Complementary Experiments of the Thick Line Segment Detection Algorithm: Evaluation of ADS and ATC Concepts

Philippe Even, Phuc Ngo, Bertrand Kerautret

To cite this version:

HAL Id: hal-03155787
https://hal.archives-ouvertes.fr/hal-03155787
Submitted on 3 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Complementary Experiments of the Thick Line Segment Detection Algorithm: Evaluation of ADS and ATC Concepts

Philippe Even 1 Phuc Ngo 1 Bertrand Kerautret 2

1 Université de Lorraine, LORIA (UMR 7503), Nancy, France
philippe.even@loria.fr, hoai-diem-phuc.ngo@loria.fr
2 Université Lyon 2, LIRIS (UMR 5205), Lyon, France
bertrand.kerautret@univ-lyon2.fr

Abstract

This document presents complementary experiments on the published algorithm of Thick Line Segment Detection with Fast Directional Tracking. The main paper is actually published at ICIAP 2019 [2]. First tests compare the performance of the detector with and without adaptive directional scans (ADS) and assigned thickness control (ATC). On the detector without ADS, the fine tracking step must be performed twice to get less risk of growing blurred segment escape from the scan strip.

1 Experimentations on synthesized images

These tests compare both versions on a set of 1000 synthesized images containing 10 randomly placed input segments with random width between 2 and 5 pixels. The absolute value of the difference of each found segment to its matched input segment is measured. On these groundtruth image, the numerical error on the gradient extraction biases the line width measures. This bias was first estimated using 1000 images containing only one input segment (no possible interaction) and the found value (1.4 pixel) was taken into account in the test. Results are given in the following table.

If we call S the count of pixels of all input segments in an image, D the count of pixels of all output blurred segments, and I the count of successfully detected pixels ($D \cap S$), the given measures are:

1. the count of output blurred segments,
2. the count of output long (> 40 pixels) blurred segments,
3. the count of undetected input segments,
4. the precision $P = I/D$,
5. the recall $R = I/S$,
6. the F-measure $F = 2.P.R/(P + R)$,
7. the absolute value of the width difference between matched output segments with input segments,
8. the absolute value of the angle difference between matched output segments with input segments.
Figure 1: Evaluation on synthesized images: two of the randomly generated images (a,d), bounding lines of output blurred segments without (b,e) and with (c,f) ADS and ATC concepts.

<table>
<thead>
<tr>
<th>ADS & ATC Concepts</th>
<th>On Fig. 1a without</th>
<th>On Fig. 1d without</th>
<th>On whole set without</th>
<th>On Fig. 1a with</th>
<th>On Fig. 1d with</th>
<th>On whole set with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected blurred segments</td>
<td>16</td>
<td>14</td>
<td>17.06 ±3.22</td>
<td>17</td>
<td>16.83 ±3.11</td>
<td>17.06 ±3.22</td>
</tr>
<tr>
<td>Detected long segments</td>
<td>11</td>
<td>10</td>
<td>11.24 ±1.94</td>
<td>11</td>
<td>11.36 ±1.97</td>
<td>11.24 ±1.94</td>
</tr>
<tr>
<td>Undetected input segments</td>
<td>0</td>
<td>0</td>
<td>0.152 ±0.43</td>
<td>0.15</td>
<td>0.003 ±0.05</td>
<td>0.152 ±0.43</td>
</tr>
<tr>
<td>Precision (%)</td>
<td>76.30</td>
<td>75.38</td>
<td>80.46 ±7.22</td>
<td>75.38</td>
<td>83.41 ±3.59</td>
<td>80.46 ±7.22</td>
</tr>
<tr>
<td>Recall (%)</td>
<td>89.81</td>
<td>90.88</td>
<td>90.23 ±3.30</td>
<td>90.88</td>
<td>91.15 ±2.52</td>
<td>90.23 ±3.30</td>
</tr>
<tr>
<td>F-measure (%)</td>
<td>82.51</td>
<td>82.40</td>
<td>84.87 ±4.42</td>
<td>82.40</td>
<td>87.23 ±3.59</td>
<td>84.87 ±4.42</td>
</tr>
<tr>
<td>Thickness difference (pixels)</td>
<td>0.95</td>
<td>1.15</td>
<td>0.70 ±0.24</td>
<td>1.15</td>
<td>0.59 ±0.19</td>
<td>0.70 ±0.24</td>
</tr>
<tr>
<td>Angle difference (degrees)</td>
<td>1.11</td>
<td>1.99</td>
<td>0.61 ±0.66</td>
<td>1.99</td>
<td>0.57 ±0.62</td>
<td>0.61 ±0.66</td>
</tr>
</tbody>
</table>

