
actuated) floating-base is modeled through three prismatic
joints pu ∈ R3 and a spherical joint, whose orientation is
given by the unit quaternion ρu ∈ R4. As shown in Fig. 2, the
inertial properties of each rigid body are given by the related
mass value and inertia tensor, while pCoM ∈ R3 represents
the position of the CoM w.r.t. the world frame W . Finally,
let us consider a climbing surface S, whose orientation is
described through its normal nS ∈ R3. By denoting with n
and nu the number of actuated and unactuated degrees-of-
freedom (DoFs), respectively, the generalized coordinates can
be now collected in the vector q ∈ Rn+nu , with n = 7 and
nu = 10 for the introduced template model:

q =
[
pTu ρTu qTll qTlr qTb qr

]T
, (1)

while the generalized coordinates velocities ν ∈ Rn+nu−1 and
accelerations ν̇ ∈ Rn+nu−1 are given by:

ν =
[
ṗTu ωTu q̇Tll q̇Tlr q̇Tb q̇r

]T
, (2a)

ν̇ =
[
p̈Tu ω̇Tu q̈Tll q̈Tlr q̈Tb q̈r

]T
, (2b)

where ṗu, p̈u ∈ R3 and ωu, ω̇u ∈ R3 are the linear and angu-
lar velocity and acceleration, respectively, of the robot floating-
base expressed in the world W coordinates.

Being ρu =
[
εTu ηu

]T
, with εu ∈ R3 and ηu ∈ R, the so-

called quaternion propagation [12] is given by

ρ̇u =

[
1

2
ωu, 0

]
◦ ρu, (3)

expressing the relation between ρ̇u and ωu. The symbol ◦ is
used to denote the quaternion product.

Fig. 2. The rope-assisted bipedal robot floating-base template model. The
point pr is the anchor-point between the rope and the surface S. The
connection between the rope and the body of the robot, modeled through
the three rotational joints qb is called master-point pb.

B. Rope-Assisted Floating-Base Robot Dynamics
The dynamics of a rope-assisted floating-base robot can be

expressed by the following equation of motion:

B(q)ν̇ + h(q,ν) = Sτ + JTC (q)FC + JTr (q)Fr, (4)
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where τ =
[
τTll , τ

T
lr , τr

]
∈ Rn are the actuated joint torques,

while B(q) ∈ R(n+nu−1)×(n+nu−1) is the full joint space in-
ertia matrix and h(q,ν) ∈ Rn+nu−1 is the vector of non-linear
(gravity, centrifugal/Coriolis) terms. Differently from a fixed-
base robot, the following actuation matrix S ∈ R(n+nu−1)×n

is introduced to model the system under-actuation, consisting
of the robot floating-base with the addition of the passively-
driven master-point joints:

S =
[
06×n I6×n 03×n I1×n

]T
. (5)

Contact forces FC ∈ Rk are taken into account by concate-
nating the Jacobian of all support links JC(q) ∈ Rk×(n+nu−1)

and the corresponding overall contact wrench. We will here-
after assume nC point contacts1, thus k = 3nC. The equation
of motion in (4) can be further split into nu unactuated and n
actuated rows, denoted with subscript u and a, respectively:

Bu(q)ν̇ + hu(q,ν) = J
T
C,u(q)FC + JTr,u(q)Fr, (6a)

Ba(q)ν̇ + ha(q,ν) = τ + JTC,a(q)FC + JTr,a(q)Fr, (6b)

with JTC,u(q) ∈ R(nu−1)×k and JTr,u(q) ∈ R(nu−1)×3.
In its current formulation, the floating-base model in (4),

which is actually equivalent to the one of a floating-base tripod
system, does not fully capture the rope-assisted dynamics.
Therefore, in order to properly model the rope suspension
effects, the following set of additional constraints needs to
be applied to the equation of motion in (4).

1) Rope constraints: We have already modeled the rope
master-point by introducing a ball joint qb and by making it
passive thanks to the actuation matrix S in (5). To properly
model the effects of the rope suspension, we now need to first
include a constraint on the position of the anchor-point pr(q)
to be equal to a prescribed position pdes

r , i.e.:

pr(q) = p
des
r . (7)

It is common practice to employ a linearized version of (7)
w.r.t. joint velocities and/or accelerations:

ṗr(q,ν) = Jr(q)ν = 0, (8a)

p̈r(q,ν, ν̇) = Jr(q)ν̇ + J̇r(q,ν)ν = 0. (8b)

Finally, the pulling force Fr applied by the rope on the
anchor-point pr(q) can be implicitly constrained by the torque
τr ∈ R exerted on the rope prismatic joint qr. In particular, by
imposing the following unilateral constraint:

τr ≤ 0, (9)

we can ensure that the rope can only pull from the anchor-
point and not push.

