N
N

N

HAL

open science

A novel one-domain approach for modeling flow in a
fluid-porous system including inertia and slip effects
F. Valdés-Parada, Didier Lasseux

» To cite this version:

F. Valdés-Parada, Didier Lasseux. A novel one-domain approach for modeling flow in a fluid-
porous system including inertia and slip effects.

10.1063/5.0036812 . hal-03150992

HAL Id: hal-03150992
https://hal.science/hal-03150992
Submitted on 24 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Physics of Fluids, 2021, 33 (2), pp.022106.


https://hal.science/hal-03150992
https://hal.archives-ouvertes.fr

A novel one-domain approach for modeling
flow in a fluid-porous system including
inertia and slip effects

Phys. Fluids 33, 022106 (2021); doi: 10.1063/5.0036812

)

F.J. Valdés-Parada' (®) and D. Lasseux*?

AFFILIATIONS

'Departamento de Ingenieria de Procesos e Hidraulica, Universidad Auténoma Metropolitana-lztapalapa, Av. San Rafael Atlixco 186,
09340 Ciudad de México, Mexico

212M, UMR 5295, CNRS, Univ. Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France

2 Author to whom correspondence should be addressed: didier.lasseux@u-bordeaux.fr

ABSTRACT

A new one-domain approach is developed in this work yielding an operational average description of one-phase flow in the classical Beavers
and Joseph configuration including a porous medium topped by a fluid channel. The model is derived by considering three distinct regions:
the homogeneous part of the porous domain, the inter-region, and the free fluid region. The development is carried out including inertial
flow and slip effects at the solid-fluid interfaces. Applying an averaging procedure to the pore-scale equations, a unified macroscopic
momentum equation, applicable everywhere in the system and having a Darcy form, is derived. The position-dependent apparent permeabil-
ity tensor in this model is predicted from the solution of two coupled closure problems in the inter-region and in the homogeneous part of
the porous medium. The performance of the model is assessed through in silico validations in different flow situations showing excellent
agreement between the average flow fields obtained from direct numerical simulations of the pore-scale equations in the entire system and
the prediction of the one-domain approach. Furthermore, validation with experimental data is also presented for creeping flow under no-slip
conditions. In addition to the fact that the model is general from the point of view of the flow situations it encompasses, it is also simple and
novel, hence providing a practical and interesting alternative to models proposed so far using one- or two-domain approaches.

I. INTRODUCTION

Modeling one-phase flow in a coupled fluid-porous medium sys-
tem has been the subject of active research since the pioneering work
of Beavers and Joseph."” Applications of such a configuration are
numerous, ranging from hydrology to chemical engineering. The
main difficulty lies in a physically relevant way of reconciling a macro-
scopic description of the flow with a Darcy equation (or its variants)
applicable in the bulk of the porous medium to the Navier-Stokes

Newtonian fluid (the f-phase) flow through and above the porous
medium under steady conditions. This system may be decomposed
into three distinct regions (see Fig. 1) as follows.

A. The w-region

This region corresponds to the homogeneous part of the porous
medium. For simplicity in the analysis, the -phase, representing the

equation in the bulk fluid. Indeed, such a description requires one to
account for the rapid variation of topology (and of the flow) in the sep-
aration zone between the two media, as evidenced, for instance, in the
experimental works of Goharzadeh et al,” Morad and Khalili," or
more recently, by Terzis et al.”

As a generic configuration envisaged by Beavers and Joseph,’
consider the system sketched in Fig. 1 consisting of a channel partially
filled with a porous medium. Let a single incompressible and

solid phase constitutive of the porous matrix, is assumed to be rigid
and homogeneous. Consequently, in this region, the porosity, the seep-
age velocity, and the permeability are position-independent quantities.
Here, Darcy’s law, or its modifications, is applicable as a result of
upscaling the microscale equations by making use of an averaging
domain representative of the porous structure and physical mecha-
nisms at play. Typically, the averaging volume corresponds to one or
more unit cell(s) if the structure is assimilated to be a periodic one.
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FIG. 1. Schematic representation of the flow in a channel partially obstructed with a
porous medium, showing the three regions of the system, the volume averaging
domain of radius ro, and the characteristic lengths L for the macroscopic size of the
porous medium, 44 in the fluid phase, f, and ¢, in the solid phase, &, within the
porous medium. The w, n — w, and #n regions, respectively, correspond to
z< ~24,~2, <2< 7, and z, <z < h. The unit normal vector at the solid-
fluid interface, directed from the f-phase to the o-phase, is denoted by n.

B. The y — o inter-region

This region is the transition zone where the average (or macro-
scopic) velocity experiences abrupt changes. For creeping-flow prob-
lems, the extent of this region has been proposed to be, at most, on the
order of 10 £,, £, being the size of a geometrical unit cell representa-
tive of the porous material. Note that, even if the porous medium
structure is assumed to be homogeneous, the velocity, the porosity,
and the permeability exhibit spatial variations in this part of the sys-
tem. Modeling flow in this region has been addressed using a general-
ized transport equation (or penalization approaches””) as explained
below, or even by direct numerical simulations.”

C. The y-region

This region corresponds to the portion of the free fluid above the
porous medium where the flow is one-dimensional and parallel to
the channel axis. It is limited by the upper wall (also considered as the
g-phase) at z= h. Here, the volume fraction of the fluid phase in the
averaging domain is equal to 1, except near the walls, and flow is
described by the Navier-Stokes equations.

Traditionally, flow and transport in this system have been studied
using a two-domain approach, in which the average equations in the
n-region are coupled to those in the w-region by means of suitable
boundary conditions. Another alternative is the one-domain approach,
in which a single average equation is used to describe transport in the
three regions of the system. Both approaches have strengths and limi-
tations, which are briefly discussed in the following paragraphs.

