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ABSTRACT
In practical applications, non-Gaussianity of the signal at the
sensor array is detrimental to the performance of conventional
Direction-of-Arrival (DOA) estimators developed under the
Gaussian model. In this paper, we propose a novel robust
DOA estimator from the data collected at the sensor array
under the corruption of non-Gaussian interference and noise.
Additionally, the Cramér-Rao bound for DOA parameters un-
der the considered signal model is derived. Simulation results
show that the proposed estimator exhibits near-optimal esti-
mation performance under the assumed model while being
robust to model mismatch and/or the presence of outliers.

Index Terms— DOA Estimation, EM Algorithm, Robust
Estimation, Partial Relaxation

1. INTRODUCTION

Recently, a class of Direction-of-Arrival (DOA) estimators
have been proposed under the Partial Relaxation (PR) frame-
work [1, 2]. Similar to the MUSIC algorithm [3], PR esti-
mators employ a one-dimensional spectral search to estimate
the DOAs. Simulation results show that, under the Gaussian
signal model, the threshold performance of PR estimators is
comparable to that of conventional maximum likelihood es-
timators [4–6] while the computational complexity is in the
same order of magnitude as the MUSIC algorithm.

As the derivation of PR estimators in [1] relies on the
assumption of Gaussian source signals and spatially white
Gaussian noise, the DOA estimation performance of the PR
methods degrades in practical scenarios where the receive sig-
nal at the sensor array is not Gaussian-distributed. For exam-
ple, in MIMO radar systems, the receive signal is corrupted
by radar clutter, which is generally modeled as realizations of
some stochastic processes with heavy-tailed distributions [7].
In the context of radio astronomical imaging, aside from ther-
mal noise, low-rank terrestrial interferers [8] are imminent,
which adversely impact the imaging quality, especially for
subspace-based methods in general and estimators under the
PR framework in particular [9,10]. Therefore, deriving robust
DOA estimators under consideration of the non-Gaussianity
of both interference and noise [11–13] is of great interest.
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In this paper, we propose a robust DOA estimator under
the consideration of non-Gaussian observations which does
not rely on the robust estimation of the covariance matrix as
in [8, 14–17]. The receive signal at the sensor array is as-
sumed to be corrupted by Student t-distributed interference
and noise. The proposed algorithm, which is based on the
Expectation Maximization (EM) algorithm [18] and the PR
framework, jointly estimates the non-Gaussianity of the re-
ceive signal and the DOA parameters in each iteration. From
the simulation results, the proposed algorithm exhibits favor-
able performance even in the case of model mismatch. The
paper is organized as follows. The signal model is presented
in Section 2. In Section 3, the Cramér-Rao bound (CRB) for
the DOA parameters is derived in closed-form. Details on
the derivation of the proposed DOA estimator is provided in
Section 4. Numerical results in Section 5 illustrates the per-
formance of the proposed algorithm under different scenar-
ios. Lastly in Section 6, remarks and extensions for future
research are discussed.

2. SIGNAL MODEL

Consider an array of M sensors receiving N narrowband
signals emitted from sources with the corresponding un-
known DOAs θ = [θ1, . . . , θN ]

T and under corruption
of R interferers. The baseband receive signal x(t) =

[x1(t), . . . , xM (t)]
T ∈ CM at the time instant t is modeled as

x(t) = A(θ)s(t) +Bj(t) + n(t) for t = 1, . . . , T. (1)
In (1), the steering matrix A(θ) = [a(θ1), . . . ,a(θN )] is a
full rank matrix whose n-th column a(θn) represents the sen-
sor array response for the DOA θn. B ∈ CM×R denotes
the unstructured loading matrix of R interferers. In addition,
s(t) ∈ CN , j(t) ∈ CR and n(t) ∈ CM denote the baseband
source signal vector, the baseband interference vector, and the
noise vector at the sensor array, respectively. While the source
signal s(t) is assumed to be deterministic but unknown, the
interference vector j(t) and the noise vector n(t) admit the
stochastic representations:

j(t)
d
=

1√
τ(t)

d(t) and n(t)
d
=

1√
τ(t)

e(t). (2)

In (2), the speckles d(t) and e(t) are i.i.d. vectors drawn from
d(t) ∼ CN (0, I) and e(t) ∼ CN

(
0, σ2I

)
, respectively.



