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Abstract
In a world where natural habitats are ever more fragmented, the dynamics of metacommunities are

essential to properly understand species responses to perturbations. If species’ populations fluctuate
asynchronously, the risk of their simultaneous extinction is low, thus reducing the species’ regional
extinction risk. However, identifying synchronising or desynchronising mechanisms in systems con-
taining several species and when perturbations affect multiple species is challenging. We propose a
metacommunity model consisting of two food chains connected by dispersal to study the transmission
of small perturbations affecting populations in the vicinity of an equilibrium. In spite of the complex
responses produced by such a system, two elements enable us to understand the key processes that
rule the synchrony between populations: (1) knowing which species have the strongest response to
perturbations and (2) the relative importance of dispersal processes compared with local dynamics
for each species. We show that perturbing a species in one patch can lead to asynchrony between
patches if the perturbed species is not the most affected by dispersal. The synchrony patterns of
rare species are the most sensitive to the relative strength of dispersal to demographic processes,
thus making biomass distribution critical to understand the response of trophic metacommunities
to perturbations. We further partition the effect of each perturbation on species synchrony when
perturbations affect multiple trophic levels. Our approach allows disentangling and predicting the re-
sponses of simple trophic metacommunities to perturbations, thus providing a theoretical foundation
for future studies considering more complex spatial ecological systems.

Introduction
Biodiversity is under increasing anthropic perturbations that alter populations and community dynam-

ics (e.g. the latest IPBES assessment (Díaz et al., 2019)). In particular, species live in more and more
fragmented habitats (Haddad et al., 2015), which reduce dispersal and partially isolate communities from
one another. The metacommunity framework is key to address the responses of species and communities
to perturbations in this changing world (Leibold et al., 2004; Amarasekare, 2008; Leibold and Chase,
2017). Small isolated populations are more prone to extinction (Purvis et al., 2000), and simultaneous
local extinctions across sites lead to a global extinction. The asynchrony between different populations
of the same species is a fundamental mechanism ensuring the global persistence and temporal stability
of an entire metapopulation at the landscape scale as it reduces the risk of simultaneous extinction in all
patches (Blasius et al., 1999).

While dispersal tends to synchronise populations of the same species (Abbott, 2011), dispersal of
specific trophic levels can lead to synchrony or asynchrony between the various species in food chains
(Koelle and Vandermeer, 2005; Pedersen et al., 2016). Species that disperse or forage across several
communities can propagate trophic cascades in space, as shown empirically and theoretically (Knight et
al., 2005; McCoy et al., 2009; Casini et al., 2012; García-Callejas et al., 2019); depending on which trophic
levels disperse, the strength of trophic cascades within each community can be amplified or dampened
(Leroux and Loreau, 2008). In addition, different food chain lengths in different sites can lead to opposite
responses of different populations of the same species (Wollrab et al., 2012).
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The dispersal of top predators has been particularly studied as generalist consumers linking different
food webs by feeding on multiple energetic channels are ubiquitous across ecosystems (Rooney et al., 2006,
2008; Wolkovich et al., 2014; Ward et al., 2015). In particular, mobile predatory fish couple pelagic and
benthic compartments in aquatic ecosystems (Vander Zanden and Vadeboncoeur, 2002; Vadeboncoeur
et al., 2005), and predator dispersal leads to trophic cascades in surrounding ecosystems (Knight et al.,
2005; Casini et al., 2012; Tscharntke et al., 2012). In such systems, asynchrony is promoted by the
asymmetry between coupled food chains (McCann et al., 1998; Rooney et al., 2006) even when top
predator populations are under correlated environmental perturbations (Vasseur and Fox, 2007).

Many of these theoretical studies have considered the synchrony of food chains that display chaotic
dynamics or limit cycles (McCann et al., 1998; Koelle and Vandermeer, 2005; Rooney et al., 2006), which
are characteristic of strong top-down control (Barbier and Loreau, 2019). In this case, many of the
mechanisms cited above (e.g. top predator coupling or asymmetry) act simultaneously and interact with
the variability generated internally by the limit cycles of food chain dynamics, which makes it difficult
to tease apart the effects of internal and external sources of variability. perturbation propagation Vari-
ability can also be generated by stochastic external perturbations but few studies studying synchrony
in metacommunities have considered these (McCann et al., 2005; Vasseur and Fox, 2007). Wang et al.
(2015) used them successfully to investigate the stability of competitive metacommunities but their ef-
fects in trophic metacommunities remain poorly understood. In the context of stochastic perturbations,
mechanisms such as asymmetry may not be required to get asynchrony between the different populations.

Here we propose a first step toward a more systematic approach to synchrony in trophic metacom-
munities near equilibrium where several species can disperse and several stochastic perturbations can
affect different species independently. We aim to understand what shapes synchrony in a broad spectrum
of ecological settings, dominated by either bottom-up or top-down control within a food chain (Barbier
and Loreau, 2019) and by either trophic or spatial mechanisms at each trophic level. To achieve this
goal, it is primordial to describe the relative contribution of perturbations and dispersal compared to the
local demographic dynamics among species. In a single food chain, Barbier and Loreau (2019) showed
that a few parameters control the biomass distribution among trophic levels (i.e. top or bottom-heavy
pyramids) and the overall top-down or bottom-up behaviour of the system (e.g. trophic cascades). In
turn, the biomass distribution drives many processes in food web dynamics. For instance, Arnoldi et
al. (2019) showed that the variance generated by stochastic perturbations depends on species’ biomass.
Thus, perturbations with the same variance can impact the dynamics of different species more or less
depending on their relative abundances.

As noted above, food web dynamics can be highly sensitive to varying dispersal rates of particular
trophic levels (Koelle and Vandermeer, 2005; Pedersen et al., 2016). Comparing the absolute values
of dispersal rates, however, is not meaningful when considering species with different biological rates
Therefore, we rescale the dispersal rate of each species by its density-dependent mortality rate, which is
assumed to be representative of various intra-specific processes, as done by Barbier and Loreau (2019) for
all biological rates. More generally, quantifying the relative importance of local dynamics and dispersal
processes is key to properly assess how dispersal affects the overall dynamics of each species. In fact,
the relative importance of local dynamics and dispersal is what distinguishes different metacommunity
paradigms (Leibold et al., 2004; Leibold and Chase, 2017); it also controls different recovery regimes after
perturbations. For instance, Zelnik et al. (2019) showed that, with low dispersal and fast local dynamics,
the system recovers locally from the perturbation, while with high dispersal and slow local dynamics,
perturbations propagate across the whole system. In our system, we can expect the biomass distribution
to affect the relative importance of local dynamics and dispersal processes as they do not scale in the
same way with species biomass.

Taken together, these mechanisms must lead to situations where perturbations do not have the
strongest impact on the species whose dynamics are the most impacted by dispersal. In such a situ-
ation, those perturbations can filter through the food web before being transmitted through dispersal
and then affect different locations in opposite ways. A synthetic understanding of synchrony may thus
be achieved by quantifying the propagation of perturbations, both vertically along food chains, and hor-
izontally across space.

We develop a model of coupled food chains based on these recent studies and first consider a pertur-
bation affecting a unique species in one patch and dispersal performed by a single species. Then, we
explore the factors that govern synchrony between populations at the same or different trophic levels.
perturbation propagation In particular, we carefully examine the effects of perturbations depending on (1)
which species have the strongest response to perturbations; and (2) for which trophic level the strength
of dispersal relative to demographic processes is highest. Finally, we try to disentangle the effects of
several independent perturbations affecting different species. As a starting point, we consider a simple
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setting with Lotka-Volterra dynamics and stochastic external perturbations around an equilibrium. This
allows us to partition the variability and correlations generated by multiple perturbations. Partitioning
approaches provide a powerful way to disentangle the effects of different mechanisms and to assess their
relative importance (Price, 1970; Loreau and Hector, 2001; Jaillard et al., 2018). It also allows us to use
simple scenarios in which a single species is perturbed as building blocks to understand more complex
systems with multiple perturbations. Thus, we could assess the contribution of each species and their
influence on other species to explain the synchrony or the asynchrony between the different populations.

