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An active inline mixer suitable for flows at low Reynolds number and high Péclet number is
studied. An alternated oscillatory forcing protocol is imposed by three rotating circular arc-walls
in a straight channel. In the two-dimensional case, simple phenomenological arguments are used
to estimate heuristically the mixing efficiency with two non-dimensional control parameters: the
Strouhal number based on the bulk flow velocity, and the strength of the cross flow relative to the
transport flow. The validity and limitations of the proposed mixing conditions are explained by the
transport mechanisms in the mixer. The beneficial role of the elliptic flow regions for stretching
and folding the passive scalar interfaces is highlighted, as well as a correlation between good mixing
ability and the chaotic advection of tracers in the mixing zone.
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I. INTRODUCTION

The efficient transfer of mass or heat in open channel flows of viscous fluids is of importance in many industrial
processes: production of food pastes, waste water treatment, pulp and paper manufacturing, inline production of
polymer blends with controlled poly-dispersity, etc. In open channel flow mixers, the active zone is continuously fed
with the fluids to mix, which spend only a definite time in this zone, in contrast with closed flows mixers. Efficiency
is then a crucial issue. To achieve efficient mixing, two categories of open flow mixers can be distinguished, depending
on nature of the stirring protocol [11, 31, 55]: passive or active.

Passive elements use the energy of the flow to generate flow structures enhancing mixing efficiency. This may
be carried out by successive changes of direction of the channel walls, for example using twisted pipes [7, 12, 34] or
grooved patterns [56]. Passive elements can also move in the flow, such as flexible structures like flaps [2, 38]. Pursuing
this idea further, viscoelastic polymers can be added in the fluids to generate a regime of elastic turbulence favorable
for mixing [9, 10, 29]. More examples of passive elements are listed in Table I, left column. For a given geometry
of an open flow mixer with only passive stirring elements, the bulk velocity is the sole parameter that controls the
mixing efficiency. However, for highly viscous fluids, the bulk velocity may be difficult to tune and, consequently, the
mixing efficiency is rather limited.

To efficiently mix highly viscous fluids, active elements are expected to perform better. Such elements require an
energy source other than the energy associated to the mean flow. Various types of forcing schemes may be used, such
as hydrodynamic forcing [8, 47] or structural-based forcing (egg-beater [28], rotating walls [45], artificial cilia [18, 36],
etc.). More examples are listed in Table I, right column.

Passive stirring Active stirring

Converging-diverging channel[3, 25] Hydrodynamics [8, 47]
Rigid or flexible structures[2, 38] Rigid or flexible structures[18, 28, 36, 45]
Staggered herringbone channel[56] Acoustics [14, 33]
Partitioned pipe mixer [35] Electro-hydrodynamics [13]
Twisted pipes [7, 12, 34] Magneto-hydrodynamics [27]
Focusing channels [37] Acoustically driven bubbles [49]
Elastic turbulence [9, 10, 29] Dielectrophoresis[40]
Corrugated channel [26] Electrokinetics [46]

TABLE I: Examples of configurations for passive stirring, and types of forcing for active stirring, for open flow
mixing (not exhaustive list).

For many active open flow mixers, the mixing is carried out along a channel by moving impeller-like shapes. Yet
the mixing length, defined as the characteristic length the fluids need to travel downstream to mix, may be actually
smaller than the length of the entire processing line. This can lead to additional energetic costs which would ultimately
increase the price of the final product. A second drawback relates to the quality of the final product, like its texture.
Many highly viscous pasty materials are made of high molar mass molecular constituents which are mechanically
fragile. “Over-mixing” such products may result in mechanical degradation or in a loss of the targeted texture. To
circumvent these problems, which have hitherto never been quantitatively addressed [31], certain manufacturers are
little inclined to use inline mixers. It is clear that for the latter the ability to easily control the level of mixing is
desirable.

Following a preliminary work by two of the authors [20], the central aim of the present paper is to study an active
open flow mixer that allows both good mixing efficiency and easy control of the mixing level for highly viscous fluids.

