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Abstract—Accurate beamforming is a critical challenge for
mmWave communications. Because of the large training over-
head of beam training at high frequencies, it becomes relevant
to exploit the available knowledge at sub-6GHz to predict the
mmWave beamforming vectors using deep learning tools. In
addition, fully centralized learning (CL) approaches require
training over all the users data, rising major issues in terms
of signaling and computational cost. To address these issues, we
propose a federated learning (FL) scheme in a wireless network
composed of multiple communicating links (access points — users)
to predict directly the downlink mmWave beamforming vectors
from the uplink sub-6GHz channels. The access points train
their local deep neural networks using local data and only share
their model parameters to obtain an average global one, which
improves the quality of their prediction in terms of data rate.
Our experiments demonstrate the potential and robustness of our
proposed scheme especially under difficult conditions, performing
close to the fully centralized one. When the training data is scarce,
the relative gain of our scheme can reach up to 50% compared
to a fully distributed one. Remarkably, our scheme can even
outperform the fully centralized one when the quality of the
training data is poor, enjoying a relative gain of up to 14%.

Index Terms—mmWave beamforming, deep neural networks,
distributed learning, federated learning

I. INTRODUCTION

'The mmWave spectrum, which usually refers to frequen-
cies higher than 28 GHz, has been identified as a key enabler
for 5G and beyond [1] to relieve the already crowded sub-
6GHz spectrum. However, the signal propagation at high
frequencies suffers from strong power attenuation, mainly due
to high path loss, blockage effect and channel sparsity [2].
Therefore, high-gain directional beams have to be employed,
using large antenna arrays combined with beamforming tech-
niques [3], to counter this challenge.

Such directional communications require a beam training
phase to steer the transmitter’s beam in the direction of
the receiver, before the data transmission. This issue has
largely been studied in the literature [4]-[7]. Nevertheless,
most of the existing work is either based on classical methods
(e.g., exhaustive search, mmWave channel estimation, etc.) or
on reinforcement learning, which suffer from large training
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overhead especially for online and mobile applications with
large antenna arrays.

The main goal of this paper is to propose an alternative
data-oriented beamforming method based on deep neural net-
works, which takes advantage of the channel knowledge at
sub-6GHz. The idea is to exploit existing and mature sub-
6GHz channel estimation technologies (e.g., via pilot symbols)
to perform beamforming in the mmWave band. This can
be done by learning the mapping between the uplink sub-
6GHz channel state and the downlink beamforming scheme
at mmWave frequencies. Of course, deriving an analytical
model of this mapping is out of the question because of its
complex dependencies on numerous physical parameters of
the wireless environment, such as: users location, reflectors,
building materials, etc. Instead, the recent data-driven machine
learning tools become indisputable. More specifically, due
to their powerful generalization ability (provided appropriate
training data) [8], deep learning methods are perfectly suitable
to identify this mapping in complex systems (e.g., multi-cell
networks), even in a distributed manner as will be shown
below.

The recent success of deploying Al-based (artificial intelli-
gence) mMIMO (massive multiple-input multiple-output) base
stations [9], which use machine learning to optimize their
resources and shape their beams at the sub-6GHz band (e.g.,
Huawei smart mMIMO [10]), provide further motivation of
deep learning methods in this context.

Relevant work: The idea of mapping sub-6GHz channels
to mmWave channels was introduced in [11], in which a
neural network is employed to map channel states between
two close sub-6GHz frequencies: 2.4 GHz and 2.5 GHz. In
[12], a different neural network is trained to map sub-6GHz
channels to beamforming vectors at mmWave for a single
transmitter-receiver link. The proposed approach in [12] is
based on a classification problem, in which the beamforming
vectors are selected from a predefined and discrete set of
vectors (which divide the angular domain into a certain number
of directions), yielding a sub-optimal solution. The authors
in [13] propose a federated learning (FL) framework to map
the mmWave channels into analog beamformers in a multi-
user downlink network. However, the proposed learning model
requires the mmWave channel matrices as inputs, which are



much more difficult to estimate and require larger training
overheads compared to sub-6GHz channels.