The two-domain approach has received far more attention than
the one-domain approach. This may be explained by the fact that the

model involves balance equations with constant transport coefficients,
thus making their solution fairly easy to achieve, which represents an
appealing strength. However, there is no consensus about which equa-
tions should be used in the porous medium and which boundary con-
ditions should be employed. Originally, Beavers and Joseph' proposed
to couple Darcy’s law with the Stokes equation by means of a jump
condition in the velocity, which has the structure of a Newton’s
cooling law equation. Later, Neale and Nader'' proposed to couple the
Darcy-Brinkman and Stokes equations with conditions of continuity
of both the stress and velocity. Later, Ochoa-Tapia and Whitaker'” fol-
lowed a similar path, albeit they proposed to consider a discontinuity
in the viscous stress. The jump conditions proposed by both Beavers
and Joseph' and Ochoa-Tapia and Whitaker'” were written in terms
of adjustable coefficients that needed to be determined experimentally.
In addition, the position of the dividing surface where these boundary
conditions are applied cannot be arbitrarily fixed. These issues have
been discussed in many works. Among them is the one by Valdés-
Parada et al,"” in which an iterative methodology was proposed to
determine the dividing surface position as well as the values of the
jump coefficients in these models. These authors also derived a more
general two-domain model for which there are, in general, discontinu-
ities of both the velocity and stress. Recently, the Beavers and Joseph
boundary condition has been applied to inertial flow conditions, and it
was found that the value of the adjustable coefficient increases with the
Reynolds number.'* Nevertheless, this boundary condition has been
recently found to be unsuitable for arbitrary flow directions.”” A more
detailed review and discussion of the Beavers and Joseph boundary
condition are available from Nield' and Auriault."”’

In the one-domain approach, the system is regarded as a pseudo-
continuum, and a single equation is used to model the flow at the mac-
roscopic scale everywhere. A heuristic or penalization approach is to
postulate that such a model is the Navier-Stokes equation with a
Darcy term involving a position-dependent permeability. A more rig-
orous approach was proposed by Ochoa-Tapia and Whitaker,"> who
derived a generalized transport equation resulting from averaging and
not upscaling the Stokes equation. This equation is more complicated
than the penalization approach, and it has archival more than practical
value. In fact, it was shown in this reference that the one-domain
approach is necessary in the derivation of the jump conditions using
the volume averaging method,'® justifying its archival value.
Furthermore, the methodology proposed by Valdés-Parada et al."”
showed that it is necessary to account for the spatial variations of the
effective coefficients present in the one-domain approach in order to
determine the values of the jump coefficients and the dividing surface
position. This difficulty in predicting the spatial variations of the
permeability and porosity may explain why the one-domain
approach has been less-frequently used than the two-domain
approach. In addition, the corresponding average model is, in gen-
eral, more complicated than the Darcy-Brinkman equation as orig-
inally derived by Ochoa-Tapia and Whitaker.” The few
applications of this modeling alternative use ad hoc coefficients and
average expressions that are not always in agreement with the
results obtained from pore-scale simulations (see for example Refs.
7, 8, and 19), and only an approximate closure scheme has been
proposed to compute the spatial variations of the permeability.
Moreover, existing analyses have been mainly focused on flow in
the creeping regime, in the absence of rarefaction effects.




The objective of this work is to address these issues by proposing a
closed one-domain approach in the three-region system for one-phase
flow including inertial and Knudsen effects in the slip regime. The
model derived with this approach has a simple structure facilitating its
application, nevertheless different from the modified Darcy-Brinkman
equation used in the literature. The analysis is focused on the Beavers
and Joseph configuration sketched in Fig. 1. The idea is to obtain
average models that are valid in the three regions of the system and
are coupled by continuity conditions using a simplified version of the
volume averaging method. More specifically, this is achieved by deriv-
ing macroscale equations in both the w- and # —  regions in which
the effective permeability tensors are obtained from coupled closure
problems. The solution in the #-region is obtained analytically since
the flow is one-dimensional along the channel axis (e,) in this region.
It is also coupled with that in the # — @ inter-region. The structure of
the average models in the three regions is shown to involve a Darcy-
like momentum equation, which can be condensed into a single
one-equation model with a position-dependent apparent permeability
tensor. The solution of the closure scheme to obtain this tensor is
computationally much less demanding than performing direct
numerical simulations. The unified model is quite practical and
appealing due to its simplicity. It is developed in a rather general flow
context, in which inertial and/or slip effects at the solid/fluid interfa-
ces may be present, widely extending the scope of the derived model
with respect to the existing works reported so far. At this point, it is
worth mentioning that there are some relevant works including slip
effects in dual-porosity media;”” > however, these works do not
include inertial effects and do not account for the spatial variations of
the apparent permeability tensor as it is done here.

With this aim in mind, the article is organized as follows. In
Sec. 11, the governing equations at the microscale are presented, and
the derivations of the macroscale equations in each region are
reported, yielding the unified one-domain momentum equation.
Section 11T is dedicated to a series of illustrative examples showing the
performance of the one-domain approach. This is achieved by com-
parisons of the flow fields obtained from direct numerical simulations
at the microscale with predictions of the flow from the one-domain
approach developed here. It is carried out for creeping flow in the
absence and in the presence of slip effects as well as in the presence of
inertia. In addition, validation is also presented by comparison with
experimental data under creeping flow and no-slip conditions.
Conclusions are drawn in Sec. IV.

Il. MICROSCALE MODEL AND DEVELOPMENT OF THE
ONE-DOMAIN APPROACH

The configuration under consideration is the one represented in
Fig. 1. Before developing the one-domain macroscale model, the
underlying boundary value flow problem must be formulated at the
microscale. This is reported in Sec. IT A followed by a rapid presenta-
tion of the derivation of the average mass-equation applicable every-
where in the system (Sec. II B). Finally, the macroscopic momentum
transport equation is derived in each region (Secs. II C-II E).