Material and methods
The metacommunity model

We extend the model developed by Barbier and Loreau (2019). They considered a food chain model
with a simple metabolic parametrisation, for which they described the biomass distribution and their
responses to perturbations. Their model corresponds to the "intra-patch dynamics" part of equations (1a)
and (1b) to which we graft a dispersal term to consider a metacommunity with two patches (Fig.1A).

dB1

dt
= B1(g1 −D1B1 − α2,1B2) + δ1(B′1 −B1) (1a)

dBi

dt
= Bi(−ri −DiBi + εαi,i−1Bi−1 − αi+1,iBi+1)︸ ︷︷ ︸

Intra-patch dynamics

+ δi(B′i −Bi)︸ ︷︷ ︸
Dispersal

(1b)

Bi is the biomass of trophic level i in the patch of interest, B′i its biomass in the other patch, ε is the
biomass conversion efficiency and αi,j is the interaction strength between consumer i and prey j. Species
i disperses between the two patches at rate δi. The density independent net growth rate of primary
producers gi in equations (1a), the mortality rate of consumers ri in equations (1b) and the density
dependent mortality rate Di scale with species metabolic rates mi as biological rates are linked to energy
expenditure (see section S1-2 in the supporting information).

g1 = m1g ri = mir Di = miD (2)

In order to get a broad range of possible responses, we assume the predator-prey metabolic rate ratio m
and the interaction strength to self-regulation ratio a to be constant. These ratios capture the relations
between parameters and trophic levels. This enables us to consider contrasting situations while keeping
the model as simple as possible.

m = mi+1

mi
a = αi,i−1

Di
di = δi

Di
(3)

Varying m leads to food chains where predators have faster or slower biomass dynamics than their
prey and varying a leads to food chains where interspecific interactions prevail or not compared with
intraspecific interactions (Fig.1B). As all biological rates are rescaled byDi, we also define di, the dispersal
rate relative to self-regulation (referred as scaled dispersal rate in the rest of the study), in order to keep
the values of the dispersal rate relative to the other biological rates consistent across trophic levels.
Finally, the time scale of the system is defined by setting the metabolic rate of the primary producer m1
to unity. Thus, we can transform equations (1a) and (1b) into:

1
D

dB1

dt
= B1( g

D
−B1 −maB2) + d1(B′1 −B1) (4a)

1
mi−1D

dBi

dt
= Bi(−

r

D
−Bi + εaBi−1 −maBi+1)︸ ︷︷ ︸

Intra-patch dynamics

+ di(B′i −Bi)︸ ︷︷ ︸
Dispersal

(4b)

Thus, εa and ma defines the positive effect of the prey on its predator and the negative effect of the
predator on its prey, respectively (Fig.1B). These two synthetic parameters define the overall behaviour of
the food chain and will be varied over the interval [0.1, 10] (see Table S1-2 in the supporting information)
to consider a broad range of possible responses (see Fig.2A and Barbier and Loreau (2019) for more
details). Parameter values are summarised is Table S1-1 and S1-2 in the supporting information.
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Figure 1: A) Metacommunity model with two patches, each containing a food chain with four trophic
levels. Species disperse between the two patches at rate di. B) Predator prey model with its synthetic
parameters: εa the positive effect of the prey on its predator, ma the negative effect of the predator on
its prey and Di the self-regulation.

Stochastic perturbations
To study the response of the metacommunity to perturbations we apply stochastic perturbations.

From equations (4a) and (4b) we get the following stochastic differential equation:

dBi = fi(B1, ..., BS)dt︸ ︷︷ ︸
Deterministic

+ σiB
z
i dWi︸ ︷︷ ︸

Perturbation

(5)

fi(B1, ..., BS) represents the deterministic part of the dynamics of species i biomass depending on the
biomass of the S species present in the metacommunity (as described by equations (4a) and (4b)).
Stochastic perturbations are defined by their standard deviation σi and dWi, a white noise term with
mean 0 and variance 1. In addition, perturbations scale with each species biomass with an exponent z.
We consider two types of perturbations (Haegeman and Loreau, 2011; Arnoldi et al., 2019): demographic
stochasticity (from birth-death processes) corresponds to z = 0.5, and environmental factors lead to
z = 1 (see demonstration in Lande et al., 2003 and in appendix S1-3 in the supporting information).
Arnoldi et al. (2019) showed that when a species is perturbed, the ratio of its biomass variance to the
perturbation variance increases with the species’ biomass in the case of environmental perturbations,
while it is independent of its biomass in the case of demographic perturbations. Therefore, we chose
demographic perturbations in our analysis as they enable us to perturb different species with the same
relative intensity regardless of their abundance. This choice is made purely for modelling convenience.
Although environmental perturbations may be more relevant from an ecological point of view, changing
the perturbation exponent will alter only which trophic level is most affected (e.g. the most abundant, for
environmental perturbations), not the rest of our analysis (see Fig.S2-5 in the supporting information).

Response to perturbations
We aim to determine the synchrony between populations at equilibrium when they receive small

stochastic perturbations. Synchrony can be evaluated from the covariance between the temporal varia-
tions of different species and patches, which are encoded in the variance-covariance matrix C∗. Therefore,
we linearise the system in the vicinity of equilibrium to get equation (6) where Xi = Bi − B∗i is the de-
viation from equilibrium (see section S1-4 and S1-6 in the supporting information).

d
−→
X

dt
= J
−→
X + T

−→
E (6)

J is the Jacobian matrix (see section S1-5 in the supporting information) and T defines how the pertur-
bations Ei = σidWi apply to the system (scaling with species biomass).
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Then, we get the variance-covariance matrix C∗ of species biomasses (variance-covariance matrix of
−→
X ) from the variance-covariance matrix of perturbations VE (variance-covariance matrix of −→E ) by solving
the Lyapunov equation (7) (Arnold, 1974; Wang et al., 2015; Arnoldi et al., 2016; Shanafelt and Loreau,
2018).

JC∗ + C∗J> + TVET
> = 0 (7)

The expressions of VE and T and the method to solve the Lyapunov equation are detailed in section S1-6
in the supporting information. The variance-covariance matrix C∗ can also be obtained through numerical
simulations with the Euler-Maruyama method detailed in section S1-7 in the supporting information.

From the variance-covariance matrix C∗ whose elements are wij we can compute the correlation matrix
R∗ of the system whose elements ρij are defined by:

ρij = wij√
wiiwjj

(8)

Processes controlling the synchrony
We first explore the general response of the food chain model to perturbations affecting specific trophic

levels (or when trophic levels are perturbed). Thus, we show how the perturbations propagate vertically
through the food chain depending on various ecological conditions described by the synthetic parameters
summarised in figure 1B. Then, we study a simple case where only one species is perturbed and one
species is able to disperse in order to identify the mechanisms leading to the asynchrony of the two
populations of the same species. We finish with two more complex settings: one where all trophic levels
are able to disperse at the same rate and one where all trophic levels in the two patches are affected by
independent perturbations.

In the first setting, we identify the factors controlling the relative importance of demographic and dis-
persal processes: dispersal processes tend to correlate (or anti-correlate) populations while demographic
process tend to decorrelate them. We define a metric M1 that describes the relative weight of these two
processes by taking the absolute values of the elements of equations (4a) and (4b) to assess the sheer in-
tensity of local demographic processes and dispersal processes calculated with the equilibrium biomasses:

M1 = |diB
∗′
i |+ | − diB

∗
i |

|εaB∗i−1B
∗
i |+ |diB∗

′
i |+ | −

r

D
B∗i |+ | −B∗2i |+ | −maB∗i+1B

∗
i |+ | − diB∗i |

(9)

In the second setting, we use the Lyapunov equation to partition the effect of each perturbation and to
disentangle the contribution of each perturbation and each trophic level to the correlation pattern.