Our contributions: In this paper, we propose a federated
learning scheme to predict the mmWave beamforming vectors
exploiting sub-6GHz channels for a network composed of
multiple access point — user links. We design a deep neural
network, at each access point, that takes the sub-6GHz chan-
nels as input and outputs directly the corresponding mmWave
beamforming vector. Furthermore, we propose a distributed
federated learning scheme to predict the beamforming vectors
locally at each access point, without the need of uploading
the local data to a central hub. The latter has three major
advantages: the computation load is distributed to the edge of
the network as opposed to a centralized cloud-based approach;
users only share their neural network parameters and not their
data, which highly reduces the signaling load, and protects
the data of the individual users, while users still sharing their
acquired knowledge of the environment to improve the quality
of their predictions.

Compared to [12], our novel contributions are multi-fold.
First, we formulate the problem as a regression and not a
classification, which means that our predicted beam can point
at any direction predicted at the output of the neural network
(better angular resolution) and does not suffer from the out-
put discretization sub-optimality. Second, we employ a less-
complex network architecture with less parameters compared
to [12]. Third, we consider multiple links as opposed to the
single link case in [12] and propose a distributed learning
approach based on federated learning to improve the quality
of the local prediction. The parameters of the local models are
averaged to construct a global model for beam prediction for
all access points (following the federated learning concept),
which protects the local data while pooling on the knowledge
acquired by other learning nodes.

Compared to [13], our proposed beamforming scheme relies
only on the channel state estimation at sub-6GHz, which
is much easier to acquire based on existing technology as
opposed to the mmWave channel estimation.

At last, we evaluate our proposed federated learning scheme
via numerous experiments — exploiting the DeepMIMO [14]
available dataset — and compare it to a fully centralized and
distributed benchmarks. Our results show the high potential
and robustness of the proposed distributed FL-based scheme,
especially in the case of scarce training data and low quality
uplink channels. When the training data is scarce at each
access point, the relative sum rate gain of our federated
learning scheme can reach up to 50% compared to a fully
distributed one (in which the access points do not cooperate
at all). Quite remarkably, our scheme outperforms the fully
centralized one when the uplink sub-6GHz SNR is low (less
than 5 dB), enjoying a relative sum rate gain of up to 14%.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a wireless network composed of multiple
access point — user links, for instance multiple short-range
access points and their users. It is common to use this kind

of model to describe a cellular network of access points
serving a single user each [15]. Each access point is equipped
with a sub-6GHz receive-array of M antennas (uplink) and
a mmWave transmit-array of N antennas (downlink). For
simplicity, we assume that each access point serves a unique
user equipped with a single mmWave receive antenna and
a single sub-6GHz transmit antenna. The communication in
each link is performed via multiple carrier frequencies, i.e.,
orthogonal frequency-division multiplexing (OFDM).

We do not consider explicitly the interference between the
multiple links in this work. In the mmWave band (downlink),
the interference will not be a major issue because of the highly
directive beams. But the multi-user interference will impact
the sub-6GHz uplink and, hence, the quality of the estimated
channels. Here, even though the interference is not made
explicit, we do study the impact of poor quality estimated
uplink channels on our proposed method, being relevant when
the interference is treated as noise.

To simplify the presentation of the underlying signal model
but with no loss of generality, we focus below on a focal
link between an access point and its intended user. The access
point aims at predicting the downlink mmWave beamforming
vector for its user based on the uplink received signal at the
sub-6GHz band, which can be written in the ¢t" subcarrier
with £ € {1,..., L} as follows:

y U = hU ] 2VE(0) + nUh ), ey

where hUE[(] € CM*! js the sub-6GHz uplink channel;
VL), E[| VL[4 |?] = PVYL/L is the uplink pilot symbol
with PUY denoting the uplink transmit power and nYL[/] is
the additive Gaussian noise vector at sub-6GHz.