A. Microscale model

The governing equations for mass and momentum transport at
the pore-scale (in the three regions) are formulated in a rather general
version in which inertia and/or slip effects may be present. Assuming

incompressible flow, the mass and momentum balance equations in
the k-region (k = w, nw, n) are given by

V-v.=0,
PV - Vv = =Vp, + NVZVK,

in the f-phase, (1a)
in the f-phase. (1b)

In these two equations, p and u denote the fluid density and dynamic
viscosity, both considered as constant, whereas v,. and p,. represent the
fluid velocity and pressure in the x-region. Without loss of generality,
volume forces are not considered in the momentum transport equa-
tion. Taking into account the possible existence of rarefaction effects, in
particular if the flowing fluid is a gas, due to the size of the pores and/or
channel in conjunction with the thermodynamic conditions, the inter-
facial boundary condition can be formulated as follows:** *°

ve = —&A(—nn) - (n~ (VVK + Vv[)), at.o poy. (1c)

Here, | and n, respectively, denote the identity tensor and the unit nor-
mal vector to the solid-fluid interface, .27 gy, in the K-region, directed
from the fS-phase to the g-phase. In addition, k=1 for k = o, nw
(i.e., at the solid-fluid interface inside the porous material) and k=2
when k =1 (i.e., at the top surface of the channel). The mean free
path of the fluid molecules is denoted by A while & = (2 — o) /0y is
a coefficient taking into account the reflection process of the molecules
at the solid wall related to the tangential accommodation coefficient,
0. At this point, it is worth mentioning that the structure of the
boundary condition given in Eq. (1c) is a Navier-type slip, and it is
expressed in its complete form, ie., including the transpose of the
velocity gradient, which is different from previous works.”” "
Furthermore, this type of boundary condition has been proposed to
study other physical mechanisms such as flow over rough surfaces.””*’
In this way, the above boundary condition is quite rich as it allows
studying physical situations beyond only rarefaction effects. In addi-
tion, macroscopic boundary conditions at the inlet and outlet of the
system (in the x-direction) should be provided to complete the state-
ment of the pore-scale problem. However, they will not be used for the
derivations that follow and are hence left unspecified here.

In order to carry out a macroscale description, an averaging
domain, 7, of measure V and characteristic size r,, is defined. Two
averaging operators are considered, namely, the superficial and
intrinsic averages. For a piece-wise smooth function, /, defined in the
fluid phase within the x-region, they are, respectively, given by

-
W=+ J Y dv, (2a)
Y b
B 1
wl=5- [ vav. (2b)

with k¥ = @, no, 1. In the above equations, ¥ g, (of measure Vp,)
denotes the portion of the averaging domain occupied by the fluid
phase in the «-region. Both averaging operators are related according to

W), =L, 20)

The ratio Vp,./V denotes the volume fraction of the fluid phase within
the averaging domain and it is, in general, a function of position. In
the porous medium bulk, this ratio is a constant corresponding to the
porosity, &.




B. Average mass balance equation

The development starts with the derivation of the macroscopic
mass balance equation in each region. Application of the superficial
averaging operator to the continuity equation (1a) and use of the spa-
tial averaging theorem”'

1
(V-a)K:V~<a>K+V J n-adA, kx=ow,nw0,1 (3)

A i

(a denoting a vector field defined in the f-phase), together with the
interfacial boundary condition [Eq. (1c)], leads to the macroscopic
mass conservation equation which takes the same form in the three-
regions. It is given by

V- (ve), =0, inthex — region, k = w, nw, . (4)

The attention must now be focused on the average momentum equa-
tion in each region and this is the purpose of Secs. IT C-IT E.

C. Analysis in the homogeneous part of the porous
medium (w-region)

This portion of the system has received considerable attention in
the literature; hence, the derivations provided here are presented in a
brief manner. More details can be found in references dedicated to the
averaging of one-phase flow in a porous medium in the presence of
inertia’”* and to the derivation of a macroscopic model for one-
phase flow when slip is present at the solid—fluid interfaces.”*** For
the sake of convenience, the structure of the porous medium is mod-
eled as a periodic array of solid inclusions as illustrated in Fig. 2.
Hence, the averaging domain, 7, may be defined as a finite array of
unit cells (each of size £.), with the following constraint for its charac-
teristic size, rq:

(<L ry < L. (5)

Avéraging domain

Unit cell

FIG. 2. Sketch of the averaging domain of size ry and a periodic two-dimensional
unit cell (of size £;) for the analysis of the flow problem in the homogeneous part of
the porous medium. Note that, in general, ry > ¢;. The solid phase, o, is
represented as a random distribution of circular inclusions embedded in the fluid
phase, f.

Here, ¢ represents the largest characteristic size at the pore-scale [i.e.,
¢ =max(lg,{;)], while L is the smallest characteristic size of the
porous medium at the macroscale (i.e., the smallest dimension of the
porous medium in the three directions of space).

In order to derive the average momentum transport equation, it
is convenient to follow the short-cut approach suggested by Barréere
et al.,”” in which Egs. (1) are considered in the averaging domain, con-
ceived as a Representative Elementary Volume (REV), made of one or
more periodic unit cell(s) as sketched in Fig. 2. In this domain, it is rea-
sonable to decompose the fluid pressure gradient according to™

VP(U = V<p(0>g) + Vﬁw’ (6)

P, being the pressure deviations, and regard V{pn)” as a constant

within the REV. This assumption is justified on the basis of the
separation of length scales given in (5). In this way, the pressure devia-
tions and the fluid velocity can be assumed to be periodic at the inlets
and outlets of the REV, and the pore-scale model can be written as
follows:

V. Vo =0, in AV[}(m (7a)

PV - V¥ = =V, + UV, — Vpo)l, in?7,,  (7b)
vy =—&A0—nn)- (n- (Vv, + W), atog, (70
l,b(l'+l,) :lp(l'), i= 17273”//:"&)7[7(“7 (7d)

(o), =0 7¢)

The last equation is an average constraint bounding the field of the
pressure deviations that is compliant with the assumption that (pa,)f)
is constant within the REV, and it is necessary for the flow problem to
be well-posed. In Eq. (7d), 1; (i=1, 2, 3) represents the periodic lattice

vectors of the REV.
The formal solution of this problem can be written as

F
Vo = ——-V{(po f),
. (o)
ﬁw =-f- v<p0)>g)7 in V/fwv (8b)

where F and f are closure variables that result from solving the follow-
ing problem in the (periodic) REV

inY g, (8a)

V-F=0, in¥p,, (9a)

_%HV@U))ﬁHep.FT.vF:—Vf+V2F+I, in /g, (9b)

F=—-¢0-nn)- (n . (VF + (VF)T1)>, at A gse,  (90)
Y(r+1) =y(r), i=1,23y=Ff, (9d)
i =o. (9¢)

