Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3−) based on an artificial neural network diabatic potential model - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Chemical Physics Année : 2021

Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3−) based on an artificial neural network diabatic potential model

Résumé

The photodetachment spectrum of the nitrate anion (NO − 3) is simulated from first principles using wavepacket quantum dynamics propagation and a newly developed accurate full-dimensional fully coupled five state diabatic potential model. This model utilizes the recently proposed complete nuclear permutation inversion invariant artificial neural network diabatization technique [D. M. G. Williams and W. Eisfeld, J. Phys. Chem. A 124, 7608 (2020)]. The quantum dynamics simulations are designed such that temperature effects and the impact of near threshold detachment are taken into account. Thus, the two available experiments at high temperature and at cryogenic temperature using the slow electron velocity-map imaging technique can be reproduced in very good agreement. These results clearly show the relevance of hot bands and vibronic coupling between theX 2 A ′ 2 ground state and theB 2 E ′ excited state of the neutral radical. This together with the recent experiment at low temperature gives further support for the proper assignment of the ν 3 fundamental, which has been debated for many years. An assignment of a not yet discussed hot band line is also proposed.
Fichier principal
Vignette du fichier
Number46.pdf (1.41 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03149863 , version 1 (23-02-2021)

Identifiants

Citer

Alexandra Viel, David M. G. Williams, Wolfgang Eisfeld. Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3−) based on an artificial neural network diabatic potential model. Journal of Chemical Physics, 2021, 154 (8), pp.084302. ⟨10.1063/5.0039503⟩. ⟨hal-03149863⟩
128 Consultations
46 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More