Results
General responses of the food chain model to perturbations

We first describe the biomass distribution and the responses to perturbations of an isolated food
chain (i.e. without considering spacial dynamics). We use a broad range of physiological and ecological
parameters to describe all the possible responses of the food chain model (Fig.2A). ma represents the
strength of negative interactions (mortality due to predation) while εa represents the strength of positive
interactions (biomass gain due to consumption)(Fig.1B). As in Barbier and Loreau (2019), the food
chain displays various biomass distributions in different regimes: bottom-heavy (for εa = 0.1) biomass
pyramids, top-heavy biomass pyramids (for εa = 10 and ma = 0.1) or alternating "cascade" patterns (for
εa = 10 and ma = 10).

In each case, we can capture the dynamical behaviour of the food chain by considering the correlation
matrix of the response of each species to perturbations applied to specific trophic levels (Fig.2B). Per-
turbing primary producers leads to bottom-up responses in which adjacent trophic levels are correlated,
i.e. their biomasses respond in the same way, (Fig.2B and 2C) while perturbing top predators leads to
top-down responses in which adjacent trophic levels are anti-correlated, i.e. their biomasses respond in
opposite ways, (Fig.2B and 2D).

When all species receive independent stochastic demographic perturbations (Fig.S2-1A in the sup-
porting information), the correlation pattern is dominated by bottom-up effects for high values of ma
(ma = 10, which corresponds to the strongest responses in Fig.2C) and is top-down for low values of ma
(ma ≤ 1, which corresponds to the strongest responses in Fig.2D, see also Fig.S2-1C in the supporting
information).
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Figure 2: General description of an isolated food chain (di = 0, no dispersal) for nine combinations of
the physiological and ecological parameters εa and ma that respectively describe the positive effect of
biomass consumption and the negative effects mortality due to predation (see Barbier and Loreau (2019)).
A) Biomass distribution among trophic levels. B) Correlation between species biomass dynamics. The
correlations seen in time series are represented by a correlation matrix where each element is the cor-
relation coefficient between two species. Thus, the matrix is symmetric and the diagonal elements are
equal to 1 as each species is perfectly autocorrelated. C) Correlation matrix within a food chain with a
demographic stochastic perturbation applied to primary producers. D) Same correlation matrix with a
demographic stochastic perturbation applied to top predators.

Propagation of a perturbation when one species disperses
Perturbations can propagate vertically within a food chain or horizontally between food chains. To

understand how these two types of propagations shape the synchrony between patches we first consider
a simple case where only primary producers are perturbed in patch #1 (patch #2 being the unperturbed
patch) and only top predators disperse (Fig.3A).

In patch #1, the perturbation has a bottom-up effect that correlates species (Fig.3B, label (1)) as in
Fig.2C where primary producers are also directly perturbed. While in patch #2, the perturbation has
a top-down transmission (Fig.3A), leading to an anti-correlation of adjacent trophic levels (Fig.3B, label
(2)), which is similar to Fig.2D as the transmission of the perturbation by top predators is equivalent
to a direct perturbations of top predators in patch #2. Then, the different correlation patterns within
each patch affect the synchrony between the two patches. First, the two populations of top predators
are perfectly correlated as they are directly coupled through dispersal (Fig.3B, label (3)). Second, the
populations of carnivores are anti-correlated because they are respectively correlated and anti-correlated
to top predators in patch #1 and #2 (Fig.3B, (4)). Similarly, the correlation between each trophic level
and top predators in each patch drives the correlation between the two population at lower trophic levels.

For whom does dispersal matter?
Now, all species disperse at the same rate di but we still consider perturbations only affecting the

primary producers in patch #1. Even if all scaled dispersal rates are equal, the relative importance
of dispersal processes compared to intra-patch demography quantified by M1 (see equation (9)) differs
between species. When scaled dispersal rates di increase, M1 first increases for top predators, then for
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Figure 3: Transmission of perturbations between the two patches (primary producers perturbed in patch
#1, εa = 0.1, ma = 10 and only top predators disperse). Disk size represents species abundance. A)
Only top predators are able to disperse, transmitting the perturbation between patches. They convert the
bottom-up perturbation from patch #1 into a top-down perturbation in patch #2. B) The bottom-up
transmission in patch #1 leads to correlations between adjacent trophic levels (label 1) while the top-
down transmission leads to anti-correlations between adjacent trophic levels in patch #2 (2). Dispersal
directly couples the two populations of top predators that act as one unique population, thus, they are
completely correlated (3). The different correlation patterns within each patch lead to correlations or
anti-correlations between populations of the same species in different patches depending on its distance
from top predators (4).
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Figure 4: Correlation between populations of four species forming a food chain present in two connected
patches (εa = 0.1, ma = 10). Primary producers in patch #1 receive demographic perturbations while
patch #2 is not directly perturbed. A), B), C) and D) are correlation matrices between species within
and between patches for four different scaled dispersal rates di. Diagonal blocks represent intra-patch
species correlations while the other blocks represent inter-patch species correlations (see the labels in
D)). The bottom-left block represents the perturbed patch (#1) while the top-right block represents
the unperturbed patch (#2) (see Fig.3B). E) M1, ratio of dispersal processes to the sum demographic
and dispersal processes (see equation (9)) for each trophic level with increasing scaled dispersal rates.
Labels A, B, C and D respectively refer to the values of scaled dispersal rates used to plot the correlation
matrices presented in A), B), C) and D). F) Correlation between populations of the same species from
two patches for increasing scaled dispersal rates di (equal for all species). The represented correlations
are equal to the diagonal elements of the off-diagonal blocks of correlation matrix (inter).
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Figure 5: Metrics weighting the contribution of each perturbation to the correlation pattern generated by
multiple perturbations. w1,j and w2,j , which are element of the matrix C∗S,j , are the variance of species
i in patches #1 and #2 respectively when perturbation j is applied. We define wloc,j the variability
directly generated by the perturbation and wtrans,j the variability transmitted in the other patch. wloc,j

and wtrans,j are respectively equal to w1,j (or w2,j) and w2,j (or w1,j) when perturbation j is applied in
patch #1 (or #2). A) M2j

is the ratio of transmitted variability wtrans,j to local variability wloc,j . B)
M3j

weights the effect of each perturbation j by the variability it generates locally compared to the other
perturbations.

carnivores and so on until primary producers (Fig.4E). This is due to biomass distribution (Fig.2A) as
dispersal scales linearly with biomass while intra-patch demography scales with squared biomass (self-
regulation) or biomass products (predation) (see equations (4a) and (4b) and Fig.S2-1E in the supporting
information).

At low scaled dispersal rates (e.g. di = 10−4), dispersal matters only for top predators (Fig.4E label A),
leading to a situation already described by Fig.3. At intermediate scaled dispersal rates (e.g. di = 10−2.6),
dispersal also matters for carnivores (Fig.4E label B). Thus, top predators and carnivores are correlated
between patches and we observe anti-correlations between adjacent trophic levels lower than 4 (Fig.4B).
This time, this leads to the anti-correlation of sub-populations of herbivores (Fig.4F label B) while they
were correlated previously (Fig.3B and Fig.4F label A). Therefore, each time dispersal starts to matter for
another trophic level, the correlation pattern in patch #2 changes (Fig.4A-D), leading to shifts between
correlations and anti-correlations between the populations of lower trophic levels (Fig.4F).

Multiple perturbation partitioning
The case displayed in Fig.4 was easy to handle as only one perturbation was applied and we knew for

which species dispersal mattered. Such a simple case can actually act as a building block to understand
correlation patterns produced by multiple perturbations. In fact, for R independent perturbations, the
variance-covariance matrix C∗S is equal to the sum of the variance-covariance matrices C∗S,j obtained when
only one perturbation j is applied, C∗S =

∑R
j=1 C

∗
S,j (see section S2-3-1 in the supporting information).