By the large extent of the mixing devices considered above, one can infer that, even in the case of a Newtonian fluid
studied in the present paper, the design of the mixer and the choice of the mixing protocol remain challenging tasks.
One reason for that is the lack of understanding of the mixing mechanisms, which involve a broad range of spatial
and temporal scales and complex interactions between processes at different scales. However, it is generally accepted
that in a highly viscous fluid, the mixing of a passive scalar, hereafter referred to as concentration, requires two
ordered steps [19, 60]. The first step is the stretching of the concentration blobs into striations (also called filaments,
or lamellae in 2-D) with possibly enhanced diffusion by large shear [24] (also called Taylor dispersion). The second
step consists of the folding of the passive scalar filaments allowing for an efficient pure diffusion due to the generated
high concentration gradients. One of the simplest mechanisms that permit to achieve the first step is the roll-up
of concentration blobs in spirals [43, 52]. Thanks to its rotating arc-walls, the mixer we propose can generate such
suitable spirals, provided that the transverse velocity is sufficiently large with respect to the bulk velocity. (What is
meant by “sufficiently large” is studied in the present paper.) The step of folding is performed by reorientation of the
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transverse velocity field, namely by the rotational changes of direction of the arc-walls. For simplicity, the rotations
of the arc-walls are chosen time periodic. Obviously, an infinite number of protocols could be used to achieve mixing
by rotation of the arc-walls. There are practically no theoretical tools available for allowing an a priori choice of a
particular form of protocol. Based on qualitative considerations, we thus have chosen a form of protocol that allows
us to generate a flow in which hyperbolic and elliptic points coexist, which is recognised as a favorable condition for
efficient mixing [53]. We will show that efficient mixing is achieved by a careful choice of the period of rotation and
the transverse velocity relative to the bulk velocity. We do not consider here the issue of how to control the mixing
level, as done, e.g., by feedback control by Aamo et al. [1], by optimal control by Foures et al. [24], or by entropy
maximization by D’Alessandro et al. [15]. The control of mixing often requires a large computational effort. On the
contrary, our approach here aims at obtaining choices of control parameters based on extremely simple arguments.
For that purpose, a heuristic model based on dimensional and phenomenological arguments will be proposed, giving
insights into suitable choices of the control parameters for good mixing.

In the present study a 2-D flow model is considered, as a first step towards understanding of the mixing mechanisms
in a realistic 3-D channel mixer. It is recognized that for channel flows, 3-D effects may increase mixing beyond the 2-D
mixing mechanisms. Moreover, in 3-D flows, 2-D and 3-D transport mechanisms may be related to each other [48, 51].
This motivates the present 2-D study, which may thus be thought of as giving insights into mixing mechanisms in the
channel, despite being only a first step towards understanding of the 3-D mechanisms.

The paper is organised as follows. In section II, the geometry of the proposed mixer is presented, along with
the selected flow modulation protocol. In section III, heuristic conditions for mixing, based on dimensional and
phenomenological arguments, are proposed. In section IV, the numerical setting-up for two-dimensional simulations
is described. Results by the heuristic and numerical approaches are compared in section V. The presence of chaotic
advection in the cases of good mixing is evidenced. The paper closes with a summary of the main findings and
concluding remarks in section VI.

II. THE ROTATING ARC-WALL MIXER

With the objective of mixing efficiently with control of the mixing level, we propose a mixing unit, named Rotating
Arc-Wall (or RAW) mixer, that combines the axial flow through a channel and the cross-flow generated by three
rotating circular arc-walls.

A. Geometry and kinematics of the RAW mixer

For the two-dimensional configuration considered for simplicity in the present paper, the RAW mixer consists of
a channel of length L and width W , with three circular cylinders of equal radii R having their axes of rotation
perpendicular to the plane of the channel (see Fig. 1). The cylinders penetrate into the channel with the depth ∆.
Two cylinders are located on the same channel wall, at a distance of 2R, and one other is located on the opposite wall,
in the middle of the two facing cylinders. The three cylinders can rotate independently, with potentially different
directions of rotation, with or without temporal modulations of their angular velocities. This flexibility allows a rich
variety of flow patterns in the mixer.

B. A protocol for mixing

As a first step towards the choice of a suitable protocol for the angular velocities of the cylinders, we identify the
steady flow topologies that may appear in the RAW mixer without modulation of the angular velocities. Combining
the possibilities of rotation of the three cylinders in clockwise and counter-clockwise directions, we obtain 23 typical
steady-state solutions whose streamlines are shown in Fig. 2. One, two or three elliptic regions [4, 30] appear (see
the light-blue zones in Fig. 2), surrounded by separatrices that are transport barriers for the tracers from one elliptic
region to another [6]. To break them, the flow is made time-dependent through the rotation of the three cylinders.
The modulations of the angular velocities are designed to allow for the reorientation of the transverse velocity field
[32]. This is simply achieved by an alternation of the rotation directions. Four couples of steady solutions can then
be selected (see Fig. 2) : {(1), (2)}, {(3), (4)}, {(5), (6)} and {(7), (8)}, for which the streamlines shown in the figure
evolve from one solution to another. At each change of direction, attachment points of the separatrices are either
created, removed or destabilized, with a beneficial effect for material transport and thus for mixing. The case of a
counter-rotating protocol, in which the cylinders located on the opposite walls rotate in opposite directions, allows
the generation of hyperbolic points beneficial to the mixing efficiency. It is also desirable that these points are not
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FIG. 1: Sketch of the two-dimensional rotating arc-wall (RAW) mixer (not to scale). vbulk represents a given bulk
velocity of the entering flow.

confined close to the fixed walls [28], but on the contrary are well distributed in the channel, including in the middle
area. This leads us to choose equal rotation frequencies and angular velocity amplitudes for the three cylinders.
Finally, a smooth alternation between the directions of rotation of the cylinders is chosen so as to reduce the risk of
wall slip, with a view to experimental studies of the mixer.

On the basis of many simulations (not shown), a scenario with a smooth alternation of the configurations (7) and
(8) in Fig. 2 is selected, and we choose the protocol given by

Ω1(t) = Ω2(t) = Ω0 sin

(
2πt

T

)
, Ω3(t) = −Ω0 sin

(
2πt

T

)
, (1)

where t represents the time, T the forcing period, and Ω0 the amplitude of the angular velocity.