In the downlink, the analog transceiver is used to transmit
data to the user using the mmWave antenna array. The received
signal, in the 0th subcarrier, can be written as:

yPU] = WPV £ 2PV 4 nPl) @)

where hPL[/] € CN*! is the mmWave downlink channel;
f € CV*L||f||> = 1 is the downlink beamforming vector;
P[], E[| «#PY[¢) |?] = PPY/L is the transmitted symbol
with PP representing the downlink transmit power; nPL[¢] ~
N(0, (6P1)?) is the additive Gaussian noise at mmWave.
Main objective: In this paper, we aim to exploit the
sub-6GHz uplink signal to predict directly the downlink
mmWave beamforming vector at each access point in a dis-
tributed manner, by learning the complex and highly non-
linear mapping between {hVL[/]}} | and f. Our two major
contributions consist in: (i) leveraging the available uplink
channel knowledge at sub-6GHz (easier to obtain and with less
overhead compared to the uplink mmWave channel) to predict
a suitable mmWave beamforming vector for data transmission
in a multiple communicating links setting; and, (ii) predict
the beamforming vectors locally in a distributed manner via
federated learning.
For this, we employ a supervised learning approach, in
which the dataset samples (i.e., the sub-6GHz and mmWave



channels as detailed in the next section) are built with the
Deep MIMO simulator [14]. The resulting datasets rely on
accurate 3D ray-tracing to construct the complex entries of
the channels. The sub-6GHz channels capture the propagation
physical characteristics of the wireless environment, such
as: the geometry (reflection, blockage), the frequency, the
surrounding materials, AoA, etc. All these characteristics make
the sub-6GHz channels both relevant and essential for the
proposed learning model to be able to predict the downlink
beams at the mmWave band.

III. DISTRIBUTED BEAM PREDICTION

In this section, we describe in details our proposed federated
learning approach for distributed mmWave beam prediction, in
which the prediction of the beamforming vectors is distributed
among the different access points. The local learning models,
one at each access point, cooperate following the federated
learning framework to learn a global mapping from sub-6GHz
channels to mmWave beamforming vectors. The federated
learning approach preserves the privacy of the local data by
exchanging only the local model parameters instead of the
actual data (as in fully centralized learning schemes), requires
less signaling, and also offers the possibility of parallel compu-
tation speeding up the training and splitting the computational
load.

Our proposed beam prediction scheme requires an iterative
training phase. At each training epoch, the available local
datasets are used to train a local neural network to predict
the corresponding downlink beamforming vector f (output
of the deep learning model), from the local uplink sub-
6GHz channel vectors {hY“[¢]}]~ . Then, the local model
parameters are uploaded to a server for aggregation (a simple
average operation). Finally, the global model parameters are
downloaded by each access point to train it again on each of
their local data during the next training epoch, until the end
of the training phase.

After the training phase, the final global model is exploited
locally at each access point to predict the mmWave beamform-
ing vectors by feeding it with a locally estimated sub-6GHz
uplink channel. Hence, our proposed mmWave beamform-
ing solution frees the system from the large online training
overhead related to the mmWave beam training or channel
estimation. The different steps of the proposed distributed
beam prediction method are illustrated in Fig. 1.

A. Learning dataset

Our learning method is supervised and relies on the avail-
able Deep MIMO dataset [14] composed of channel pairs
({h[q"E}E_ | {h[¢PL}L ) generated for different samples of
the user geographical positions around the fixed access points,
as detailed in Sec. IV.

The uplink channels provide a multipath signature at sub-
6GHz, which capture wireless environment knowledge that
is invariant with the frequency band (e.g., geometry of the
various obstacles and buildings, higher order channel statistics,
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Fig. 1. Federated learning for mmWave beam prediction based on sub-6GHz
channels.

etc.), remaining valid at mmWave and impacting the beam-
forming operation. Deep learning methods are suitable tools
to learn the complex relationship between sub-6GHz uplink
channels and mmWave downlink beamforming vectors. More-
over, estimating the sub-6GHz uplink channels requires less
training overhead and involves an already acquired technology
compared to mmWave channels.