Then, correlations between the populations of species i can be expressed as the sum of the correlations
obtained when each perturbation j is applied alone weighted by the corresponding variance in the two
patches.

ρi =
R∑

j=1
ρi,jM2jM3j (10)

R is the number of independent perturbations, ρi is the correlation coefficient between the two populations
of species i and ρi,j is the same correlation coefficient in the case where only perturbation j is applied. M2j

quantifies the variability generated locally by perturbation j that is effectively transmitted to the other
patch (Fig.5A). If M2j

is close to zero, the perturbation is poorly transmitted and the two patches will
probably be asynchronous. M3j

weights each ρi,j by the variability generated by perturbation j compared
to the other perturbations (Fig.5B). IfM3j

is low, perturbation j would generate less variability than the
other perturbations and the associated correlation ρi,j will not significantly contribute to the correlation
ρi generated by all perturbations.

In the following, we present a simple case with two species in each patch receiving independent de-
mographic stochastic perturbations and only primary producers are able to disperse (see Fig.S2-3 in
the supporting information for an example with four species). In Fig.6, we illustrate step by step the
decomposition of the correlation pattern generated by multiple perturbations (Fig.6G).
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Figure 6: Detailed correlation pattern between two coupled primary producer-herbivore food chains for
εa = 10 and ma = 10 with increasing scaled dispersal rates di. Only primary producers are able to
disperse. A) Correlation between patches when only primary producers and B) herbivores from patch
#1 are perturbed. C) Relative importance of transmitted variability to local variability (M2) when
primary producers andD) when herbivores are perturbed in patch #1. E) Relative weight of the variance
generated by each perturbation (M3) when primary producers and F) when herbivores are perturbed in
patch #1. G) Correlation between patches when independent demographic stochastic perturbations are
applied to all species of each patch. H) Reconstructed correlation pattern obtained thanks to equation
(10). H=2(A×C×E+B×D×F) by symmetry as both patch #1 and #2 receive similar independent
perturbations.
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When only primary producers are perturbed in patch #1, both primary producers and herbivores are
correlated due to the bottom-up transmission of the perturbation in both patches as only primary pro-
ducers disperse (Fig.6A). However, when only herbivores are perturbed, herbivores become decorrelated
as scaled dispersal rates di increase (Fig.6B) due to the weak correlation between adjacent trophic levels
for εa = 10 and ma = 10 (see Fig.2C and 2D).

Our metric M2 is equal to zero at low scaled dispersal rates di (Fig.6C and 6D), thus indicating that
the perturbations in patch #1 are weakly transmitted in patch #2. At high scaled dispersal rates di, M2
tends to 1 as species become perfectly correlated except for herbivores in Fig.6D. In this case, as they are
perturbed but do not disperse, the perturbation is attenuated during its transmission through primary
producers.

In this example, our metricM3 is higher for both primary producers and herbivores when the perturba-
tion is applied to herbivores (Fig.6F) than to primary producers (Fig.6E). This means that perturbations
applied to herbivores generate most of the variability in the metacommunity and the correlation pattern
in Fig.6B thus strongly contributes to the reconstructed correlation pattern gathering the effects of all
perturbations (Fig.6H) following equation (10).

Now we have the response of all the elements of equation (10), we can explain the correlation pattern
seen in Fig.6H. At low scaled dispersal rates di, perturbations are not transmitted (M2 = 0), letting
the two patch independent and uncorrelated, while at high scaled dispersal rates di, the correlation
pattern is similar to Fig.6B as herbivore perturbation generates most of the variability. In between,
we have a humped-shaped relationship between herbivore population correlation and scaled dispersal
rates di because when perturbations start to be transmitted (Fig.6C and 6D), herbivore populations are
correlated (left to the dashed line) (Fig.6A and 6B). Then, the decrease in Fig.6B leads to the decrease
seen in Fig.6H.

The reconstructed correlation pattern in Fig.6H is identical to the correlation pattern obtained by
perturbing directly each species in each patch (Fig.6G), thus demonstrating the validity of equation (10)
(see Fig.S2-4 in the supporting information).

Discussion
Our metacommunity model aimed to understand how perturbations propagates vertically in patches

and horizontally between patches to identify under which conditions species responses in different patches
can be synchronous or asynchronous. First, we found that less abundant species are more affected by
dispersal. Thus, even when all species disperse at the same scaled rate, the biomass distribution in a food
chain determines for which species dispersal contributes most to biomass dynamics. In addition, if the
perturbed species does not disperse enough to synchronise its different populations, the perturbation can
be transmitted by other species. In such a situation, we found that species responses in different patches
can be asynchronous. Second, we found that the effects of multiple independent perturbations can be
partitioned. This enabled us to use simple situations in which a single species is perturbed as building
blocks to analyse more complex systems with multiple perturbations. Thus, we were able to identify
which perturbations drove synchrony or asynchrony in this context and thus to explain their contribution
using two simple metrics.

For whom does dispersal matter?
Knowing who disperses is crucial to understand biomass dynamics in metacommunities (Koelle and

Vandermeer, 2005; Pedersen et al., 2016). However, even when dispersal is homogeneous among the
various species (i.e. same scaled dispersal rates di for all species), increasing dispersal does not affect all
species in the same way (Fig.7). In fact, abundant species are more affected by demographic processes
such as self-regulation, which scales as the square of biomass, or trophic interactions, which scale as the
product of predator and prey biomass (see equation (9)). Thus, changes in scaled dispersal rates lead to
top-down or bottom-up coupling between patches depending on biomass distribution.

Once we know for whom dispersal matters, the model can be simplified to a metacommunity where
only a few species connect patches. With such a restricted dispersal, perturbing a species in one patch can
lead to an opposite response in the other connected patch. In fact, perturbations affecting basal species
have a bottom-up propagation (Fig.2C) and correlate all the species from the same food chain, while
perturbations affecting top species have a top-down propagation and create trophic cascade correlation
patterns (Fig.2D). Thus, if the perturbed species are not the dispersing species, both patches can display
different correlation patterns, which can lead to anti-correlated responses of the different populations
of the same species and hence to asynchrony between the different populations (Fig.S2-1E, Fig.S2-2A
and S2-2B in supporting information). The correlation or anti-correlation of populations depends on the
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shortest trophic distance from the dispersing species, as suggested by Wollrab et al. (2012). Species at
odd distance have correlated population fluctuations, while species at even distance have anti-correlated
population fluctuations (Fig.3A).

The case where bottom-up perturbations are transmitted by top predators is related to the spillover
process: a predator population thrives due to resource abundance in one patch and spills over to the other
patches (Holt, 1984). For instance, favourable environmental conditions in the Baltic main basin increase
cod abundance (bottom-up control) that colonise the Gulf of Riga, leading to a trophic cascade in this
locality (top-down response) (Casini et al., 2012). More generally, predators cast a "shadow" that leads
to trophic cascades around their source patch (McCoy et al., 2009). For instance, dragonflies that prey
on flying insects around ponds reduce pollination there (Knight et al., 2005). Such dynamics of predators
between natural habitats and crop fields are central in pest biocontrol (Tscharntke et al., 2012).

The bottom-up coupling between patches does not seem to be mediated by primary producers, which
often have a low mobility (sessile terrestrial plants or drifting phytoplankton), but rather by non-living
materials (Polis et al., 1997; Leroux and Loreau, 2008). Marleau et al., 2010 and Gounand et al., 2014
found in their models with limit cycles that flows of nutrients lead to anti-correlations between species
populations, while we found a succession of correlations and anti-correlations. This suggests that systems
with limit cycles respond differently to bottom-up coupling than systems in the vicinity of an equilibrium
that receive stochastic perturbations because of processes such as phase-locking (Jansen, 1999; Liebhold
et al., 2004; Vasseur and Fox, 2009). Abiotic resources can link very different food webs. For instance,
mineral nutrients and dead organic matter link green and brown food webs (Wolkovich et al., 2014;
Buchkowski et al., 2019) but additional mechanisms such as different food chain length, omnivory or
stoichiometric constraints (Attayde and Ripa, 2008; Zou et al., 2016) make a direct comparison difficult.
Nevertheless, our model gives basic insights into how a simple bottom-up coupling affects the dynamics
of connected food chains and should improve our understanding of the additional effects brought by
mechanisms such as different food chain length or stoichiometric constraints.