We emphasise that only simple qualitative arguments have been used to end up with Eqs. (1). The form (1) of
the protocol allows, depending on the parameter choices, to vary significantly the level of mixing, as will be shown in
section V. This will give us the possibility of deducing conclusions of a certain generality, concerning the relationships
between flow characteristics and the level of mixing.

III. HEURISTIC CONDITIONS FOR FOLDING AND MIXING

In this section, relationships between the dimensions of the RAW mixer and the operating conditions are derived
using phenomenological arguments similar to those of Stroock et al. [56] for a passive mixing device, and to those of
Ober et al. [45] for an active mixing device. This will provide heuristic conditions for folding and mixing.
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FIG. 2: Typical steady-state streamline flow topologies for the three cylinders rotating at constant angular velocity.
The eight possible stirring configurations are 1(+ + +), 2(−−−), 3(+ +−), 4(−−+), 5(−+ +), 6(+−−),
7(+−+), and 8(−+−). The symbol (+) indicates counter-clockwise direction of the angular velocity of the

rotating cylinder (blue arrows), and (−) clockwise direction (red arrows). The elliptic zones are colored in light blue.
Here we took Rebulk = 1 and K0 = 10; see section III A.

A. Non-dimensional numbers

With the given bulk velocity vbulk as reference velocity and the width channel W as reference length (see Fig. 1),
a bulk Reynolds number is defined as

Rebulk =
vbulkW

ν
, (2)

where ν is the fluid viscosity, and a bulk Péclet number is defined as

Pebulk =
vbulkW

D
, (3)

where D is the molecular diffusivity. Next, introducing a characteristic cross-flow velocity denoted by vcross, a Reynolds
number associated to the channel cross flows is defined as

Recross =
vcrossW

ν
. (4)

The ratio

K =
Recross

Rebulk
=
vcross

vbulk
, (5)
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which represents the strength of the cross-flow velocity to the bulk velocity, will be used below, along with the bulk
Strouhal number defined as

Stbulk =
W

Tvbulk
. (6)

Our choice for the definition of vcross is given later.

B. Condition for folding

The stirring mechanism begins when the interface between the two different values of the concentration, assumed to
be initially located at mid-width of the channel, is deformed toward the walls by the action of the cylinders rotation.
Then, mixing efficiency depends on the relative strength of the bulk and cross-flow velocities. If the cross-flow velocity
is too low with respect to the bulk velocity, the deformation of the interface will be almost suppressed by the next
rotational change of direction. In such a case, no folding operation is realised. Otherwise, the pulled thread is long
enough to be folded by the next rotation of the cylinders in the opposite direction. In terms of displacement, a
minimal condition for achieving a folding of the interface is that the characteristic transverse displacement during one
half period, vcrossT/2, of a tracer initially located near a rotating arc-wall, exceeds the half-channel width W/2. In
this case, however, the length of the generated striations can be negligibly small. To avoid this situation, we rather
consider the condition of a characteristic displacement during a half period larger than the full channel width W . The
length of the generated striations is then larger than the half-channel width. This is a reasonable condition to allow
successive foldings of the concentration interface. With Eq. (6), this results in

K ≥ 2Stbulk. (7)

To obtain from (7) a manageable condition, we have to clarify our choice for the value of vcross. Since the condition
(7) concerns the transverse displacement of a tracer during one half period T/2, a definition of the characteristic
cross-flow velocity vcross that is relevant here is by averaging the angular velocity on this duration. Eq. (5) and the
condition (7) then give

K0 ≥ πStbulk, (8)

where K0 is defined by

K0 =
RΩ0

vbulk
. (9)

The inequality (8) provides guidance on a minimal condition for folding needed to achieve mixing. However, as will
be illustrated in section V A, this is only a necessary (but not sufficient) condition. Another condition that takes into
account the diffusion process, thus complementary to the condition (8), is discussed in the next section.

C. Condition for mixing

If the cross-flow velocity is large enough with respect to the bulk velocity, then the successive changes of direction
of the rotating cylinders can generate stretched and folded lamellae of the concentration values down to spatial scales

d =
W

2n
. (10)

Since the interface between the concentration values is initially located at mid-width of the channel, the number of
cycles of stretching and folding operations is n− 1, with n ≥ 1. The characteristic time needed for the diffusion to be
effective after n− 1 cycles is then

tdiffusion =
d2

D
=

W 2

4nD
. (11)
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A phenomenological condition for the diffusion to be effective after n− 1 cycles is

tresidence ≥ tdiffusion, (12)

with the characteristic residence time defined as

tresidence =
Lmixing

vbulk
, (13)

where Lmixing is the length of the active mixing zone (see Fig. 1). Using the bulk Péclet number of Eq. (3), the
characteristic residence time can be written as

tresidence =
WLmixing

D Pebulk
. (14)

With the diffusion time given by Eq. (11) and the residence time given by Eq. (14), the mixing condition (12) then
becomes

n ≥ 1

ln(4)
ln

(
Pebulk

ζ

)
, (15)

where ζ = Lmixing/W is the non-dimensional extent of the mixing zone. Noting that under the folding condition of
section III B,