In Eq. (9b), e, is a unit vector in the direction of the macroscopic pres-
sure gradient. It is defined as

B
e = v<pw>w (10)

p = .
IV o) |

In addition, in Eq. (9¢), the superscript T1 denotes the transpose oper-

ator that permutes the first and second indices of a third order tensor

T, namely, Tjy! = T




Restricting the analysis to situations in which the macroscopic
pressure gradient is z-independent, it follows that the same pressure
gradient is experienced in the three regions of the system and therefore
the subscript referring to the region for this term is dropped in the
remainder of the analysis. Taking this into account, and applying the
superficial averaging operator to Eq. (8a), yields

H,,
(Vo) = L V{p)’,  inthe w-region. (11)

Here, H,, is the apparent permeability tensor given by
H, = <F>m' (12)

In summary, the macroscopic model in this region is given by Egs. (4)
and (11), which are in agreement with previous studies by Whitaker™”
and Lasseux et al.”>** among many others. In fact, when slip effects
can be neglected, the corresponding closure problem was derived by
Whitaker’” and solved by Lasseux et al.”” These authors solved the clo-
sure problem given in Eq. (9) in a variety of flow situations. The deri-
vation of the macroscale model in the presence of slip and without
inertia in the homogeneous porous medium was also reported ear-
lier.”"* The symmetry properties of H,, were investigated by Lasseux
and Valdés-Parada.”” Note that, for the particular problem envisaged
by Beavers and Joseph,' there are no inertial nor slip effects and the
tensor H,, is the intrinsic permeability tensor. It must be noted that,
for the sake of generality, the derivations are carried out considering
that the flow in the w-region (and possibly the nw-region) may be
multi-dimensional. Note also that the closure problem given in Eq. (9)
is completely decoupled from the other regions of the system. For this
reason, in the following, F is regarded as a given field.

D. Analysis in the free-fluid region (y-region)

This portion of the system is located between z = z, and z=h
(see Fig. 1), the former corresponding to the position where the flow
streamlines are horizontal. The criterion to define the location of z,
will be provided later on. Consequently, v, = v, is the only non-zero
component of the velocity vector in this region so that the problem is
defined by the following ordinary differential equation:

o v 10p)

dz2 op ox (13)

This equation is subject to the boundary conditions at z = z, and
z= h. At the latter, the slip boundary condition can be written as

dv,
vy = —ézid—;, atz = h. (14)

At z = z,, it suffices, for the moment, to specify that this is a fictitious
boundary at which it is physically justified to impose velocity and pres-
sure continuity conditions. Combining the two at this stage of the
development, allows to write

dV" o dvmx)x
dz ~ dz

In the above equation, v, is the x-component of the microscale
velocity vector in the inter-region, which will be determined later. At
this boundary, it is independent of x. Performing a semi-definite

atz = z,. (15)

integration of Eq. (13), from z, to z and making use of the boundary
condition in Eq. (15), yields

dv, 10 b AVyox
T AN (10
z=2z,
Another step of semi-definite integration from h to z leads to
_ 2 B _ 2
V”(Z) — _ (h Zﬂ) a(P) 1— z 2y
2u 0x h -z,
i (17)
VV WX
— | @t
z=z,

From Egs. (14) and (16), the expression of v, (h) is obtained as

>7 (18)

and the velocity in the 7 region can hence be written as
(h—z,)* 0(p)” 2 z—2z,\2
142 —
0. + ézh—z,7 (h—zn)

2u X
(z—h—&4),

z=2z,

h—2,00) v
ox dz

Vn(h) = —&4

Vﬂ(z) ==

dv;]wx

+alz

z <z<h (19)

Clearly, this expression is not completely closed because v, is not
available at this point of the analysis. This issue is addressed in the fol-
lowing paragraphs.

To conclude this section, the average velocity must now be
derived by applying the superficial averaging operator to Eq. (19). In
this region, the averaging domain reduces to a segment of size r, cen-
tered at z and the average is given by

¢ =Ztop

1
i)y = P vy dl, whenz, <z < h+ry/2, (20a)

0
(=z—19/2

with
Ziop = min(z + 79/2, h), (20b)

allowing to limit to / the upper bound of the integration interval when

z > h — 1y/2. This gives
A 1o
(1 - Zézh - 211) (Zmp e E)

PR
<V’1>17 = (h 11) 82‘;3
@) = - r/2—2)
3(h—z,)°

2rou
T 2
(Z1p —h — fz)»)z— (Z -5 h— fzﬂ,) ,

(20¢)

L an wx
2 1o dZ 2=z,

zy <z < h+r/2.

Note that (v,), corresponds to v, for z € [z;,h — r/2]. In the zone
near the upper wall (ie., for z € [h — ry/2, h + ry/2]), the correspon-
dence can only be achieved on average.




E. Analysis in the fluid-porous medium inter-region
(7 — o region)

This transition zone is comprised between z = —z, (below
which the homogeneous porous medium begins) and z = z, (above
which the free fluid region commences) as sketched in Fig. 3. At this
boundary, the condition of continuity of pressure has already been
used. Hence the only remaining option is to impose that

Vo = Vy(zy)ex, atz =z, (21)

or, after substitution of Eq. (19),

a1, 2 )20

vio = =t (126 ) e

h -z,
OVyoos

Jz

+ (zy —h — & )ey,

z=2z,

atz = z,. (22)

B
This equation can be reformulated after using the identities %ex

:V(p)ﬂ and e

7 |.—,,ex =n-Vv,, to obtain the following

expression:

(h—2z,)* ) p
o (1)

+(zy —h = &EAn - Vv,

Vio = —

atz =z, . (23a)

In addition, the mass and momentum transport equations at the pore-
scale in this region can be written as

V- Viw = 0,
PV - anu) = _Vi)mu + ﬂvzvrlw - V<P>ﬁ,

(23b)
(23¢)

in W.Bﬂ(m
in? gy

Moreover, at the solid-fluid interface, the slip condition is still
applicable,

FIG. 3. Sketch of the domain used to study flow in the inter-region. The gray square
represents the averaging domain (the REV) of size ry, which can be located any-
where within this zone of the system.