While top predator dispersal or basal resource diffusion have been extensively studied, the consequences
of intermediate trophic level dispersal remain poorly understood. Our results show that the dispersal of
intermediate trophic levels can dramatically change the correlation between populations of non-dispersing
species. Pedersen et al., 2016 found that herbivores with a lower dispersal rate than primary producers
or carnivores stabilise metacommunity dynamics (by having equilibria or asynchronous limit cycles).

Most of the studies on coupled food webs considered systems displaying limit-cycles (McCann et al.,
1998; Post et al., 2000; Koelle and Vandermeer, 2005) and largely ignored stochastic perturbations
(McCann et al., 2005; Vasseur and Fox, 2007). Our results suggest that dispersal patterns that leads to
more asynchrony depend on which species is perturbed. If the most perturbed species is also the most
affected by dispersal, it transmits the perturbation to all patches and synchronise them, thus reducing the
stability of the system. Otherwise, asynchrony between patches can be promoted. Thus, the stabilising
or destabilising effect of dispersal patterns is not absolute and depends on perturbations.

In addition, perturbations can target specific species (e.g. harvesting, disease...) or affect all the species
in different ways. For instance, Arnoldi et al., 2019 showed that environmental perturbations (z = 1)
mostly affect abundant species (Fig.7 and see Fig.S2-1B, S2-2D and S2-5 in the supporting information).
Therefore, considering the biomass distribution is critical to fully understand the responses of coupled
food chains to dispersal and perturbations.

Multiple perturbation partitioning
Complex correlation patterns produced by multiple independent perturbations on different species

in different patches can be easily partitioned into a sum of correlation patterns produced by a single
perturbation (Fig.7). Such a partitioning is permitted by two characteristics of our model. First, the
system is linearised. Thus, the temporal variations of each species in the vicinity of the equilibrium are the
sum of the variations due to each interacting species. Second, the partitioning of the correlation pattern
is permitted by the independence of the various perturbations. In fact, we can decompose the variance-
covariance matrix of perturbation VE into a sum of matrices VEj corresponding to the perturbation of a
single species in a single patch (see equation (31) in section S2-3-1 in the supporting information). If some
perturbations are correlated, we can still decompose the matrix VE into a sum of independent blocks of
correlated perturbations. The contribution of each perturbation in an assemblage of many independent
perturbations can thus be easily understood as the product of the correlations between populations from
the two patches is weighted by the variability generated in each patch (Fig.7).

Such a detailed partition of the contribution of each element of the system is not possible in systems
displaying non-linear dynamics. For instance, Koelle and Vandermeer (2005) tested the effects of primary
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Figure 7: Sequential framework to understand the transmission of perturbations in metacommunities.
Biomass distribution (driven by physiological and ecological parameters) is central as less abundant
species are more affected by dispersal (metric M1) and are less affected by environmental perturbations.
Knowing that, we can simplify the system into a metacommunity where only a few species disperse and
are perturbed. The effects of each perturbations can then be partitioned to understand how much they
contribute to the total correlation between patches. The contribution of each perturbation can be inter-
preted by two metrics: M2 that quantifies how much of the generated variability is transmitted through
dispersal and M3 that quantifies the how much variability is generated compared to other perturbations.
Therefore, M2×M3 weights the correlation generated by each perturbation to reconstruct the correlation
pattern obtained when multiple perturbations are applied.

producer and top predator dispersal on population synchrony. They found that these two types of
dispersal led to either asynchrony or synchrony between the populations of the other trophic levels but
they were unable to go deeper in their interpretation. Their results are similar to our case where a
perturbation is applied to top predators only and primary producers disperse (Fig.S2-2B). Thus, the
top predator-prey interaction must generate most of the variability in their system with limit cycles
and may be equivalent to a perturbation of top predators in our linear system. Therefore, our model
with linear dynamics could give clues to understand the response of models with non-linear dynamics.
Future investigations considering stochastic perturbations in models with type II functional responses are
required to go deeper in the comparison between systems with linear or non-linear dynamics.

Independence between perturbations is also a key feature of our study as we explained earlier. Corre-
lations between perturbations is expected to change the observed dynamics (Ripa and Ives, 2003; Vasseur
and Fox, 2007). Leroux and Loreau, 2012 considered reciprocal pulsed subsidies within a metacommu-
nity model and demonstrated that the time delay between perturbations in each patch could reinforce or
dampen the resulting oscillations. This suggests that the correlation pattern observed in our model when
species from both patches are perturbed should be modified if perturbations are more or less correlated.

Conclusion
Our model demonstrates that asynchrony between populations in trophic metacommunities is pro-

moted when the species the most affected by dispersal is not directly perturbed. The effect of dispersal
on biomass dynamics compared to local demographic processes depends on the biomass distribution in
food chains even if all species disperse at the same scaled rate. Thus, our simple model can serve as a
good null model to test mechanisms involved in dispersal. Our model must be considered as a null model
in general as it relies on strong assumptions (e.g. m constant across the food chain) to build a simple
model to derive broad conclusions (Barbier and Loreau, 2019). The results of future studies considering
more realistic situations will surely deviate from our model, but our conclusions should still be useful as
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each predator-prey couple will correspond to one set of parameters used in our figures.
Dispersal can be seen as a mechanism of optimal foraging where predators follow their prey in the patch

where they are the most abundant. Dispersal also enables prey to escape their predators by migrating in
a "refuge" patch where they are less abundant. This can be represented by density-dependent dispersal
rates, which have a strong impact on dynamics (Hauzy et al., 2010; Liu et al., 2016). However, density-
dependent dispersal changes the relative importance of dispersal and local demography as dispersal then
scales with biomass similarly to self-regulation or predation, thus changing the interplay between dispersal
and biomass distribution. Therefore, future studies should consider biomass distribution among species
to properly assess the effects of dispersal on food chain dynamics.

When multiple perturbations are applied, the effects of each perturbation and each species can be
partitioned in our model. Thus, future studies considering heterogeneity between patches would be able
to isolate the contribution of the difference of parameters to food chain dynamics. For instance, Rooney
et al. (2006) considered two food chains with different attack rates and coupled by a mobile top predator.
In this case, perturbation partitioning would enable us to deeply understand how such differences between
food chains may dampen perturbation transmission or promote asynchrony.

Thus, our approach appears to be a promising tool to better understand the effects of many mechanisms
that promote stability or asynchrony in coupled food chains or trophic metacommunities.
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S1 Complementary material and methods
S1-1 Parameters

Table S1-1: Table of parameters. Only combinations of m and a leading to the desired values of ma were
kept.

parameter interpretation value
σ standard deviation of stochastic noise {10−3, 10−5}
g net growth rate of primary producers 1
r death rate of consumers 0
D self regulation 1
ε conversion efficiency 0.65
m predator/prey metabolic rate ratio {0.0065, 0.065, 0.65, 6.5, 65}
a attack rate {1/6.5, 1/0.65, 1/0.065}
εa positive effect of prey on predators {0.1, 1, 10}
ma negative effect of predators on prey {0.1, 1, 10}
di scaled dispersal rate [10−5, 105]

Table S1-2: Distribution of m and a leading to the desired values of ma and εa.