ζK =
tresidencevcross

W
≥ n, (16)

the condition (15) gives

K ≥ 1

ζ ln(4)
ln

(
Pebulk

ζ

)
. (17)

Since in (16) tresidencevcross is the transverse displacement of a tracer during the characteristic residence time tresidence,
a relevant definition of the characteristic cross-flow velocity vcross in (17) is now by averaging the angular velocity on
tresidence:

vcross = RΩ, with Ω =
1

tresidence

∫ tresidence

0

Ω0

∣∣∣∣sin(2πt

T

)∣∣∣∣dt. (18)

We shall find it useful to write the characteristic residence time as

tresidence = NT + δt, (19)

where 0 ≤ δt < T . Then,

Ω =


Ω0

πζStbulk

[
2N + sin2(πζStbulk)

]
, if 0 ≤ δt ≤ T

2
,

Ω0

πζStbulk

[
2(N + 1)− sin2(πζStbulk)

]
, if

T

2
< δt < T .

(20)

Noting that 2(N + 1)− sin2(πζStbulk) ≥ 2N + sin2(πζStbulk), the inequality

Ω ≥ D
RW ln(4)

Pebulk

ζ
ln

(
Pebulk

ζ

)
, (21)

which is equivalent to (17), is satisfied by both expressions in (20) when the following mixing condition is fulfilled:

K0 ≥
πStbulk

ln(4)

ln

(
Pebulk

ζ

)
2ζStbulk + sin2(πζStbulk)

. (22)
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FIG. 3: Region of possible mixing (colored) in the parameter space (Stbulk,K0), based on the folding condition (8)
(blue line) and the mixing condition (22) (black line). Here, we take ζ = 2 and Pebulk = 106. The region below the
black line corresponds to values for which mixing is not expected. The region below the blue line corresponds to
values for which folding is not expected. Note that the black line, which represents the mixing condition, has the

vertical asymptote Stbulk = 0.

The inequality (22) may be thought of as a guidance on a necessary condition for mixing, at any given value of the
bulk Péclet number Pebulk. An example of obtained separating curve in the parameter plane (Stbulk,K0) is shown
in Fig. 3 (black line). Below the curve are values of Stbulk and K0 that can be considered unfavorable for mixing.
Accounting for both conditions (8) and (22), values of Stbulk and K0 that would allow mixing may be determined
(coloured zone in Fig. 3). However, at this point we cannot strictly guarantee mixing for such values. This issue is
investigated through numerical experiments in the next sections, by comparing the results obtained from the heuristic
conditions (8) and (22) to those obtained by direct simulations of the mixing process.

IV. NUMERICAL SETUP

In this section are presented the settings and the numerical method used for the direct simulations to be compared
to the heuristic conditions (8) and (22) for folding and mixing.

A. Equations for the velocity and concentration fields

For the system we are interested in, the RAW mixer with a Newtonian fluid, we choose the channel width W
as length scale, and the forcing period T as time scale. The amplitude of tangential velocity near the rotating
arcs v0 = RΩ0 is chosen as velocity scale. A viscous scaling is taken for the pressure, with µv0/W . Assuming an
incompressible flow, we thus need to solve, here in a two-dimensional domain, the continuity equation

∇ · v = 0, (23)

the momentum equation

Re0 [St0∂tv + (v · ∇)v] = −∇p+∇2v, (24)
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and the equation governing the advection and diffusion of the concentration c,

St0∂tc+ v · ∇c =
1

Pe0
∆c. (25)

In the dimensionless equations (23)-(25), v is the velocity, p is the pressure, and

Re0 =
v0W

ν
, St0 =

W

Tv0
, and Pe0 =

v0W

D
. (26)

We conclude that for a fixed value of the Péclet number Pe0, two independent non-dimensional parameters in Eqs.
(23)-(25) are sufficient for describing the system: Re0 and Re0St0.

Turning to the inlet conditions, two fluid streams with two distinct concentration levels, c = 0 and c = 1, are
evenly injected into the channel. The velocity field at the inlet is taken in the form of a Poiseuille profile with
Rebulk = vbulkW/ν = 1. Thus Re0 = Re0/Rebulk = K0 and Re0St0 = W 2/(νT ) = RebulkStbulk = Stbulk. From the
above non-dimensionalization, we conclude that K0 and Stbulk are two independent parameters able to describe the
system. Their relevance as control parameters of the RAW mixer in the folding and mixing conditions obtained in
sections III B and III C is thus confirmed.

At the initial time t = 0, the interface between the two fluid streams is placed at the middle of the channel, along
the x−axis (see Fig. 4a). As boundary conditions we use no slip conditions at both the static and moving walls.

B. Dimensions, numerical method, and mixing indicator

With the channel width W as reference length scale, the non-dimensional geometrical parameters of the domain
are as follows. The channel length is 5, the radius of the cylinders is 0.5, and their penetration depth is 0.167.