Vo = —&,A(1—nn) - (n- (anw + Vvﬂrw)), at o goye,- (23d)

Furthermore, at the lower boundary of the inter-region, it is acceptable
to impose the condition of continuity of the velocity fields, i.e.,
F

Vo = Vo = 0 V(p)'g, atz = —z,. (23e)
These equations are to be solved in a vertical stripe of the REV that is
periodic only in the two horizontal, x and y, directions (see Fig. 1).
Hence, it is reasonable to impose the following boundary condition at
the lateral boundaries of the solution domain

lﬁ(l‘ + ll) - lﬁ(l'), i= 17 2; l/’ = Vr](mpy,w, (230

where, again, I; (i=1, 2) denotes the periodic lattice vectors of the
REV. Finally, the pressure deviations are bound by

By =0 (23g)
The formal solution of this problem is given by
D,y . .

Vio = fﬁ -V{p)",  iIn? g, (24a)

Py =—d-V(p), in¥ g, (24b)

The closure variables D and d solve the following boundary-value

problem:
(h—z,) )
D=——"""(1+2 |
2 +26 h -z,

+(zy —h—&A)n - VD, (25a)
V-D=0, (25b)

—%nvw*uep DT VD =-Vd+VD+1, in¥ gy, (250

atz =z,

in “///3,1,0,

D——&—mn)- (n- (VD+ (D)), st (@54)

D=F, atz=-—z,, (25e)
Y(r+1) =y(r), i=12;y=D.d, (259)
@’ =o. (25g)

The average momentum transport equation results from applying the
superficial averaging operator to Eq. (24a), yielding

Hmu p
v ,
. ()

Here, the position-dependent apparent permeability tensor is defined
as

(Vi )y = — in the #-w inter-region. (26)

Hyo = (D)0 27)

Evidently, the size of the inter-region is larger than that of the averaging
domain in this case. Consequently, once the closure problem is
solved, providing the fields of D and d in the entire § — w region,
several averaging steps are needed by positioning the averaging
domain between z = —z,, and z = z, in order to describe the spatial
variations of H,,.

Now that an expression for v, is available, it is possible to return
the attention to Eq. (20c) and substitute the result given in Eq. (24a) to
obtain
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To simplify this expression, one may define the second-order apparent

permeability tensor
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z=z,

In this way, the models in the three regions consist of the mass balance
equation (4) and the following momentum equations:

(ztop — B — E10)7

H,
(V) (2) = —# . V@)lj, in the n-region, (30a)
H,.
<V’7")>nm(z) = —”—(z) . V(p)ﬂ, in the #- inter-region, (30b)
1
H,
(Vo) =——" V(p)’g7 in the w-region. (30c)
u

Since these three equations have the same structure, it is conve-
nient to propose the following one-domain approach expression:

__H
Cn

Here, the position-dependent apparent permeability tensor H is
defined as

(v)(2) . V(p)ﬂ, everywhere. (31)

H,(z), inthen-region
H(z) = { H,,(2), inthen-winter-region, (32)
H,, in the @-region

with the tensors H,(z), H,.(2), and H,,, respectively, given in Egs.
(29), (27), and (12). The model given in Eq. (31) is quite appealing due
to its resemblance to Darcy’s law.

At this point, it is pertinent to clarify how the inter-region
bounds, namely, —z,, and z,, can be determined. The former is speci-
fied as follows: first a value of —z,, is proposed and Hy,(—ze +70/2)
is computed. Second, this prediction is compared with H,,. If these val-
ues do not satisty a given tolerance, then the initial guess for —z, is
further decreased, and the process is repeated until convergence is
reached. Regarding the value of z,, an iterative process may also be
employed. In this case, convergence is decided with respect to the
dependence of the closure variable D with x (in a two-dimensional

system) within the REV. When the value of z, is such that the field of
D is x-independent (to within a given tolerance), it is assumed that z,
is adequate.

The solution of the closure problem in the inter-region is the step
that is computationally the more demanding. However, the numerical
requirements are considerably smaller than those needed for the solu-
tion of the pore-scale problem in the entire three-region domain. In
addition, the derivation of the model did not require to adopt more
assumptions than those involved in the statement of the governing
equations at the pore-scale and the one expressed in (5) only in the
w-region. Furthermore, the model that is formulated in this work is
more general than the one proposed in previous works for the Beavers
and Joseph problem as it encompasses inertial and slip effects and it
does not make use of heuristic approximations. It is also considerably
simpler and more practical. Its predictive capabilities are illustrated in
the following paragraphs with respect to direct numerical simulations
and experimental data.

lll. RESULTS

The objective of this section is to present some numerical results
on model structures in order to validate the model derived above and
illustrate its performance. This is carried out in three distinct situa-
tions, first in the classical creeping regime without slip effects (Sec.
11 A), second in the presence of inertia (Sec. III B), and third in the
creeping regime with slip effects (Sec. I11 C). The validation is carried
out by performing first a direct numerical simulation (DNS) of the
pore-scale problem by solving Eq. (1) over the entire macroscopic sys-
tem. These numerical results are then averaged using an averaging vol-
ume of size 7 and are compared to the predictions of the one-domain
approach (ODA) developed in this work. To do so, this requires the
solution of the two closure problems given in Egs. (9) (for the
region) and (25) (for the n —  region), respectively. While the former
is solved in a REV which reduces to a periodic unit cell of the porous
structure, the latter is solved in the entire inter-region. Before solving
the boundary-value problems for the closure and pore-scale physical
variables, they were first formulated in terms of the following dimen-
sionless variables and parameters:

Zc reéc
r*:%, V*ZL7 *:7p7 Re:LVf ;
Vr Wy,
be of [Vref It (33)
oo p 2l ld P
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Here, the reference velocity is chosen to be v, = ZfHV(p)ﬂ [|/u. In
this way, an alternative definition for the Reynolds number is
Re = pf(|V(p)?|| /2. In addition, & A" represents the cell-Knudsen
numbers in the porous medium (k= 1) and at the channel upper wall
(k=2). The dimensionless forms of the average model and the closure
problems are not provided here for the sake of brevity in presentation.
Nevertheless, it is worth mentioning that the Reynolds and cell-
Knudsen numbers account for the physical nature of the gas and are
the only physical parameters of importance in the model.