Each complex entry of the channel vectors hV[(] is de-
composed into real and imaginary parts, which are stacked
into a 2L M real valued vector containing the uplink channel
information of all L subcarriers corresponding to the first
component of an element in the dataset. This operation is
necessary since the employed neural network does not sup-
port operations on complex inputs. The input data is also
normalized before feeding it to the neural network. Similarly,
the mmWave channels hP™[¢] are partitioned into real and
imaginary parts to form one real valued vector of dimension
2LN as the second component of an element in the dataset.
The dataset is divided into a training dataset (80% of the total
size) and a test set (the remaining 20%). The training dataset is
also split into a training set (85% of its size) and a validation
set (the remaining 15% of the training dataset).

B. Network architecture

The architecture of a local neural network is represented
in Fig. 2. The uplink sub-6GHz channel vector of dimension
2LM represents the input of a local deep neural network.
Each local network comprises 4 hidden fully-connected layers
of 1024, 2048, 2048, 1024 neurons respectively > with rectified
linear unit (ReLu) as an activation function. Every layer
employs an L2-norm regularization with weight decay of
10~". The output layer is a fully-connected one of size 2V,
followed by a normalization layer. It provides directly the real
and imaginary parts of the mmWave beamforming vector f,
which has a unit norm (||f||? = 1), due to hardware constraints.

We choose fully-connected neural networks (where each
neuron of one layer is connected to all the neurons of the

2The number of layers and neurons is chosen as a result of empirical trials.
We choose the architecture that best tradeoffs the training and validation
losses.



preceding and following layers) because they are structure
agnostic, making no particular assumptions about the inputs
and having a general purpose. Furthermore, such a network
guarantees the flow of information between the inputs and
outputs of each layer, which makes it able to capture any
kind of dependencies between the layers: the final output
can be truly based on the whole information captured by
the input. This makes fully-connected networks suitable for
our problem, since we do not have specific knowledge about
the complex relationship between sub-6GHz channels and
mmWave beamforming vectors, coupled with the numerous
wireless parameters impacting it.

input layer 1 layer 2
2LM 1024 Relu 2048 Relu

layer 3 layer 4 output
2048 Relu 1024,Relu 2N

=
=
m
&
m
E
E
=]
=

Fig. 2. Architecture diagram of the fully-connected neural network employed
at each access point.

C. Loss function

Our objective is to predict beamforming vectors for an
OFDM-based system of L subcarriers that maximize the data
rate. For this, we define the following loss function £, which
will be minimized during the training phase:

1 B
—EZlRi, 3)

where B is the size of the mini-batch and R; is the av-
erage data rate over the L subcarriers for the i sample:
({h;[(VEYE_ |, {h;[)PY}L_|) of the mini-batch, and which
can be written as

Zlogz(H (P oye IhDLTHfiP), )

with f; denoting a normalized beamforming vector predicted
by the local neural network for the i™ sample (the output
elements of the neural network are re-shaped into an N-
dimension complex vector).

Notice that minimizing this loss function is equivalent to
maximizing the achievable rate. In other words, the local neu-
ral network is trained, by minimizing the loss function using
its local dataset, to predict directly downlink beamforming
vectors (from uplink sub-6GHz channels) which maximize the
average sum rate over the L subcarriers.