The used numerical method is based on a finite-volume formulation with co-located variable arrangement on un-
structured meshes, implemented in the in-house code Tamaris. For technical details, the interested reader is referred
to [5, 21, 22, 39]. Pressure and velocity are coupled using the SIMPLE algorithm combined with a momentum inter-
polation method. The transient terms in Eqs. (24) and (25) are discretised using the second-order backward Euler
scheme (BDF2). The diffusion, convection and pressure terms are discretised using second-order accurate schemes.
For the discretisation of the convection fluxes, the nonlinear CUBISTA scheme is chosen for its low numerical diffusion
allowing for accurate representation of the concentration transport.

Generally speaking, in fluid flow simulations the effective overall diffusion encompasses the molecular diffusion in
the fluid, which is often prescribed as a numerical setting, and the numerical diffusion inherent to the chosen schemes,
mesh size and CFL number, which is often difficult to assess. In the results shown hereafter, the molecular diffusion
D is set such that the corresponding bulk Péclet number Pebulk (see Eq. (3)) is equal to 106. We use a 59 000-cell grid
with CFL = 0.7. The effective Péclet number, which is thus less than 106 due to the numerical diffusion, is the same
in all simulations. Thus, we do not focus on understanding the dependence of the mixing efficiency on the effective
Péclet number.

The measure of the level of homogeneity of a mixture at finite Péclet number often requires complementary ap-
proaches and depends on the relative importance of advection and diffusion processes [16, 23, 24, 41, 42, 59]. In the
present work, we adopt for its simplicity and relevance at finite Péclet number the widely accepted measure by the
standard deviation of the concentration c,

σ =

√
1∑
I aI

∑
I

aI(cI − cmean)2, (27)

with cI the concentration in cell I, aI the area of cell I, and cmean =
∑
aIcI/(

∑
I aI). The standard deviation

σ is evaluated on a rectangular area of non-dimensional width 0.285 distributed over the entire width of the canal
downstream of the three cylinders; its location is shown in Fig. 4a.

V. RESULTS

In this section, the basic mixing mechanisms in the proposed RAW mixer are first described. Then, the mixing
efficiency obtained by the phenomenological and numerical approaches are compared.
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A. Typical patterns of the concentration

A typical evolution of the two-dimensional field of the concentration in the RAW mixer is shown in Fig. 4, where
Stbulk = 1 and K0 = 20. If we refer to the parameter plane in Fig. 3, these values of the parameters are clearly
favorable for mixing from the heuristic conditions (8) and (22). Indeed, as can be observed in Fig. 4, the cross-flow
velocity is sufficiently large with respect to the bulk velocity for complex crossing trajectories to be generated, along
with backward flows. Thus, in this case, the heuristic conditions and the direct simulation are in agreement in terms
of mixing efficiency.

As shown in Fig. 5, the concentration field is approximately periodic after about 10 periods of rotation of the
cylinders. Then, the standard deviation of the concentration oscillates around a constant value (not shown). Recurrent
patterns clearly appear after few periods of rotation of the cylinders (compare Figs. 4e and 4f), as observed by Gouillart
et al. [28] for another open flow active mixer. Few non mixed regions do remain at the exit of the mixer, as shown in
Figs. 4 (see the right boundary of each frame) and 5b. Note that the RAW mixer with three cylinders shown in Fig.
1 can be considered as a single stirring cell unit. Thus, if the level of mixing is not satisfactory, it can be increased
by lining up other RAW stirring units.

(a) t = 0. (b) t = T/8.

(c) t = T/2. (d) t = T .

(e) t = 10T . (f) t = 50T .

FIG. 4: Evolution of the concentration c along the RAW mixer, for Stbulk = 1 and K0 = 20. Based on the bulk
velocity vbulk, the duration needed for a tracer to cross the mixer is 5T . The solution may be considered as

approximately periodic after about 10 periods of rotation of the cylinders (see Figs. 4e and 4f). The colour code is:
blue for c = 0, yellow for c = 0.5 and red for c = 1. In Fig. 4a, the white dashed lines indicate the rectangular area

where the standard deviation σ of the concentration is evaluated.

We now describe the basic mixing mechanisms in the RAW mixer. Considering for clarity the first period of cylinder
rotation, this period can be divided into two phases (see Figs. 4c and 4d, to be compared to Figs. 2(7) and 2(8),
respectively). During the first phase, which corresponds to the first half period, three uniform concentration regions
are positioned opposite the rotating cylinders on the three elliptic regions visible in Fig. 2(7). The corresponding
three uniform concentration regions take the form of anvils (red, blue, then red again), separated by narrower areas
each consisting of two bands of different concentrations (see Fig. 4c). In subsequent periods, concentration regions are
no longer monochrome, but made up of increasingly complex concentration gaps. However, the mechanism remains
basically the same: During each first half period, the three elliptic regions serve as “waiting rooms” for concentration
areas, before stretching them during the second half period. But before this second phase, the cylinders change
direction of rotation at the half period. At that time, the elliptic regions present during the first half period disappear
and the concentration areas that were on the elliptic regions are advected by the longitudinal flow. Then, as the
angular velocity of the cylinders increases, three new elliptic regions emerge near the cylinders (see Fig. 2(8)); the
concentration areas that were in the three elliptic regions during the first half period are now entrained between the
rotating cylinders and the new elliptic regions. As these regions are very close to the cylinders, the concentration
areas are then strongly stretched. In addition, the bands of concentrations separating the areas above mentioned are
wound inside the new elliptic regions. Striations of different concentration levels are then generated. We thus observe
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that the combined action of elliptic regions close to the walls is a key condition for mixing in the RAW mixer, since
they allow for the generation of concentration filaments and their folding. The RAW mixer then takes advantage of
the possible beneficial role of elliptic regions for mixing in open flows [17].