The numerical solutions were carried out using the finite element
software Comsol Multiphysics 5.5 for both the flow and closure prob-
lem solutions. A triangular unstructured mesh was employed, and the
direct PARADISO solver was chosen. Mesh convergence tests were
systematically performed by making use of an adaptive mesh




refinement procedure and the minimum mesh size was selected when
a tolerance of 10~* for the maximum relative error between two suc-
cessive refinements was reached. In this way, all the numerical results
reported in this section can be considered independent of this numeri-
cal degree of freedom. In the following paragraphs, the numerical
results are presented for specific flow conditions.

The numerical tests were performed considering two types of
porous structures. The first one, referred to as “T'ype 1” in the follow-
ing, is made of a regular array of in-line parallel cylinders of circular
cross section, arranged on a square pattern. The second one (“Type
2”) is a periodic repetition of a unit cell, such as the one sketched in
Figs. 2 and 3, composed of a random distribution in position and size
of parallel cylinders of circular cross section. The numerical tests were
carried out considering a constant macroscopic pressure gradient
imposed along the channel axis, e, orthogonal to the cylinder axes.
Due to the chosen scaling, the dimensionless pressure gradient magni-
tude is 1. The system is assumed to be of infinite extent in the
y-direction.

At the pore-scale, the flow is two-dimensional in the xz-plane.
For the DNS, the solution of the dimensionless version of Eq. (1) was
hence computed in a domain that only includes one unit cell in the
x-direction. Periodic conditions for p; and v! (x =1, nw, ) are
imposed in this direction. The solution in the w-region was sought in
only one unit cell in the z-direction below z = —z,,. Periodic bound-
ary conditions for the velocity and pressure deviations were imposed
in the x- and z- directions between z = —z, and z = —z, — /.. In
order for the problem to be well-posed, the intrinsic average of the
pressure deviations over the entire computational domain was set to
be zero.

At the macroscopic scale, both Type 1 and Type 2 porous struc-
tures are orthotropic in the xz plane (e, Hyxy = Hyze =0,
K = nw, ) so that the average flow is along e, in the three regions
for both structures, requiring only the computation of H,,. To this
end, the closure problems given in Egs. (9) and (25) were numerically
solved in a coupled manner in a single unit cell for the w-region and
in the entire #-w region, respectively. It was verified that taking
z, = ry and z, = 11/, satisfied the above criteria for all the cases
reported in the present section. In some cases, this size of the inter-
region turned out to be much larger than required; however, this does
not constitute a limitation in the results. In other words, the interest
was not focused on the precise determination of the inter-region width
but in providing a solution domain for the closure problem that is
large enough to carry out the analysis for all the situations envisaged
here. Once the closure problems solutions were available, they were
substituted into Egs. (29), (27) and (12), to compute Hy., Hywx and
H,,s, respectively. With these results at hand, the ODA average veloc-
ity was computed using Eq. (31).

A. Creeping flow regime

The first test is carried out considering the simple situation in
which the flow remains in the creeping regime under no-slip condi-
tions (i.e., for &4 = &4 = 0). In this case, the tensor H,, = Hy,x |
corresponds to the intrinsic permeability of the porous medium.

An example of the resulting velocity profile is reported in Fig. 4.
In this case, the porous medium geometry is of Type 1, the porosity
was taken to be 0.8 and the channel height was fixed to be & = 100/..
The value of the intrinsic permeability, obtained from Eq. (12) is
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FIG. 4. Comparison of the velocity profiles predicted from the one-domain approach
(ODA) and obtained from the averaged fields from direct-numerical simulations
(DNS) in the entire system taking r; = 1, & = 0.8, and h* = 100.

H, = 0.019 476?, which is in perfect agreement with the estimate
from the analytical expression provided by Chai et al.”® This represents
a first validation of the numerical procedure employed here. In the
same figure, the average velocity profile resulting from DNS is also
reported. Both the DNS and ODA results were obtained by using an
averaging domain size equal to that of the geometrical unit cell, i.e.,
ry = 1. Clearly, excellent agreement between both sets of results is
achieved everywhere. In addition, it was verified that in the zone corre-
sponding to z € [z, h — ry/2], the ODA results reproduced the values
of v, obtained from the DNS. It should be noted that the average
velocity at the top wall is not zero and this is due to the fact that at this
position, there is still a portion of the averaging domain that includes
fluid in the channel.

It is now of interest to investigate the influence of the porous
medium geometry and of the averaging domain size, r,, on the predic-
tions of the average velocity in the inter-region. To carry this out, sim-
ulations were performed considering the porous structures of Type 1
and Type 2, different values of the porosity and values of r; ranging
between 1 and 10. In specific, comparison of the velocity profiles in
the 17-o inter-region obtained from DNS and predicted from the ODA
are reported in Figs. 5(a) and 5(b) for the porous structure of Type 1
taking & = 0.8 and ¢ = 0.4, respectively. A similar comparison, con-
sidering the porous structure of Type 2 and ¢ = 0.4, is represented in
Fig. 5(c). Obviously, the porous medium microstructure plays a rele-
vant role in the homogeneous part of the porous medium and in the
inter-region, but the effect is lost for z* > 5 in the fluid phase. In
particular, it is interesting to note the considerable contrast in the
velocity profiles presented in Figs. 5(b) and 5(c), both corresponding
to the same porosity but different distributions of the solid inclusions,
i.e., ordered (Type 1) and disordered (Type 2) structures, respectively.
For the porous structure of Type 2, (Vay),, decreases in about three
orders of magnitude with respect to the values obtained with the
porous structure of Type 1, as a direct result of the same decrease in
H,xx. Interestingly, the disordered structure seems to attenuate the
oscillations in the velocity profiles in the inter-region, in particular
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FIG. 5. Comparison of the average velocity profiles predicted from the one-domain
approach (ODA) and the averaged velocity obtained from direct numerical simula-
tions (DNS) near the fluid-porous medium boundary taking h* = 100 and four val-
ues of ry for (a) the porous structure of Type 1, & = 0.8, (b) the porous structure of
Type 1, ¢ = 0.4, and (c) the porous structure of Type 2, ¢ = 0.4.