εa = 0.1 εa = 1 εa = 10

ma = 10 m = 65 m = 6.5 m = 0.65
a = 0.15 a = 1.5 a = 15

ma = 1 m = 6.5 m = 0.65 m = 0.065
a = 0.15 a = 1.5 a = 15

ma = 0.1 m = 0.65 m = 0.065 m = 0.0065
a = 0.15 a = 1.5 a = 15

S1-2 Scaling of biological rates with metabolism
In this study, we extend the model of Barbier and Loreau (2019) where biological rates scale with

metabolisms as in many previous studies (Yodzis and Innes, 1992; Brose et al., 2006; Heckmann et al.,
2012; Schneider et al., 2016; Quévreux et al., 2020). The scaling of biological rates such as growth rate or
mortality rate is well documented (Brown et al., 2004; Savage et al., 2004; Rall et al., 2012) and provide
an efficient way to parametrise food web models (Hudson and Reuman, 2013). However, the description
of intraspecific interactions (Di in our model) remains quasi inexistent although its existence and impacts
on trophic dynamics and species coexistence have been clearly identified (Barabás et al., 2017; Barbier
and Loreau, 2019; Picoche and Barraquand, 2019, 2020; Aubier, 2020). Two main arguments support
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the scaling of the density dependent mortality rate Di with species metabolic rate mi, one mechanistic,
another more mathematical.

From a mechanistic point of view, all biological rates are linked to metabolism as they need energy
expenditure, thus it is reasonable to make self-regulation to scale with metabolism. In fact, even if
interspecific and intraspecific interactions represent different biological processes, they rely on individuals
encounters while they are moving in their environment. As mobility and home range scale with body
mass (Pawar et al., 2012, 2019; Carbone et al., 2014; Tamburello et al., 2015; Hirt et al., 2017) such
as metabolism, and as movement is linked to energy expenditure, we can reasonably assume that the
density dependent mortality rate Di scales with species metabolic rate mi.

More mathematically, the main implication of not scaling Di in the same way as other rates is
that smaller or larger species would then exhibit systematically much stronger or much weaker density-
dependence, relative to their baseline mortality. There is no clear reason to assume such a systematic bias
a priori. Cases of mainly density-dependent or independent mortality have been proposed for both very
small and very large (or very fast and slow) species. Thus, we would rather expect unbiased variation
between species within the same size or metabolism class, around a general trend of proportional rates.

S1-3 Demographic and environmental perturbations
This section summarises the demonstration of the scaling of demographic and environmental pertur-

bations with species abundance (see Lande et al., 2003 for more details).

The growth of a population depends on the fitness wi of each individual i. This fitness can be
decomposed into the expected fitness µw of the species depending on environmental conditions and the
individual deviation δi. The expected value of wi is equal to µw (E(wi) = µw and E(δi) = 0).

wi = µi + δi (11)

Then, the growth rate λ of the population, which contains N individuals, is the mean of the wi.

λ = w = 1
N

N∑
i=1

wi = µw + 1
N

N∑
i=1

δi (12)

µw and δi are independent random variables whose variance are respectively σ2
env and σ2

demo. Thus, we
can calculate the variance of λ.

V ar(λ) = V ar(µw) + V ar( 1
N

N∑
i=1

δi) = σ2
env + 1

N2

N∑
i=1

σ2
demo = σ2

env + σ2
demo

N
(13)

As the growth of the population is defined by λN , we get

V ar(λN) = N2V ar(λ) = σ2
envN

2 + σ2
demoN (14)

Thus, the variance of the population due to a synchronised response of all the individuals is equal to
σ2

envN
2 while the variance of the demographic noise is equal to σ2

demoN . In conclusion, we can represent
the demographic perturbation by σdemoB

0.5dW and the environmental perturbation by σenvBdW as in
equation (5) in the main text.

S1-4 Biomass at equilibrium
The system of equations (4a) and (4b) at equilibrium cannot be solved analytically. Therefore, we

calculate analytically the equilibrium biomass of the system without dispersal by solving the following
equations:

0 = g

D
−B∗1 −maB∗2 (15a)

0 = − r

D
−B∗i + εaB∗i−1 −maB∗i+1 (15b)

This can be expressed as a matrix product:
−1 −ma (0)

εa −1
. . .

. . . . . . −ma
(0) εa −1



B∗1
B∗2
...
B∗n

 =


−g/D
r/D
...

r/D

 (16)

2



Quévreux et al., 2021 Synchrony in perturbed metacommunities

solved by the tridiagonal solver algorithm of the GNU Scientific Library version 2.5 (Galassi, 2009). Then,
these values initialise the multidimensional root-finder algorithm of the GNU Scientific Library version 2.5
(Galassi, 2009) that solve the following system to find the equilibrium biomasses of the metacommunity.

0 = B1( g
D
−B1 −maB2) + di(B′1 −B1) (17a)

0 = Bi(−
r

D
−Bi + εaBi−1 −maBi+1) + di(B′i −Bi) (17b)

These equations have the same solutions that equations (4a) and (4b) but the absence of mi−1, which
can be very low or high depending on the value of m, greatly increases the precision of the algorithm.

S1-5 Jacobian matrix
The general system with S species is defined by:

dBi

dt
= fi(B1, ..., BS) (18)

B∗ defines the equilibrium at which the community matrix (or Jacobian matrix) J is defined by:

J =


∂f

(1)
i

∂B
(1)
j

∣∣∣∣∣
B∗

∂f
(1)
i

∂B
(2)
j

∣∣∣∣∣
B∗

∂f
(2)
i

∂B
(1)
j

∣∣∣∣∣
B∗

∂f
(2)
i

∂B
(2)
j

∣∣∣∣∣
B∗

 (19)

Where ∂f
(k)
i

∂B
(`)
j

∣∣∣∣∣
B∗

represents the effect of species j from patch ` on dynamics of species i from patch k.

For simplicity, J can be split into blocks such as:

J = J ′ + P ′ =
(
J (1) 0

0 J (2)

)
+
(
−P P
P −P

)
(20)

With J (k) the Jacobian matrix of community k without dispersal and P the sub-dispersal matrix. P is
defined by:

P =

Dd1 (0)
. . .

(0) mn−1Ddn

 (21)

And J (k) by:

J
(k)
11 = D( g

D
− 2B(k)∗

1 −maB(k)∗
2 ) J

(k)
12 = D(−maB(k)∗

1 )

J
(k)
i,i−1 = mi−1D(εaB(k)∗

i ) J
(k)
i,i+1 = mi−1D(−maB(k)∗

i )
J

(k)
i,i = mi−1D(− r

D
− 2B(k)∗

i + εaB
(k)∗
i−1 −maB

(k)∗
i+1 )

J
(k)
i,j = 0 if j /∈ {i− 1, i, i+ 1}

(22)

S1-6 Linearisation of the system and resolution of the Lyapunov equation
S1-6-1 Linearisation of the system

The system of equations (4a) and (4b) can be linearised in the vicinity of B∗:

dBi

dt
= fi(B∗1 , ..., B∗S)︸ ︷︷ ︸

= 0
+

S∑
j=1

(
∂fi

∂Bj

∣∣∣∣
B∗

(Bj −B∗j )
)

(23)

Thus, by setting Xi = Bi −B∗i the deviation from equilibrium, we have:

dXi

dt
=

S∑
j=1

JijXj (24)
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Then, we can consider small perturbations defined by −→E whose effects on −→X are defined by the matrix
T (Arnoldi et al., 2016). We get the linearised version of equation (5):

d
−→
X

dt
= J
−→
X + T

−→
E (25)

The elements of −→E are defined by stochastic perturbations Ei = σidWi with σi their standard deviation
and dWi a white noise term with mean 0 and variance 1. In this study, each species can receive three types
of perturbation scaling with each biomass (B∗zi ): exogenous if z = 0, demographic if z = 0.5 and environ-
mental if z = 1 (see section S1-3). Thus, −→E = (E1,exo, ..., ES,exo, E1,demo, ..., ES,demo, E1,env, ..., ES,env)
as it contains the white noise term of each type of perturbation for each species. T contains three blocks
of diagonal matrices of size S corresponding to each type of perturbation.