(a)

(b)

FIG. 5: Spatio-temporal plots of the concentration c as a function of the time t (abscissa) and the channel height y
(ordinate), for Stbulk = 1 and K0 = 20. The colour code is: blue for c = 0, yellow for c = 0.5 and red for c = 1. Two

cross-sections located at different axial coordinates x are considered along the channel of the RAW mixer: (a)
cross-section passing by the lower cylinder axis (see Fig. 1); (b) outlet cross-section. The concentration data are

recorded from time t = 0 to time t = 13.75 T for both frames. The black segment in Fig. 5b represents the duration
of one period T .

(a) t = T/2. (b) t = T .

(c) t = 10T . (d) t = 50T .

FIG. 6: Evolution of the concentration along the RAW mixer for Stbulk = 2 and K0 = 5. This case is unfavorable for
mixing if we refer to the parameter plane in Fig. 3. Based on the bulk velocity vbulk, the duration needed for a

tracer to cross the mixer is 10T . The color code is: blue for c = 0, yellow for c = 0.5 and red for c = 1.

We now consider the parameters Stbulk = 2 and K0 = 5, which are, referring to Fig. 3, unfavorable for mixing.
Indeed, no mixing is observed in Fig. 6, except in a thin area in the vicinity of the interface between the values 0 and
1 of the concentration. The concentration patterns in Figs. 4 and 6 are completely different. First, the shapes of the
interfaces are almost identical in Figs. 4d, 4e and 4f (despite the fact that the values of the concentration fields in
Fig. 4d are different from the values in Figs. 4e or 4f). However, the shape of the interface in Fig. 6b is different from
the shapes in Figs. 6c or 6d. This means that, in such a case unfavorable for mixing, the duration needed to observe
an approximately periodic regime is longer than in case favorable for mixing. Second, in the case favorable for mixing
(Fig. 4), the interface is pushed to the walls thanks to the transversal velocity component which is sufficiently large
with respect to the bulk velocity in that case. There is a noticeable difference from the results shown in Fig. 6, where
the interface remains confined near the middle of the channel.

According to the parameter plane in Fig. 3, a parameter choice less favorable for mixing than (Stbulk = 1,K0 = 20)
but more favorable than (Stbulk = 2,K0 = 5) is (Stbulk = 2,K0 = 20). It is apparent in Fig. 7 that the characteristic
displacement of a tracer located near the rotating cylinders (2) and (3) during a half period is larger than the half
channel width. Note that the requirement of this minimal displacement was used in section III C for the derivation
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(a) t = T/2. (b) t = T .

(c) t = 10T . (d) t = 50T .

FIG. 7: Evolution of the concentration along the RAW mixer for Stbulk = 2 and K0 = 20. This case is in between
favorable and unfavorable for mixing if we refer to the parameter planes in Figs. 3 and 13. Based on the bulk

velocity vbulk, the duration needed for a tracer to cross the mixer is 10T . The color code is: blue for c = 0, yellow
for c = 0.5 and red for c = 1.

FIG. 8: Spatio-temporal plot of the concentration c as a function of the time t (abscissa) and the channel height y
(ordinate), for Stbulk = 2 and K0 = 20, at the outlet cross-section of the channel. The concentration data are

recorded from time t = 0 to time t = 13.75 T . The white segment represents the duration of one period T . The color
code is: blue for c = 0, yellow for c = 0.5 and red for c = 1.

of the mixing condition (22). However, it is clear from Figs. 7d and 8 that this condition is insufficient for mixing,
since the mixing level is relatively low at the outlet of the channel. Although large transverse displacements of the
tracers are observed, the deformations of the interface are somewhat canceled out by the sequence of rotations of the
cylinders.

Finally, since the black line in Fig. 3, which represents the mixing condition (22), has the vertical asymptote
Stbulk = 0, it is of interest to consider an example with Stbulk � 1. We thus take Stbulk = 0.1 and K0 = 20. The
obtained results are quasi-identical to those without cylinder rotation (not shown). This means that the vertical
asymptote Stbulk = 0 of the phenomenological mixing model is meaningful, even if, for Stbulk � 1, it is difficult to
infer from the model precise parameter values ensuring mixing efficiency.