The above loss function represents a notable difference com-
pared to existing works, in which first a loss function based on
some average prediction error between the predicted vectors
and the ground truth is minimized, and then the performance
of the prediction is evaluated in terms of its communication
performance. Here, we have chosen to train our neural network
to maximize directly the communication data rate and skip
the intermediary step. The first obvious advantage is that,
by choosing a well-suited communication loss as opposed to
a generic data-driven one, the communication performance
of our resulting method can only be improved. Second, in
our problem, such a data-oriented prediction error cannot be
computed given that the available Deep MIMO dataset is
only composed of channel pairs ({h[¢]Y"}L_, {h[(]PL}L )
and does not contain the corresponding optimal beamforming
vectors f. At last, creating a dataset composed of pairs of the
type ({h[¢(]Y"}/_, . f) [12] is quite problematic since there are
an infinite number of optimal vectors f maximizing the data
rate (since it is invariant to a multiplication of f by a complex
value of unit-norm). In such a case, an arbitrary selection
would have to be made, which might hinder the generalization
capability of the neural network.

IV. NUMERICAL RESULTS

We evaluate here the performance of our proposed dis-
tributed mmWave beamforming based on federated learning
in terms of the sum rate, which is computed as the average
of the rates of all links. We compare our proposed method to
the following benchmarks:

o centralized learning (CL), performed by a central authority
using a similar neural network and having access to the
datasets of all access points;

e perfect downlink CSI (channel state information), an
ideal scenario in which the mmWave channels are assumed
known and used to construct the b%agr[lf]orming vectors for
h-*~[¢

||hDL[ ]|| to maximize the

each subcarrier such that £*[¢] =

received power at the receiver;

e individual learning or the fully distributed scheme, where
each access point trains its neural network using its local
dataset independently without with communicating the others.

The presented results are obtained after 100 training epochs
using the adaptive moment estimation (ADAM) optimizer [16]
with a learning rate of 10~ and a batch size of B = 256
samples. For our FL system, 100 epochs of training represent
100 epochs at each access point. The different learning models
are implemented and trained using TensorFlow.

The local dataset for each access point is built using
DeepMIMO [14], which employs the accurate 3D ray-tracing
simulator Wireless Insite [17] to generate the uplink and
downlink channels. In our simulations, we use the outdoor
ray-tracing scenario O1’ [14], which is available at 3.5 GHz
and 28 GHz frequencies. In the outdoor setting, the area size is
600m x 400m, in which 4 fixed access points (BS1, BS4, BS6
and BS7 in [14]) are deployed with PP" = 34 dBm, M = 4,
N = 64 and L = 32. The access points communicate with



their corresponding users, whose position inside of the area is
sampled every 20 cm in the specified 2D grid (we consider
rows 1 — 599, 600 — 1200, 1201 — 1550 and 1551 — 2200 for
each link resp. as in [14]). The bandwidth equals 0.5 GHz
for the mmWave downlink and 0.02 GHz for the sub-6GHz
uplink. The number of channel paths in the simulator is set to
5 for the mmWave channel and 15 for the sub-6GHz one. Both
transceivers employ antenna arrays with A/2 spacing between
their elements. The noise spectral density is —174 dBm/Hz.
The total number of samples in each of the four local datasets
are: 108 419, 108 781, 63 350 and 117 650.

A. Training performance

In Fig. 3, we evaluate the evolution of the sum rate,
computed on the training and validation sets, as a function
of the learning epochs for both CL and our method denoted
by FL (from federated learning). First, notice that the values
of the sum rate and, hence, also the values of the loss function,
on the training and validation sets are close for CL and FL.
This implies that the proposed neural network architecture
converges fast and fits well the data without underfitting or
overfitting. Moreover, the achievable sum rate by the FL
scheme approaches the centralized one, without the need to
share the local data with the central entity.
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Fig. 3. Sum rate as a function of the training epochs, evaluated on
the training and the validation sets. Our neural network is capable of
learning without underfitting or overfitting.

B. Prediction (generalization) performance

In Fig. 4, we plot the empirical cumulative distribution
function (CDF) 3 of the average rate over the test set for
the CL and FL methods. Each scheme is used to predict
the downlink mmWave beamforming vectors from the uplink
channels of the test set (these samples have not been seen
by our neural networks during the training phase) and then
evaluate the achievable rate. We also compare the results with
the perfect downlink CSI case on the same test sets.