2) Climbing surface constraints: When the robot is estab-
lishing contact with the climbing surface S, constraints on
contact positions and contact forces must be simultaneously
enforced. The former type of constraint, i.e.:

pCi(q) ∈ S
(
pCi(q)

)
, (10)

1For the case of surface contacts, wrenches exerted on each contacting link
can be fully described by applying contact forces at the vertices of the contact
polygon, which is consistent with the formulation given in (4).

ensures that the i-th contact point, with i := {l, r}, lays on
the surface. In the simple planar case, the climbing surface
equation is given by:

S
(
pCi(q)

)
: nS

TpCi + d = 0, (11)

being nS =
[
a b c

]T ∈ R3 the climbing surface normal,
with a, b, c, d ∈ R. In general note that, given the climbing
environment equation, one can express the normal nS as:

nS =
∇S(pCi(q))

‖∇S(pCi(q))‖2
. (12)

We also need to ensure that contact points do not slip on the
climbing surface, i.e.:

ṗCi(q,ν) = JCiν = 0. (13)

In order to further encode the impact of the climbing surface
orientation on contact forces, friction constraints must be
incorporated. Let us consider the contact force FCi ∈ R3 at
the i-th contact point, with i := {l, r}. Being F nCi ∈ R3 and
F tCi ∈ R3, the normal and tangential component of the contact
force, respectively, given by:

F nCi = (FCi · nS)nS , (14a)
F tCi = FCi − (FCi · nS)nS , (14b)

the i-th point contact remains in rest contact mode if FCi lies
inside the friction cone directed by nS , i.e.:

F(FCi,nS , µ) :=

{
FCi · nS > Fthr

‖F tCi‖2 ≤ µ(FCi · nS),
(15)

where µ is the Coulomb friction coefficient, while Fthr ≥ 0
is a scalar force threshold. The Euclidean norm ‖ · ‖2 mod-
els Coulomb friction cones with circular section. A largely
adopted linearized version of (15) is given by:

b ≤DRS FC ≤ b. (16)

The matrix RS ∈ R3×3 maps the contact forces in a local
reference frame. One can choose RS such that the z-axis
represents the normal component of the contact force. Being
{C,i}FC,i = RS FCi ∈ R3 the i-th contact force expressed w.r.t.
the local reference frame {C,i}, the matrix D and the lower
and upper bounds b, b, respectively, can be retrieved from the
expression of the polyhedral linearized friction cones, i.e.:

{Ci}F zCi ≥ Fthr, |{Ci}F x,yCi | ≤ µ̃
{Ci}F zCi, (17)

where µ̃ =
√
2
2 µ models the inner approximation of the circu-

lar Coulomb friction cone.

III. OPTIMAL CONTROL FORMULATION AND
TRANSCRIPTION

In this Section we introduce the general Optimal Control
Problem (OCP) which employs the dynamic model in Sec. II
to plan rope-assisted rappelling motions. The OCP will be first
formulated in continuous time and subsequently transcribed
using a Direct Multiple Shooting (DMS) discretization [13].
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Let us first consider the following choice for the state x and
control u vectors:

x =
[
qT νT

]T , (18a)

u =
[
ν̇T F TC F Tr

]T
, (18b)

hence: ẋ =
[
q̇T ν̇T

]T
. Based on the floating-base model

described in Sec. II, the OCP formulation we address in this
Section reads as:

min
x(·),u(·)

∫ T

0

L
(
x(t),u(t)

)
dt+ E

(
x(T )

)
subject to

(19)

x0 − xinit = 0 initial state
x(T )− xgoal = 0 final state

ẋ(t)− f
(
x(t),u(t)

)
= 0 double integrator

τu
(
x(t),u(t)

)
= 0 under-actuation (6a)

τ ≤ τ
(
x(t),u(t)

)
≤ τ torque bounds (6b)

pr(t)− pdes
r = 0 rope anchor-point (7)

τr ≤ 0 rope pull (9)

p
Ci
≤ pCi(t) ≤ pCi work-space bounds

if Ci in contact:
pCi(t ∈ TC) ∈ S(pCi) climbing surface (10)
ṗCi(t ∈ TC) = 0 no slip condition (13)
FCi(t ∈ TC) ∈ F(FCi,nS , µ) friction cone (15)

otherwise:
FCi(t 6∈ TC) = 0 no contact force

Herein the double integrator relation from ν̇(t) to q(t) can be
expressed through the following state-space representation:

ẋ(t) =

[
0 Ŝ
0 0

]
x(t) + fquat

(
x(t)

)
+

[
0 0 0
I 0 0

]
u(t), (20)

where the selection matrix Ŝ is given by:

Ŝ =
[
I3×(n+nu) 04×(n+nu) I(n+3)×(n+nu)

]T
(21)

while fquat(x) represents the quaternion propagation, pre-
viously introduced in (3). The under-actuation constraint is
implemented according to (6a) by denoting with τu ∈ Rnu−1

the under-actuated torques, i.e.:

τu = Buν̇ + hu − JTC,uFC − JTr,uFr. (22)

Similarly, torque bounds are imposed on the actuated torques
τ ∈ Rn, whose expression can been retrieved from (6b):

τ = Baν̇ + ha − JTC,aFC − JTr,aFr. (23)

The rope pulling effect has been enforced as a constraint in (9).
Bounds on the contact positions are introduced to approximate
the reachable work-space through box constraints.

In order to perform a Direct Multiple Shooting (DMS)
transcription [13] of (19) into a Nonlinear Program (NLP) that
can be solved by off-the-shelf solvers, let us consider a number

Ns of shooting intervals, which discretize the control horizon.
The state variable and control vector at the k-th shooting
interval, xk and uk respectively, are denoted as:

xk =
[
qTk νTk

]T (24a)

uk =
[
ν̇Tk F TC,k F Tr,k

]T (24b)

We hereafter assume a piece-wise constant control
parametrization along each shooting interval. The Ns + 1
states are collected in the state vector X:

X =
[
xT0 ,x

T
1 , . . . ,x

T
Ns

]T
(25)

and the Ns controls in the control vector U :

U =
[
uT0 ,u

T
1 , . . . ,u

T
Ns−1

]T
. (26)

In agreement with DMS, the so-called “continuity condition”
constraint needs to be further satisfied: s (xk,uk)− xk+1 = 0.
Here the function s (xk,uk) is used to simulate the double-
integrator dynamics in (20) over one shooting interval. We
additionally let the solver free to decide the optimal step size
for each shooting interval, introducing the step size variable
dtk ∈ R+ in the control vector:

uk =
[
ν̇Tk F TC,k F Tr,k dtk

]T
, (27)

together with the positive bound: dt ≤ dtk ≤ dt. Finally, we
adopted a linearized version of friction cones which, in our
experience, is easier to handle for the solver.

IV. PLANNING OF ROPE-ASSISTED MANEUVERS

This Section is dedicated to the planning problem of rope-
assisted maneuvers requiring direct interaction with the envi-
ronment, hereafter represented by a vertical wall. In partic-
ular we consider a controlled descent off the climbing wall,
technically referred to as rappelling. The related NLPs have
been implemented using the CasaADi [14] library, an open-
source tool for nonlinear optimization and automatic differen-
tiation. The robot model described in Sec. II has been used
within CasADi thanks to Pinocchio library [15], providing
analytical derivatives of the main rigid-body algorithms, e.g.
the recursive Newton-Euler algorithm or the articulated-body
algorithm2. Table I summarizes the employed mass and inertial
parameters; the mass parameters have been chosen according
to the ones of the real size bipedal humanoid COMAN+ [16],
developed at the Italian Institute of Technology (IIT).

Rappelling

The rappelling is a technique used by climbers, moun-
taineers, cavers, canyoners, search & rescue and rope access
technicians to descend cliffs or slopes when they are too steep
and/or dangerous to descend without protection.

Inspired by the work of Winkler et al. [17] for legged
locomotion, in the considered scenario the rappelling has
been characterized by four actions denoted with (L,R,D, F ),

2The development on CasADi and Pinocchio that led to the realiza-
tion of the present work has been collected into two software packages:
the casadi kin dyn library (https://github.com/ADVRHumanoids/casadi kin
dyn) and the Horizon library (https://github.com/ADVRHumanoids/Horizon)

https://github.com/ADVRHumanoids/casadi_kin_dyn
https://github.com/ADVRHumanoids/casadi_kin_dyn
https://github.com/ADVRHumanoids/Horizon
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a.  Time history of the contact forces x-component (blue solid line) and Cartesian position of the feet along the z-axis (red solid line) 
during the rappelling using a jumping strategy, see Table II. The separate actions are represented by distinct colors. It can be noted how 
the solver automatically decides not to perform the last jump, reducing the duration of the last D and F actions.

b.  Resulting motion with visualization of contact forces from a 
rappelling OC problem using a jumping strategy.

c.  Time history of the rope joint position (blue solid line) and 
rope target position (red solid line) from a rappelling using a 
jumping strategy.