B. Residence time distributions

We now turn our attention to more quantitative Lagrangian flow analysis. Insight into the mixing mechanisms in
open flows results from analysis of the distribution of the residence times of tracers in the mixing zone. The residence
time of a tracer in the mixing zone is the time spent by the tracer within the mixing channel [44]. For simplicity, we
monitor the evolution of Lagrangian tracers along the entire flow channel. At the initial time t = 0, 10 000 tracers
are uniformly distributed over the inlet line. Their trajectories are determined by solving:{

ẋ(t) = v [x(t), t] ,

x(0) = x0,

which describes the evolution of the positions x of the tracers released at x0, and represents the fact that the rate of
change of position of each tracer is given by its velocity. Here, v is the velocity field obtained by the direct simulations.

We first consider the flow without rotation of the cylinders (K0 = 0). This is approximately a Poiseuille flow, which
can be seen as the worst of the cases considered in the present study in terms of mixing efficiency, since it exhibits no
transverse displacements of the tracers. A log-log plot of the residence time distribution, shown in Fig. 9, suggests
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that the statistical distribution follows approximately a power law t−γ with an exponent γ between −2 and −2.5.
Adapting the calculation proposed by Raynal and Carrière [50] for the 3-D Poiseuille flow to the 2-D case, we obtain
that the exponent is equal to −3. Given that the cylinder protuberances in the mixer channel have the effect of slowing
down the evacuation of the tracers downstream in comparison to the channel considered in the theoretical case, the
value of the exponent obtained numerically is in agreement with the theoretical value. The approximate algebraic

-2.5

FIG. 9: Log-log plots of the residence time distribution of 10 000 tracers in the mixing channel without rotation of
the cylinder (K0 = 0) over the duration 50 in time unit W/vbulk. Each bin width represents the duration

0.5 W/vbulk.

decay rate is also evidenced in Fig. 10a by comparison with an exponential decay rate. In contrast, the cases with
rotations of the cylinders shown in Figs. 10b to 10d exhibit decay rates becoming approximately exponential as the
parameters Stbulk and K0 are favorable to the mixing efficiency (in agreement with the literature on chaotic advection
in open flows, e.g. [28, 58]). This exponential decay rate is observed within time intervals in which a constant fraction
of tracers, η, leave the mixing zone during each period. Indeed, at the end of the cycle n− 1 of stretching and folding
operations (as described in section III C ), the number of tracers present in the mixing zone is

N = N0(1− η)n−1.

Using t = (n− 1)T and the estimate η ∼ vbulkT/Lmixing, we have

N ∼ N0 exp

[
t

T
ln

(
1− vbulkT

Lmixing

)]
,

and for ζStbulk sufficiently large with respect to unity:

N ∼ N0 e−t
?/ζ ,

where t? = t/(W/vbulk). Here ζ = 5, so that −1/ζ = −0.2, which is approximately the slope that can be observed in
Figs. 10c and 10d within time intervals in which the escape rates of the tracers are approximately constant.

Notice that, as the parameters Stbulk and K0 become favorable for a a high mixing efficiency according to the
discussion of section V A, the mean and the standard deviation of the residence times of the 10 000 tracers decrease
(see Table II), which can be of major practical interest, particularly in industrial applications.
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-0.2

(a) K0 = 0: no cylinder rotation. 9 494 tracers in
10 000 have left the mixing zone at t? = 25.

-0.2

(b) Stbulk = 2 and K0 = 5. 9 516 tracers in 10 000
have left the mixing zone at t? = 25.

-0.2

(c) Stbulk = 2 and K0 = 20. 9 321 tracers in 10 000
have left the mixing zone at t? = 25.

-0.2

(d) Stbulk = 1 and K0 = 20. 9 427 tracers in 10 000
have left the mixing zone at t? = 25.

FIG. 10: Semi-log plots of the residence time distribution of 10 000 tracers in the mixing channel over the duration
25 in time unit W/vbulk. Each bin width represents the duration 0.25 W/vbulk.

RT (W/vbulk) σRT (W/vbulk)
K0 = 0 5.60 4.00
Stbulk=2,K0 = 5 5.48 3.84
Stbulk=2,K0 = 20 4.75 2.15
Stbulk=1,K0 = 20 4.54 2.07

TABLE II: Mean (RT) and standard deviation (σRT) of the residence time of the tracers, among 10 000, that have
left the mixing channel at t? = 25 (in time unit W/vbulk).

C. Ageing of seeding tracers

In Fig. 11 are shown the trajectories of 100 tracers coloured by their ages for various values of the parameters
(Stbulk,K0). At the initial time t = 0, the tracers are uniformly distributed over the inlet line, at the left of each
frame. Considering first the case without cylinder rotation (K0 = 0), it is shown in Fig. 11a that, to a large extent,
the uniformity of the tracer distribution is preserved all along the flow channel. At the end of the simulation, the
seeding tracers have left the channel, except for few tracers which are “trapped” near the walls. For the case with
Stbulk = 2 and K0 = 5 (unfavorable for mixing, as shown in section V A), it is visible in Fig. 11b that the uniformity
of the tracer distribution is rapidly lost, even at the left of the cylinder (1) (see Fig. 1). Again, few tracers are trapped
near the walls. The same observations can be made for the case with Stbulk = 2 and K0 = 20 in Fig. 11c, which is in
between favorable and unfavorable for mixing according to the results shown in section V A. Moreover, loops of the
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tracer trajectories begin to appear in the vicinity of the rotating cylinders.
Considering now the case with Stbulk = 1 and K0 = 20, which is clearly favorable for mixing according to the