3The CDF represents the cumulative empirical frequency of a given rate
value obtained by the predicted beamforming vectors over the test set, useful
to illustrate the distribution of the different achievable rates
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Fig. 4. Empirical CDF of the achievable rate over the test set. The CDF
performance of our FL method is close to the CL one.

We can see that our FL scheme performs close to the CL one
and is not far from the ideal case, illustrating the generalization
capability of our method. This implies that, our proposed FL
beam prediction scheme can achieve almost the same perfor-
mance as CL, while requiring lower signaling, preserving the
privacy of the local data, distributing the computation load to
the edge of the network, etc.

C. Impact of the training set size

Fig. 5 shows the sum rate over the test set as a function of
the training set size. The different sizes are relative to the total
training set size of each access point. On the one hand, we can
see that increasing the training set size yield better predictions
of the mmWave beamforming vectors for all schemes. On the
other hand, Fig. 5 shows the effectiveness of our FL distributed
scheme for small sizes of local datasets. Indeed, sharing the
local models to build a global one for all access points helps to
overcome the scarcity of local data and offers higher sum rates
compared to the individual learning scheme. For the minimum
training set size, the relative gain in terms of sum rate is 50%
compared to the individual scheme. Of course, as the local
training sets sizes increase, the utility of exchanging the local
models decreases.

D. Impact of the uplink sub-6GHz channel quality

In Fig. 6, we plot the performance in terms of the sum rate
over the test set, when the uplink channels are contaminated
with different levels of noise, as function of the uplink sub-
6GHz SNR. We can see that our federated scheme outperforms
CL and individual learning at low SNR (less than 5 dB). For
an SNR equal to —10 dB, the relative gain is of 14% compared
to CL. This robustness can be explained by the averaging
step of the FL scheme, which acts as a regularization and
noise smoothing operation, thus improving its generalization
performance in the high noise regime.

E. Regression gain in the single link case

We compare here our regression-based scheme with the
classification one proposed in [12] for the single link case.
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Fig. 5. Impact of the training set size on the prediction performance. When
the available training data is scarce, our FL scheme outperforms the individual
learning and approaches CL.
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Fig. 6. Impact of the sub 6-GHz channels quality on the prediction
performance over the test set. High noise levels lead to a degradation of the
sum rate, but our FL. scheme is more robust than CL and individual learning.

In [12], the mmWave beamforming vector fy, k € {1,..,64}
is chosen from a predefined discrete codebook according to
the predicted index k at the output of their proposed deep
neural network. Here, for comparison reasons, we evaluate
our local neural network in the same setting and with the same
simulation parameters as in [12]. The average rate over the test
set, obtained by the predicted beams of our approach is higher
than the one obtained by the method in [12] and closer to the
optimal case of perfect downlink CSI as illustrated in table I.
This adds to the fact that our proposed neural network employs
less neurons per hidden layers (6144 neurons) compared to
[12] (10240 neurons).

Our method
221

Method in [12]
1.86

Perfect CSI
2.39

Average rate
(bit/s/Hz)

TABLE I
AVERAGE RATE OVER THE TEST SET IN THE SINGLE LINK CASE.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we have proposed a federated deep learning
scheme for mapping the sub-6GHz uplink channels to down-
link mmWave beamforming vectors. Our distributed scheme
is evaluated in a network composed of multiple access point
— user links. The federated learning scheme provides a global
learning model for all access points without exchanging their
local data, but only their local models, which reduces the data-
exchange overhead and distributes the computational load. The
performance of our federated learning scheme approaches the
centralized one in terms of sum rate, and even outperforms it
when the available training data is of low quality (high noise
levels). When the training data is scarce, our scheme provides
relative gains of up to 50% compared to a fully distributed one.
Future work may include the impact of inter-link interference,
multiple users per access point, asynchronous federated learn-
ing, etc., all relevant issues in highly dense networks.
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