close to the free fluid boundary (ie., close to z=0). As shown in
Fig. 5(a), these oscillations are quite noticeable as the porosity is
increased. Moreover, the size of the oscillations and the width of the
inter-region are determined by the size of the averaging domain, and
this is consistent with a previous analytical study performed in a sim-
plified geometry.”® It must be noted that the oscillation, characterized
by an average velocity value just below the porous medium-fluid
boundary smaller than the average velocity in the homogeneous part
of the porous medium, is a signature of pore-scale recirculations
occurring in the very first layers of solid grains in the porous medium.
These recirculations involve negative velocities in the x direction,
which, on average, contribute to significantly lower the macroscopic
velocity (see, for instance, Figs. 4 and 5 in the work by Bruneau et al.’
for a similar behavior). Note also that this occurs regardless the flow
regime (creeping or inertial). Finally, it must be emphasized that, in all
the cases reported in this figure, there is an excellent agreement
between the DNS results and the predictions from the ODA as the
relative error percent between the solutions, taking the DNS results as
the reference, is below 0.1%.

B. Inertial flow regime

The second study case corresponds to inertial flow still under no-
slip conditions, considering the porous structure of Type 1 with a
porosity equal to 0.8 and r; = 1. In contrast to the previous case, the
height of the free fluid channel is decreased to be equal to only 5.
This choice is made to easily appreciate the entire velocity profiles in a
single graph. In addition, this allows for the simulations to be less com-
putationally demanding, as the presence of inertia requires much finer
grids to reach convergence compared to the creeping flow regime.

The velocity profiles resulting from the ODA and the DNS are
reported in Fig. 6, where, once again, excellent agreement is found.
Simulations were performed for three values of the Reynolds number
remaining smaller than the critical value corresponding to the first
Hopf bifurcation.”’ From these results, it is clear that the influence of
inertia is experienced mostly in the homogeneous part of the porous
medium, whereas its effects decrease as z — 0. This observation is
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FIG. 6. Average velocity profiles for three Reynolds number values corresponding
to a porosity value of 0.8, fixing ry = 1 and h* = 5. Porous structure of Type 1.




consistent with the recent numerical results from Yang et al.,'* which
were obtained for squared-shape inclusions. This is due to the fact that
the flow remains unidirectional and non-inertial in the free fluid
region for these values of Re. Evidently, taking z,, = 11/, is an overes-
timate of the inter-region size and the same results are recovered using
smaller values of z,,. As expected, the average velocity in the w-region
decreases as Re increases, and this is consistent with the fact that the
apparent permeability is also decreasing when inertial effects are more
intense.”” These results serve to validate the ODA derived here under
inertial conditions.

C. Creeping slip-flow

The final case study corresponds to slip flow under non-inertial
conditions, ie., Re=0. As in the previous case, the simulations are
performed in a channel of height h = 5/, using the porous structure
of Type 1, with ¢ = 0.8 and r; = 1. The average velocity profiles cor-
responding to the ODA and the DNS are reported in Fig. 7(a) for the
situation in which the cell-Knudsen numbers in the porous medium
and at the upper wall are equal, i.e, £; 2" = &, A" = £4°. More specifi-
cally, four values of A" are examined, with the largest one remaining
0(0.1) in order to avoid using the governing flow equations beyond
their range of validity (i.e., out of the slip regime)."""* The use of the
same slip coefficient in both the porous medium and at the top wall of
the free-fluid region is justified by the fact that the characteristic length
of the latter region is not much larger than the one in the porous
medium in the particular configuration considered here. Nevertheless,
since the boundary condition given in Eq. (1c) may also be conceived
as an effective boundary condition over rough surfaces, it is certainly
possible to encounter physical situations in which & 4" = &, 4" when
the contrast of the characteristic lengths is more pronounced.

Clearly, increasing the interfacial slip translates into an increase
in the velocity profiles in the entire system, as expected. It is worth not-
ing that, under no-slip conditions, there is a zone in the inter-region
(near z* = —1) where there is flow-reversal. This zone of flow reversal
vanishes as slip effects become more important, i.e., for £A* > 0.1.

It is also interesting to examine the influence of slip in the free fluid
region. To this end, in Fig. 7(b), the velocity profiles corresponding to
the case in which the cell Knudsen numbers are both equal to 0.5 are
compared with those resulting from taking ¢, 4" = 0.5 and &, 4" = 0.
The velocity profiles in the porous medium are the same in both sit-
uations; however, the maximum velocity values in the free fluid
region are clearly decreased when the channel is assumed to be free of
any rarefaction effects. Finally, it is important to mention that the pre-
dictions of the average velocity from the DNS and the ODA are in
excellent agreement in all the physical situations considered here.

D. Comparison with experimental data

To conclude this section, it is pertinent to make one final valida-
tion of the macroscopic model by comparison with experiments. In
specific, the experimental system studied by Terzis et al.” is considered.
This configuration is similar to the one used by Beavers and Joseph
with the difference that the porous medium is made of an array of
inline micropillars having a square cross section of 240 um x 240 um.
The pillars measured 200 pm, which corresponds to the size of the sys-
tem in the direction orthogonal to the plane of the mean flow. Since
the pillars are placed 240 um apart from each other, the porosity is
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FIG. 7. Analysis of the slip effect on the average velocity profiles under creeping
flow conditions for (a) & = & = & and (b) £;4" = 0.5. Porous structure of Type
1withe =08.r; =1and h* =5.

equal to 0.75. The height of the free-flow channel is h = 2 mm,
whereas the height of the porous medium region is 9.84 mm. The flow
conditions correspond to incompressible, steady, Newtonian, and
creeping flow subject to no-slip at the solid-fluid interfaces. The exper-
imental velocity measurements were performed using a micro PIV
device. The velocity fields obtained with this instrument are line aver-
ages in the y-direction of the sketch shown in Fig. 1 (or equivalently,
the z-direction in the work by Terzis et al). In this way, the
two-dimensional velocity fields shown in Fig. 4 of Terzis et al.” were
obtained. These results were subsequently averaged along the
x-direction in zones near the entrance, the outlet and in the middle of
the system as shown in Fig. 9 of the above reference, yielding what is
referred to as the cross-sectional average velocity, denoted (v}) in
what follows. The experimental results taken at the middle of the
system are now compared to the predictions of the model resulting
from the ODA presented above.