T =


1 0 B∗0.5

1 0 B∗1 0
. . . . . . . . .

︸ ︷︷ ︸
exogenous

0 1 ︸ ︷︷ ︸
demographic

0 B∗0.5
S ︸ ︷︷ ︸

environmental

0 B∗S

 (26)

Thus, the matrix product T−→E results in the product of the white noise and the biomass scaling as
in equations (4a) and (4b) in the main text. Moreover, each species can receive simultaneously one
perturbation of each type.

S1-6-2 Resolution of the Lyapunov equation

In the vicinity of equilibrium, the Lyapunov equation links the variance-covariance matrix VE of the
perturbation vector −→E to the variance-covariance matrix C∗ of species biomasses (see the appendix of
Wang et al. (2015) for more details on the Lyaponov equation).

JC∗ + C∗J> + TVET
> = 0 (27)

The diagonal elements of VE are equal to σ2
i (variance of the white noises) and the non-diagonal elements

are equal to zero if perturbations are independent (what we consider in this study). > is the transpose
operator.

VE =



σ1,exo 0 . . . 0
. . . . . .

0 σS,exo
. . .

. . . σ1,demo 0
...

. . . . . . . . .
... 0 σS,demo

. . .
. . . σ1,env 0

. . . . . .
0 . . . 0 σS,env



 exogenous

demographic

 environmental

(28)

C∗ can be calculated using a Kronecker product (Nip et al., 2013). The Kronecker product of an m× n
matrix A and a p× q matrix B denoted A⊗B is the mp× nq block matrix given by:

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB


We define C∗s and (TVET

>)s the vectors stacking the columns of C∗ and TVET
> respectively. Thus,

equation (27) can be rewrite as:

(J ⊗ I + I ⊗ J)C∗s = −(TVET
>)s

C∗s = −(J ⊗ I + I ⊗ J)−1(TVET
>)s

(29)

4
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S1-7 Numerical resolution of stochastic differential equations
The same results can be obtained by simulating the temporal dynamics of the system. Equation (5) in

the main text can be solved by using the Euler-Maruyama method by computing the discretised equation:

Bit+∆t
= Bit

+ f(−→Bt)∆t+
√

∆tσiB
z
i ∆Wi (30)

With ∆t the time step and ∆Wi a displacement drawn from a Gaussian distribution with 0 mean and
variance 1.
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S2 Complementary results
S2-1 General responses of the food chain model to perturbations
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Figure S2-1: A) Correlation matrix within an isolated food chain (di = 0, no dispersal) and with de-
mographic independent stochastic perturbations applied to each trophic level. Nine food chains with
different combinations of εa and ma are tested. B) Same correlation matrix with environmental inde-
pendent stochastic perturbations applied to each trophic level. C) General behaviour of the food chains
presented in A. All the off-diagonal elements are summed. If the output is positive, correlations are
stronger and the food chain has a bottom-up response to perturbations, otherwise, anti-correlations are
stronger and the food chain has a top-down response. D) Ratio of predator to prey metabolic rates
(m = mi + 1/mi). E) M1, ratio of dispersal processes to the sum demographic and dispersal processes
(see equation (9)) for each trophic level along a scaled dispersal rate di gradient.

Fig.S2-1 is complementary to Fig.2. In Fig.S2-1A where all species receive independent demographic
perturbations, adjacent trophic levels are correlated for ma = 10 while they are anti-correlated for
ma ≤ 1 (bottom part of the graph). These two responses correspond respectively to bottom-up and top-
down responses of the food chain to perturbations (Fig.S2-1C). Such a difference is not due to biomass
distribution among trophic levels as the variance of demographic perturbations is linear to species biomass.
This is due to the values of m (= mi+1/mi, ratio of predator to prey metabolic rates, Fig.S2-1D) that
is much larger than 1 when the response of the food chain is strongly bottom-up and much lower than
1 when the response is strongly top-down. If predators have a faster metabolic rate than their prey,
their demographic dynamics are fast and they recover from perturbations faster than their prey. This
makes lower trophic levels relatively more sensitive to perturbations and leads to a bottom-up response
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to perturbations. The opposite situation makes predators more sensitive to perturbations and leads to a
top-down response.

Environmental perturbations (z = 1, see equation (26), Fig.S2-1B) lead to a distribution of bottom-up
and top-down responses similar to Fig.S2-1A but with stronger responses in the top-left and bottom-right
corners of the graph. In fact, environmental perturbations affect more abundant species and are thus
equivalent to demographic perturbations applied to a unique trophic level. Then, Fig.S2-1B is a mix
between Fig.2C and 2D depending on biomass distribution (Fig.2A).

Finally, M1, which is the relative importance of dispersal processes versus demographic processes
(Fig.S2-1E), completely depends on biomass distribution (Fig.2A): lower is the biomass, lower is the
scaled dispersal rate di required to affect species biomass dynamics.

S2-2 Transmission of perturbations to an undisturbed patch
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Figure S2-2: Correlation between populations of the same species from two patches with increasing scaled
dispersal rates di. All species are able to disperse. A) Only the primary producer of patch #1 receive
a stochastic demographic perturbation. B) Only the top predator of patch #1 receive a stochastic
demographic perturbation. C) All species of patch #1 receive independent stochastic demographic
perturbations. D) All species of patch #1 receive independent stochastic environmental perturbations.

The top-left corner (εa = 0.1 and ma = 10) of Fig.S2-2A, where primary producers in patch #1 are
perturbed, was detailed in Fig.4 but the same framework can be used to explain Fig.S2-2A and Fig.S2-
2B, where top predators in patch #2 are perturbed, for all other combinations of εa and ma. If the
perturbed species is also the most affected by dispersal (Fig.S2-1E), then both patches are correlated as
the perturbation is transmitted at the same trophic level in patch #2 as it is applied in patch #1 (for
εa = 10 in Fig.S2-2A and εa = 0.1 in Fig.S2-2B). In other words, both patches receive almost the same
perturbation at the same trophic level. In addition, the same pattern is observed in food chains where
all species have the same biomass as they are equally affect by dispersal (Fig.S2-1E).

If the species sensitive to dispersal is not the perturbed one in patch #1, we observe a bottom-up
response in one patch and a top-down response in the other one as each patch receives a perturbation at
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a different trophic level. This leads to the pattern detailed in Fig.3 and Fig.6. In Fig.S2-2C where all
species in patch #1 are perturbed, the top-left corner looks like Fig.S2-2A and the bottom-right corner
to Fig.S2-2B. As isolated food chains have respectively bottom-up and a top-down responses in these two
parts of the parameter space (Fig.S2-1C), we can indeed expect responses similar to those where primary
producers (Fig.S2-2A) and top predators (Fig.S2-2A) are respectively perturbed.

Finally, Fig.S2-2D, where all species in patch #1 receive environmental perturbations, is a mix between
Fig.S2-2A and Fig.S2-2B as biomass distribution biases the effect of environmental perturbations towards
the more abundant species. Thus, environmental perturbations in bottom-heavy biomass pyramids are
equivalent to a perturbation of primary producers (top-left corner and Fig.S2-2A) while in top-heavy
biomass pyramids they are equivalent to a perturbation of top predators (bottom-right corner and Fig.S2-
2B).

S2-3 Multiple perturbation partitioning
S2-3-1 Mathematical demonstration of correlation partitioning

We consider R independent stochastic perturbations that can affect species from patch #1 or patch
#2. Therefore, the variance-covariance matrix of stochastic perturbations VE is a diagonal matrix whose
elements are equal to the variance σ2

j of each perturbation j. Thus, we define VEj the variance-covariance
matrix when only the jth perturbation is applied and we have VE =

∑R
j=1 VEj .