Fig. 3. Rappelling with jumping strategy.
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a.  Time history of the contact forces x-component (blue solid line) and Cartesian position of the feet along the z-axis (red solid line) 
during the rappelling using a stepping strategy, see Table III. The separate actions are represented by distinct colors. During the final 
phase, the D and L action duration is reduced w.r.t. the previous ones. Note also the alternations of feet motions and contact forces 
during the steps.

b.  Resulting motion with visualization of contact forces from a 
rappelling OC problem using a  stepping strategy.

c.  Time history of the rope joint position (blue solid line) and 
rope target position (red solid line) from a rappelling using a 
stepping strategy.

Fig. 4. Rappelling with stepping strategy.
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TABLE I
TEMPLATE MODEL INERTIAL PARAMETERS

Parameter Description Value

mb Base mass 40 [kg]

Ib Base inertia diag ([1.5, 1.733, 0.833]) [ kg
m2 ]

mll(r) Foot mass 10 [kg]

Ill(r) Foot inertia diag ([0.04, 0.04, 0.04]) [ kg
m2 ]

mr1(2) Rope mass 1 [kg]

Ir1(2) Rope inertia diag
([
0.187, 0.187, 5e−5

])
[ kg
m2 ]

where L: left foot in contact, R: right foot in contact, D:
both feet standing, F : flight phase. Note that both jumps and
stepping motions are inherently considered in this characteri-
zation, while the rope extension can be actively modified. A
user-defined number of rappelling-actions (na) is scheduled
within a single rappelling-phase. Multiple phases (np) can
be considered, while each action is applied for Na shooting
intervals in order to let the solver modify its duration (see
Fig. 5). Subsequently, the total number of shooting intervals
Ns needs to fulfill the relation Ns ≥ np ·na ·Na. This choice
has been driven by the employment of a DMS discretization,
whereas in [17] Direct Collocation (DC) [13] is adopted. DC
does not require an integrator of the system dynamics, trading-
off computational advantage against dynamical accuracy. Dif-
ferently from DMS, this enables the possibility to optimize
each action duration concurrently [17]. For this reason, we
here propose to optimize each action duration sequentially,
see Fig. 5, in order to extend the approach in [17] to DMS
discretization. We can now set up different types of rappelling
descents along the vertical climbing surface. According to [9],
in these scenarios the master-point location has been shifted
towards the center of the robot body in order to prevent it
from tilting excessively towards the climbing wall.

1) Jumping strategy: By choosing as candidate actions a
double stance D followed by a flight phase F (see Table II),
it is possible to rappel down the wall using a jumping strategy.
The following cost function has been considered:

F (X,U) =

Ns∑
k=0

(
γνν

T
k νk + γpu(p

[x]
u,k − p

[x],ref
u )2

)
+

+

Ns∑
k=0

(
γρu(ρu,k − ρref

u )T (ρu,k − ρref
u ) + γqr(qr,k − qgoal

r )2
)
,

(28)

with γν = 1, γpu = 100, γρu = 100, γqr = 10. Here
qgoal

r = 3 m is the desired length of the rope, while
p
[x],ref
u is used to jump at a certain distance from the wall

and ρref
u to keep upright the floating-base orientation. Fig. 3.a

shows the time histories of the normal component of the
contact forces (x-axis) on each foot and the related foot
position along the z-axis. As it can be noticed, during the
flight phases, the feet move along the z-axis due to the rope

extension towards the goal qgoal
r (see Fig. 3.c), while no

contact force is applied. Note also that, although the number
of user-defined phases, i.e. the number of jumps, is equal
to 4 (see Table II), the solver automatically decides not to
perform the last jump. A double stance D action is applied
in the remaining shooting intervals (white areas in Fig. 3.a).
Snapshots from the produced motion are depicted in Fig. 3.b.