Due to the configuration of the experimental device, the closure
problem solutions were carried out in a three-dimensional domain
containing fifteen pillars in the vertical direction and one unit cell of
the pillars pattern in the x-direction in order to be consistent with the
results reported in Fig. 9 in Terzis et al.” It is worth noting that, in this
case, the analytical solution derived above for the #-region is not appli-
cable because the flow in this region is not one-dimensional. To
address this issue, z, was set equal to & so that the boundary condition
given in Eq. (25a) was replaced by the following one:

D=0, atz=h (34)

As a consequence, the #-region is no longer present in the model and
is entirely lumped in the # — @ region. Once the fields of D and F
were obtained, the pointwise velocity fields were reconstructed by
making use of Eqgs. (8a) and (24a), and they were further averaged in
the plane-parallel to the macroscopic pressure gradient direction (i.e.,
the xy-plane) for several values of z. In this way, the spatial variations
of the dimensionless cross-sectional average velocity, (v;) ., were pre-
dicted. Following Terzis et al.,” these results are made dimensionless
by taking the magnitude of the inlet velocity of the system as v, The
resulting velocity profiles are reported in Fig. 8(a), showing an excel-
lent agreement with the experimental data, thus validating the ODA in
this 3D flow situation. Notice that due to the shape of the experimental
system, i.e., the wall effects in the y-direction, the velocity profiles tend
to reach a constant value in the free fluid region sufficiently far away
from the upper wall and the porous medium surface.

To complete the analysis of this system, it is worth studying the
spatial variations of the superficial average of the velocity. The predic-
tions of (v}) resulting from both the ODA and the DNS are presented
in Fig. 8(b), showing also an excellent agreement. The profiles exhibit
a smooth behavior that contrasts with the experimental results from
Terzis et al.,” which are included in this figure as a reference. Clearly,
the values of (v}) . oscillate around those of (v}). Both types of aver-
ages are not expected to match since they correspond to different aver-
aging domains.

IV. CONCLUSIONS

In this work, a new formulation for describing steady,
Newtonian, and incompressible flow between a porous medium and a
fluid was derived. The model consists of a single Darcy-type equation
that is written in terms of a position-dependent apparent permeability
tensor. The values of this coefficient are predicted from the solution of
the associated closure problems that are computationally much less
demanding than performing direct numerical simulations. Although
the model was formulated for the physical system configuration
studied by Beavers and Joseph, it was derived in a somewhat general
fashion in which flow may be multidimensional in the porous
medium due to anisotropy, for instance. Moreover, the development
was performed on the basis of the Navier-Stokes model at the pore-
scale, allowing to account for inertial effects when the Reynolds
number value justifies it. It also includes the potential existence of
slip effects at the solid-fluid interfaces, which may occur when the
cell-Knudsen number is not exceedingly small compared to unity, or
when an effective slip boundary condition, resulting from roughness
effects at the solid-fluid interfaces, is taken into account.

The predictive capabilities of the model were validated through
in silico experiments by comparing the average velocity profiles

resulting from the new ODA with pore-scale DNS, finding excellent
agreement (i.e., with relative percent error values with respect to the
DNS smaller than 0.1%). The validation was carried out in three spe-
cific flow situations, namely: (1) creeping flow under no-slip condi-
tions, (2) inertial flow also assuming no-slip conditions, and (3)
creeping flow with slip. For flow under creeping and no-slip condi-
tions, the effect of the porous medium microstructure was examined
as well as the influence of the averaging domain size used to represent
the flow in an average sense. The microstructure plays a key role in the
magnitude and shape of the flow field not only in the homogeneous
part of the porous medium, but also in the inter-region. The impact in
the free-fluid region is significant in only a thin layer next to the
porous medium-fluid boundary. Moreover, it was also shown that the
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FIG. 8. (a) Comparison of the cross-sectional averaged velocity predictions from
the ODA with the experimental data from Terzis et al.” (b) Predictions of the superfi-
cial average velocity from the ODA and DNS. In all cases, the velocity is made
dimensionless with respect to the inlet velocity.




size of the inter-region is determined by the averaging domain size.
For inertial and no-slip flow, the effects of changing the Reynolds
number are mostly observed in the homogeneous porous medium and
decrease near the fluid-porous medium boundary. Finally, the analysis
in the creeping and slip-flow regime showed that slip effects play a cru-
cial role in the velocity profiles in the entire system in the case in which
slip effects are present in both the porous medium and the free-fluid
regions. When the slip condition is imposed only in the porous
medium, the velocity in the free fluid region experiences the most
drastic changes.

In addition to the in silico validation, the ODA model was shown
to reproduce the experimental results from Terzis et al.,” which were
obtained under creeping flow conditions subject to no-slip at the
solid-fluid interfaces. The results reported in Fig. 8 show that the
cross-sectional averaged values of the velocity predicted from using
the ODA reproduce adequately the available velocity profiles recorded
in the middle of the micromodel device used by these authors. From
the above, it is concluded that the new one-domain approach devel-
oped here is quite practical as it represents accurately data from
both direct numerical simulations and experiments at a reasonable
computational cost. Note that differently from previous attempts of
formulating the ODA, it is not required to solve a PDE with position-
dependent coefficients. Instead, a Darcy-like model is presented here
that accounts for the spatial variations of the apparent permeability
tensor in the inter-region that are given by the closure problem
solution. This is also more practical than current versions of the two-
domain approach where this information is required in an iterative
process to compute the involved jump coefficients.

The results of this work should serve as a motivation to further
study the one-domain approach and avoid regarding it as a model of
archival value that is required in the definition of excess quantities in a
two-domain approach. In addition, rarefaction effects beyond the slip
regime and the use of effective boundary conditions on rough surfaces
deserve to be studied in more detail by means of laboratory and direct
numerical simulations in a wider context than the one envisaged here.
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