From equation (29) we have:

C∗s = −(J ⊗ I + I ⊗ J)−1(TVET
>)s

= −(J ⊗ I + I ⊗ J)−1(T
R∑

j=1
VEjT

>)s

=
R∑

j=1

(
−(J ⊗ I + I ⊗ J)−1(TVEjT

>)s

)
=

R∑
j=1

C∗s,j

(31)

C∗s,j is the variance-covariance matrix associated to VEj . Thus, we have:

wi(k)m(`) =
R∑

j=1
wi(k)m(`),j (32)

wi(k)j(`) is the covariance between species i in patch k and species j in patch ` and is an element of the
variance-covariance matrix C∗ and wi(k)m(`),j is an element of the variance-covariance matrix C∗j . As we
only consider two patches and are interested in the correlation between populations of the same species,
we use the following notation:

w1,j = wi(1)i(1),j w2,j = wi(2)i(2),j w1,2,j = wi(1)i(2),j

We also define ρi that is the correlation coefficient between the two populations of species i and ρi,j

in the same correlation coefficient in the case where only the jth perturbation is applied.

ρi = w1,2√
w1w2

=

R∑
j=1

w1,2,j√√√√ R∑
k=1

w1,k

√√√√ R∑
k=1

w2,k

=

R∑
j=1

ρi,j
√
w1,jw2,j√√√√ R∑

k=1
w1,k

√√√√ R∑
k=1

w2,k

(33)
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=
R∑

j=1

ρi,j

√
w2,j
√
w1,j

w1,j√√√√ R∑
k=1

w1,k

√√√√ R∑
k=1

w2,k


Eventually, the correlation pattern (ρi) in a metacommunity where all species receive independent stochas-
tic perturbations can be decomposed into a sum of the correlation patterns (ρi,j) obtained when only
one species is perturbed. The the ρi,j are weighted by the variance generated in both patches by each
perturbation.

S2-3-2 Verification for the whole parameter space
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Figure S2-3: Detailed correlation pattern between two coupled food chains for εa = 10 and ma = 10
with increasing scaled dispersal rates di. Only primary producers are able to disperse. A), B), C) and
D) are the correlation patterns between the two patches and E), F), G) and H) are the products of
the two metric M2 and M3 when species 1, 2, 3 and 4 are respectively the only species perturbed. I)
Correlation between patches when independent demographic stochastic perturbations are applied to all
species in each patch. J) Reconstructed correlation pattern when all species in each patch are perturbed.
It can by obtained as follow: J= 2×(A×E+B×F+C×G+D×H).

The results found with a food chain sustaining four trophic levels (Fig.S2-3) are consistent with the re-
sults from a food chain two with trophic levels (Fig.6). Primary producer populations become completely
correlated as they are the only species able to disperse. Perturbing herbivores (Fig.S2-3F), carnivores
(Fig.S2-3G) and top predators (Fig.S2-3H) generates at least three times more variability in herbivore
biomass than perturbing primary producers (Fig.S2-3E). Thus, the average of the correlation patterns
between herbivore populations in Fig.S2-3B-D gives the moderated anti-correlation seen in Fig.S2-3I and
S2-3J.

Carnivores are mostly and equally affected by the perturbation of carnivores (Fig.S2-3G) and top
predators (Fig.S2-3H). Thus, averaging the corresponding correlation patterns (Fig.S2-3C andS2-3D)
leads to the moderated correlation between the two carnivore populations (Fig.S2-3I and S2-3J).

Finally, top predators variability is mostly driven by their direct perturbation (Fig.S2-3H), making
the corresponding correlation pattern (Fig.S2-3D) very similar to the correlation pattern obtained with
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multiple perturbations (Fig.S2-3I and S2-3J).
The partitioning of the effects of perturbations is also valid for the rest of the parameter space (Fig.S2-

4A and S2-4B) and when only top predators are able to disperse (Fig.S2-4C and S2-4D) or when all species
are able to disperse (Fig.S2-4E and S2-4F).

S2-4 Environmental perturbations
Finally, we explore the effect of independent environmental perturbations (z = 1, see equation (26))

applied to all species in patch #1 in addition to demographic perturbations applied to all species in both
patches. We test two ratios of environmental to demographic variances (σ2

env : σ2
demo) to understand how

environmental perturbations can override the background demographic perturbations. Thus, we compare
the variance generated in patch #2 when only environmental perturbations are applied in patch #1 to
the variance generated when species from both patches receive independent demographic perturbations
only.

Weak environmental perturbations (σ2
env : σ2

demo = 0.001) have no effects as Fig.S2-5A is identical to
Fig.S2-4E (patch #1 and #2 receiving independent demographic perturbations only). At low scaled dis-
persal rates di, the variability due to the environmental perturbations transmitted to patch #2 through
dispersal is completely overwhelmed by the variability due to demographic perturbations directly af-
fecting species in patch #2 (Fig.S2-5B). The increase in the transmitted variability from environmental
perturbations at high scaled dispersal rates is also jointed by the strong correlation of populations due to
dispersal (Fig.S2-2D). This increased correlation between patches due to dispersal overrides the increas-
ing influence of environmental perturbations as all populations become completely coupled (bottom-right
graph of Fig.S2-5B).

However, strong environmental perturbations (σ2
env : σ2

demo = 100) have dominant effects at interme-
diate scaled dispersal rates as Fig.S2-5C is similar to Fig.S2-2D. At low scaled dispersal rates di, the
variance ratio is low and patches remain uncorrelated (Fig.S2-5D) while at high scaled dispersal rates,
populations are perfectly correlated. Food chains with top-heavy biomass pyramids (Fig.2A) seem partic-
ularly affected by environmental perturbations. Thus, changes of scaled dispersal rates can dramatically
switch population from anti-correlation to correlation.
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Figure S2-4: Correlation between populations of the same species from two patches with increasing scaled
dispersal rates di. Independent demographic stochastic perturbations are applied to each species in each
patch. A) Only primary producers are able to disperse. C) Only top predators are able to disperse.
E) All species are able to disperse. Reconstructed correlation pattern when all species in each patch are
perturbed. The reconstruction process is the same as explained in Fig.6 and Fig.S2-3 but applied to the
whole parameter space and for the cases where B) only primary producers D) only top predators are
able to disperse and F) all species are able to disperse.
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Figure S2-5: Correlation between populations of the same species from two patches with increasing
scaled dispersal rates di. Independent demographic stochastic perturbations are applied to each species
of each patch and independent environmental perturbations are applied to each species of patch #1.
The relative weight of these two perturbations is given by the ratios of variance w2−env in patch #2
when only species in patch #1 receive independent environmental perturbations to the variance w2−demo

in patch #2 when all species receive independent demographic perturbations. Two different ratios of
environmental perturbation to demographic perturbation variance are tested: A) correlation and B)
biomass CV ratio for σ2

env : σ2
demo = 0.01 (stronger demographic perturbation) and C) correlation and

D) biomass CV ratio (y-axis cut for more readability) for σ2
env : σ2

demo = 100 (stronger environmental
perturbation).

13


	Introduction
	Material and methods
	The metacommunity model
	Stochastic perturbations
	Response to perturbations
	Processes controlling the synchrony

	Results
	General responses of the food chain model to perturbations
	Propagation of a perturbation when one species disperses
	For whom does dispersal matter?
	Multiple perturbation partitioning

	Discussion
	For whom does dispersal matter?
	Multiple perturbation partitioning

	Conclusion
	Acknowledgement
	References
	Complementary material and methods
	Parameters
	Scaling of biological rates with metabolism
	Demographic and environmental perturbations
	Biomass at equilibrium
	Jacobian matrix
	Linearisation of the system and resolution of the Lyapunov equation
	Linearisation of the system
	Resolution of the Lyapunov equation

	Numerical resolution of stochastic differential equations

	References
	Complementary results
	General responses of the food chain model to perturbations
	Transmission of perturbations to an undisturbed patch
	Multiple perturbation partitioning
	Mathematical demonstration of correlation partitioning
	Verification for the whole parameter space

	Environmental perturbations