2) Stepping strategy: The same vertical descent task can be
performed considering a sequence of single and double stance
actions, as summarized in Table III, according to a stepping
strategy. The same cost function in (28) has been adopted with
γν = 1, γpu = 1, γρu = 1, γqr = 1 and qgoal

r = 2 m. The time
histories of the normal component of the contact forces x-
component, i.e. normal to the climbing wall, and the related
foot position along the z-axis are shown in Fig. 4.a. Note that
the duration of the single stance actions (L) during the last
phase is reduced to the minimum, showing how the solver is
free to choose the number of steps. The sequence in Table
III is preceded and followed by a double stance D action
(white areas in Fig. 4.a). The time history of the rope joint
evolution qr is shown in Fig. 4.c, while snapshots from the
produced motion are depicted in Fig. 4.b. Note that by properly
modifying qgoal

r in (28) together with the initial state xinit, an
ascending climbing motion can be alternatively produced. For
brevity reasons this result is omitted here and shown in the
accompanying video.

3) Gap crossing: A gap crossing example can be further
considered by describing the vertical climbing wall as follows:

S(pCi) :=

{
p
[x]
Ci − xwall = 0

εgap(p
[z]
Ci − zgap)(p

[z]
Ci − zgap) ≥ 0.

(29)

Here a 1m wide gap has been modeled as a parabolic function
with zgap = −1.5 m and zgap = −2.5 m, where εgap ∈ R is a
relaxation factor, which in our experience helps the NLP solver
to converge to a solution. For this example a sequence of both
stepping and jumping actions has been employed, in order to
let the solver free to decide whether to cross the gap with a
step or a jump. To this end, the same cost function in (28) has
been considered, where the last term has been replaced with
the following: γpC(p

[z]
C,k − p

[z],goal
C )T (p

[z]
C,k − p

[z],goal
C ) in order

to track at best a 4 m downward displacement for each foot.
Here γν = 0.1, γpu = 2, γρu = 100, γpC = 103. The algorithm
is able to effectively transverse the gap, automatically choosing
to perform a jump in order to do so. This is consistent with
the introduced work-space constraints on the feet positions,
which prevent the robot from stepping across the gap. The
algorithm is therefore able to automatically discover the gait
pattern, changing the initially provided gait sequence and
timings depending on the climbing surface and desired task.
Again, for brevity reasons, simulations results are reported in
the accompanying video.

From Planning to Demonstration

The demonstration of the planned motions in a real bipedal
platform requires a controller that is able to reliably track the
generated trajectories, incorporating sensor data in order to cal-
culate the appropriate joint positions and/or torques. Previous
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Fig. 5. A phase is characterized by multiple consecutive rappelling-actions. The time of duration of a rappelling-action is as well a variable of the NLP. During
a rappelling-action the control action of the solver is piece-wise constant. To allow the solver to change control action during the same rappelling-action, is
possible to split the latter over multiple shooting nodes.

authors’ work in [1], [18] has introduced a control framework
capable to transform planned contact forces and Cartesian
references, from a single rigid body dynamics model, into
proper joint level commands for the real robot. This is achieved
employing whole-body hierarchical Inverse Kinematics and
instantaneous contact force distribution to track the planned
Cartesian motions and contact forces. This control framework
has been successfully applied in the COMAN+ and CEN-
TAURO robots to achieve tasks requiring multiple interactions
with the environment, high level of contact forces and complex
whole-body motions. Building upon [1], [18], future work will
be mainly devoted at bridging the gap between simulation and
experimental validation on a real system. To this end, the effect
of the rope needs to be incorporated in the control framework,
together with estimation of the status of the passive master-
point joints.

V. CONCLUSIONS

Extending the capabilities of a bipedal humanoid robot for
rope-assisted operations in the heights could improve health
and safety for human workforce. To this end, this letter
has first addressed the mathematical modeling of a template
three-mass model for the bipedal robot, connected trough
passive joints to an extensible rope. The presented dynamic
model has been consequently employed within a family of
optimal control problems, discretized with a DMS approach,
in order to plan rope-assisted maneuvers. The effectiveness of
the proposed OCPs has been especially validated in a series
of rappelling scenarios, including a gap crossing example,
where an automatic discovery of the gait pattern has been
enabled by a proposed extension of the work in [17] to DMS
discretization.

Future works will target the prosecution of such research
in various forms. Alternative discretization algorithms, e.g.
Direct Collocation, and simplified dynamic models could be
employed to speed up computations and possibly employ the
planned motions in a Model Predictive Control (MPC) fashion.
Experimental validation will also require technological effort
to realize a dedicated infrastructure to perform experiments.
On a final note, it is the authors belief that the topics
considered in this work will gain the attention of the humanoid
community in the forthcoming years.
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