The noise power at the sensor array is denoted by σ2. The
textures τ(t) ∼ Gamma (ν, ν) 1 for t = 1, . . . , T are i.i.d.
random scalars. The positive number of degrees of freedom
(DOF) is denoted by ν, which models the non-Gaussianity of
the inteferers and the noise. Equation (1) can be rewritten for
multiple snapshots t = 1, . . . , T in a compact notation as

X = AS +BJ +N , (3)
where X = [x(1), . . . ,x(T )] ∈ CM×T is the baseband
receive signal matrix. In a similar manner, we define the
source signal matrix S ∈ CN×T , the interfering signal ma-
trix J ∈ CR×T and the sensor noise matrix N ∈ CM×T
as S = [s(1), . . . , s(T )], J = [j(1), . . . , j(T )] and N =
[n(1), . . . ,n(T )], respectively.

3. CRAMÉR-RAO BOUND

The derivation of the CRB for the DOA parameters θ under
the signal model in (1) is outlined in this section. By marginal-
izing w.r.t. the texture τ(t), we can show that the observation
vectorsx(t) for t = 1, . . . , T are i.i.d. drawn from a circularly
complex Student’s t-distribution x(t) ∼ Ctν (A(θ)s(t),Σ)
with the scale matrix Σ = BBH + σ2I . As Σ does not
depend on the DOA parameters θ, the CRB for θ under the
Student’s t-Distribution case is proportional to that under the
Gaussian case with the mean A(θ)s(t) and the covariance
matrix Σ [19]. Therefore, combining [19, Eq. (22)] with [20,
Eq. (31)], the CRB for the DOA parameters θ is given by

C(θ) =
ν +M + 1

2(ν +M)T

[
Re
{(
D̃

H
Π⊥AD̃

)
� P s

}]−1
, (4)

with D̃ = Σ−1/2
[
∂a(θ1)
∂θ , . . . , ∂a(θN )

∂θ

]
, Π⊥A = I − AA†

and P s =
T∑
t=1
s(t)s(t)H.

4. PROPOSAL OF THE EM-PR-DML ALGORITHM

In this section, we propose a novel maximum likelihood-
based DOA estimator under the signal model in Section 2.
The parameter vector φ which characterizes the density func-
tion of the observation vector x(t) is given by

φ =
[
θT, s(1)T, . . . , s(T )T, ζT, ν, σ2

]T
, (5)

where ζ contains the real and imaginary part of non-redundant
entries of Σ. The log-likelihood L = log p(X|φ) is given by

L = −T log det Σ− (M + ν)

T∑
t=1

log
(
1 +

1

ν
r(t)HΣ−1r(t)

)
(6)

with the residuals r(t) = x(t) − A(θ)s(t). As the direct
maximization of the log-likelihood function in (6) w.r.t. the
parameter vector φ in (5) appears to be challenging, we adopt
the EM algorithm that estimates the DOA parameters in an
iterative manner: first, in the E-step (expectation step) of the
k-th iteration, the lower-bound functionQ(φ|φ(k)) of the log-
likelihood log p(X|φ) at the current iteration point φ(k) is
constructed as

1Gamma (κ1, κ2) denotes the Gamma distribution with the shape param-
eter κ1 and the inverse-scale parameter κ2

Q(φ|φ(k)) = EY |X,φ(k) {log p(Y |φ)} . (7)
In (7), Y denotes the so-called (unobserved) complete data
matrix. Then, in the M-step (maximization step) in the k-th
iteration, the parameter vector φ is updated by maximizing
the lower-bound function as follows:

φ(k+1) = arg max
φ

Q(φ|φ(k)). (8)

The two steps in (7) and (8) are alternatively performed until
convergence. Details on the E-steps and M-steps are provided
in the following subsections.
4.1. Expectation Step
By choosing the complete data as Y = [y(1) . . . ,y(T )]

with y(t) =
[
x(t)T, j(t)T, τ(t)

]T
, the lower-bound function

Q(φ|φ(k)) in (7) is rewritten as:

Q(φ|φ(k)) =

T∑
t=1

Qt(φ|φ(k)) (9)
with
Qt(φ|φ(k)) = Ej(t),τ(t)|x(t),φ(k) {log p(τ(t)|φ)} (10)

+ Ej(t),τ(t)|x(t),φ(k) {log p(j(t)|τ(t),φ)}
+ Ej(t),τ(t)|x(t),φ(k) {log p(x(t)|j(t), τ(t),φ)} .