results shown in section V A, it is apparent in Fig. 11d that the ageing distribution of the seeding tracers exhibits
irregularities inside the mixing zone, contrary to what is observed in the other cases. The filamental patterns of
different colours in Fig. 11d are the mark of the sensitivity to the initial conditions, and hence the signature of
chaotic advection. Some filamental patterns of different colors are also visible in Fig. 11e for the case Stbulk = 1
and K0 = 40, which is better for mixing efficiency than the case Stbulk = 1 and K0 = 20 according to Fig. 13. The
relationship between mixing efficiency and the level of chaotic advection has to be further investigated, but we can
already note that the case favorable for mixing is associated with chaotic advection, which is absent in the cases not
clearly favorable for mixing. This supports a well-established general correlation between good mixing capacity and
presence of chaotic advection (see e.g. [57]). Incidentally, the results shown in Figs. 11d and 11e also demonstrate
that the proposed RAW mixer is able to exhibit chaotic mixing.
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(a)

(b)

(c)

(d)

(e)

FIG. 11: Trajectories of 100 tracers in the mixing channel, colored by their ages. The duration is 25 in time unit
W/vbulk.
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The basic difference in the flow dynamics between cases clearly favorable or not for mixing is evidenced in Fig. 12.
The trajectories of 50 seeding tracers, uniformly distributed at the initial time over the lower half of the inlet line at
the left of each frame, are coloured by the tracer age. It is shown that only in the case favorable for mixing (Stbulk = 1
and K0 = 20, see Fig. 12b), large transverse displacements of the fluid tracers occur on the whole mixing zone.

(a)

(b)

FIG. 12: Trajectories of 50 tracers in the mixing channel, colored by their ages. The tracers are injected only over
the lower half of the inlet line at the left of the frames. The duration is 25 in time unit W/vbulk.

D. Mixing efficiency

In Fig. 13 are shown the contour lines of the time averaged standard deviation (27) of the concentration c as a
function of the bulk Strouhal number Stbulk and the ratio of velocities K0. Are also shown the results obtained from
the heuristic conditions (8) and (22) presented in section III C.

For the direct simulations, at fixed values of K0, of the bulk Reynolds number Rebulk, and of the bulk Péclet number
Pebulk, the bulk Strouhal number Stbulk dependence of the mixing efficiency represented by σ exhibits a maximum.
When the bulk Strouhal number exceeds a critical value, the mixing efficiency decreases for large Strouhal number, and
increases with the Strouhal number below the critical value. Thus, the direct simulations conform with theoretical
suggestions by Rom-Kedar and Poje [54] for flows with hyperbolic saddles, and with numerical and experimental
observations by Horner et al. [32] for flows with parabolic-type saddles.

The variations of the mixing level as a function of the control parameters of the mixer obtained from the direct
simulations are in good agreement with the results obtained from the heuristic conditions. Even if the mixing level
itself is known only approximately, the heuristic model thus provides useful information on the control parameters to
be chosen for reaching mixing efficiency without performing a large number of costly direct simulations. We believe
that this is remarkable in itself, as our heuristic model was minimalistic and did not account for all the details of the
the complex flow revealed by the numerical simulations.

VI. CONCLUSION

An active mixing device for open flows was presented, along with some numerical results on the mixing of a passive
scalar concentration in a Newtonian fluid at low Reynolds number and high Péclet number in the two-dimensional
case. The flow modulation protocol is imposed by three rotating circular arc-walls in a straight channel. The selected
scenario of a smooth alternation of the direction rotations of the cylinders allows for the stretching of concentration
areas and the folding of concentration filaments, which are ordered processes known to be suitable for good mixing of a
passive scalar concentration. Two simple heuristic conditions based on phenomenological arguments were presented,
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FIG. 13: Standard deviation of the concentration c as a function of Stbulk (see Eq. (6)) and K0 (see Eq.(8)), with
ζ = 2 and Pebulk = 106. Each of the 90 circles (o) corresponds to the result of a direct simulation. Linear

interpolation is applied subsequently between the results. The black and white lines are the lines shown in Fig. 3,
based on the folding condition (8) and the condition (22) for mixing.

one for folding and the other for mixing with scalar diffusion embedded in the model. These involve two control
parameters: the Strouhal number based on the bulk flow velocity, and the strength of the cross flow relative to the
transport flow. The heuristic conditions lead to values of these parameters that are in good agreement for mixing
efficiency with those obtained from the direct simulations. It was thus shown that the conditions could provide useful
informations on the control parameters to be selected for mixing efficiency, for example as a first attempt before mixing
optimization. In the cases of good mixing efficiency, chaotic advection was detected in the flow both through the
study of the tracer trajectories and the residence time distribution profiles. The beneficial role of the elliptic regions
of the flow, generated by the rotating walls, for stretching and folding the concentration areas, was evidenced. The
active inline RAW mixer is thus promising for producing efficiently chaotic mixing, in particular by the adaptability
of the mixing protocols that can be chosen.
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