Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

The Power of Programs over Monoids in J and Threshold Dot-depth One Languages

Abstract : The model of programs over (finite) monoids, introduced by Barrington and Thérien, gives an interesting way to characterise the circuit complexity class $\mathsf{NC^1}$ and its subclasses and showcases deep connections with algebraic automata theory. In this article, we investigate the computational power of programs over monoids in $\mathbf{J}$, a small variety of finite aperiodic monoids. First, we give a fine hierarchy within the class of languages recognised by programs over monoids from $\mathbf{J}$, based on the length of programs but also some parametrisation of $\mathbf{J}$. Second, and most importantly, we make progress in understanding what regular languages can be recognised by programs over monoids in $\mathbf{J}$. To this end, we introduce a new class of restricted dot-depth one languages, threshold dot-depth one languages. We show that programs over monoids in $\mathbf{J}$ actually can recognise all languages from this class, using a non-trivial trick, and conjecture that threshold dot-depth one languages with additional positional modular counting suffice to characterise the regular languages recognised by programs over monoids in $\mathbf{J}$. Finally, using a result by J. C. Costa, we give an algebraic characterisation of threshold dot-depth one languages that supports that conjecture and is of independent interest.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03157113
Contributor : Nathan Grosshans <>
Submitted on : Tuesday, March 2, 2021 - 9:17:17 PM
Last modification on : Wednesday, March 17, 2021 - 9:06:46 AM

Files

Power_programs_over_J_and_TDDO...
Files produced by the author(s)

Identifiers

  • HAL Id : hal-03157113, version 1
  • ARXIV : 1912.07992

Citation

Nathan Grosshans. The Power of Programs over Monoids in J and Threshold Dot-depth One Languages. 2021. ⟨hal-03157113⟩

Share

Metrics

Record views

41

Files downloads

19