Table 1: Measured performance on both Figure 1 image examples and on a whole 1000 synthesized images set, without and with adaptive directional scans and assigned width control.
2 Experimentations on real images

Next tests compare both versions on real images:
- first the set of 102 images of York Urban data base [1] augmented with manually
 extracted groundtruth lines (an example in Fig. 1),
- then selected images for more detailed visual analysis (Fig. 3 and Fig. 4).

Reported measures in Tab. 2, Tab. 3 and Tab. 4 are execution time T, groundtruth cov-
ering ratio C (only for the York Urban data base), number of output line segments N,
mean length of output line segments L/N, and mean thickness of output line segments W.

Shorter execution time is achieved with the new concepts. Detected blurred segments
are shorter but thinner. Obviously the constant assigned thickness augments the proba-
bility to extend the segments with outlier edge points as can be noticed in the detail of
office (Fig. 3) and castle images (Fig. 4). Moreover, brick joints are better detected in
castle image.

Figure 2: Automatic detection on real images: P1020928 image from York Urban data base [1]
(a), the associated groundtruth lines (d), the naive lines found without (b) and with (e) ADS
and ATC concepts, the thick lines found without (c) and with (f) ADS and ATC concepts.

<table>
<thead>
<tr>
<th>ADS & ATC</th>
<th>T (ms)</th>
<th>C (%)</th>
<th>N</th>
<th>L/N (pixels)</th>
<th>W (pixels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without</td>
<td>75.19 ±16.60</td>
<td>70.2 ±10.1</td>
<td>421 ±98</td>
<td>46.22 ±8.60</td>
<td>2.20 ±0.16</td>
</tr>
<tr>
<td>With</td>
<td>66.62 ±15.47</td>
<td>67.9 ±9.6</td>
<td>478 ±111</td>
<td>41.67 ±7.53</td>
<td>1.89 ±0.13</td>
</tr>
</tbody>
</table>

Table 2: Measure with and without ADS and ATC concepts on the York Urban
Database [1].
Figure 3: Automatic detection on real images: 800x533 office image (a), the segments found without (b) and with (c) ADS and ATC concepts, a detail of the image (d,g), the points of detected blurred segments without (e) and with (f) ADS and ATC concepts and the bounding lines of detected blurred segments without (h) and with (i) ADS and ATC concepts.

<table>
<thead>
<tr>
<th>ADS & ATC</th>
<th>T (ms)</th>
<th>N</th>
<th>L/N (pixels)</th>
<th>W (pixels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without</td>
<td>48.16</td>
<td>254</td>
<td>53.92</td>
<td>1.99</td>
</tr>
<tr>
<td>With</td>
<td>42.17</td>
<td>285</td>
<td>49.69</td>
<td>1.69</td>
</tr>
</tbody>
</table>

Table 3: Measure with and without ADS and ATC concepts on office image.
Figure 4: Automatic detection on real images: 768x512 castle image (a), the segments found without (b) and with (c) ADS and ATC concepts, a detail of the image (d,g), the points of detected blurred segments without (e) and with (f) ADS and ATC concepts and the bounding lines of detected blurred segments without (h) and with (i) ADS and ATC concepts.

<table>
<thead>
<tr>
<th>ADS & ATC</th>
<th>T (ms)</th>
<th>N</th>
<th>L/N (pixels)</th>
<th>W (pixels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without</td>
<td>104.30</td>
<td>361</td>
<td>36.58</td>
<td>2.23</td>
</tr>
<tr>
<td>With</td>
<td>94.21</td>
<td>424</td>
<td>32.18</td>
<td>1.98</td>
</tr>
</tbody>
</table>

Table 4: Measure with and without ADS and ATC concepts on castle image.

References