For notational simplicity, we drop the time instant t and the
DOA parameters θ in the remainder of this subsection. From
(1) and (2), the expression in (10) is computed as
Qt(φ|φ(k)) = −(M +R) log π + ν log ν − log Γ (ν)

−M log σ2 + (M +R+ ν − 1)log τ −
(
||r||2 /σ2 + ν

)
τ

+
2

σ2
Re
{
rHBτj

}
− 1

σ2
tr
{
BHBτjjH

}
− tr

{
τjjH

}
,

(11)
where (·) = Ej,τ |x,φ(k){·} denotes the expectation of the
argument conditioned to the observed data x and the previ-
ously estimated parameters φ(k). Using Bayes theorem and
after some algebraic manipulation, the conditional expecta-
tion quantities in (11) are computed as follows

τ =
α(k)

β(k)
, log τ = ψ

(
α(k)

)
− log β(k), (12)

τj = τ j, τjjH = τ j j
H

+
(
σ(k)

)2
F (k), (13)

with r(k) = x−A(k)s(k), Σ(k) = B(k)
(
B(k)

)H
+
(
σ(k)

)2
I ,

F (k) =
((
B(k)

)H
B(k) +

(
σ(k)

)2
I
)−1

, α(k) = M + ν(k),

β(k) = ν(k) +
(
r(k)

)H(
Σ(k)

)−1
r(k), j = F (k)

(
B(k)

)H
r(k)

and ψ(·) denotes the digamma function.
4.2. Maximization Step
In the M-step, the parameters θ,S,B, ν and σ2 are updated
by maximizing the expression in (11). Neglecting constant
terms, the function Q(φ|φ(k)) in (9) is rewritten as

Q
(
φ|φ(k)

)
∝ −MT log σ2−

f
(
A,S,B|φ(k)

)
σ2

−g(ν|φ(k))

(14)
where two auxiliary functions g = g(ν|φ(k)) and f =

f
(
A,S,B|φ(k)

)
are defined by:

g = ν

T∑
t=1

(
τ(t)− log τ(t)

)
+ T log Γ (ν)− νT log ν, (15)

f = ||(X −AS)D||2F + tr
{
BHBV

}
− 2Re

{
tr
{
BU (X −AS)

H
}}

, (16)



respectively. Regarding the definition of the function f in
(16), the auxiliary matrices

D = diag
(√

τ(1), . . . ,

√
τ(T )

)
, (17)

U =
[
τ(1)j(1), . . . , τ(T )j(T )

]
, (18)

V =

T∑
t=1

τ(t)j(t)j(t)H, (19)

are constant. We remark from (14) that the number of DOF
ν are decoupled from the remaining parameters. In the fol-
lowing, we provide the update of ν from the minimization of
g = g(ν|φ(k)) in (15).
Updating the number of degrees of freedom ν:
A necessary condition for the updated number of DOF ν(k+1)

is that the derivative g′(ν|φ(k)) = h(ν) in (15) vanishes at
ν = ν(k+1). The function h(ν) for ν > 0 is given by

h(ν) =
T∑
t=1

(
τ(t)− log τ(t)

)
+ Tψ(ν)− T log ν − T (20)

and its first derivative of h′(ν) is given by
h′(ν) = Tψ1(ν)− T/ν, (21)

where ψ1(·) denotes the trigamma function. By noting that
τ − log τ ≥ 1 for all τ > 0, we obtain

T∑
t=1

(
τ(t)− log τ(t)

)
> T. (22)

From (22) and [21, Sec. 2], h(ν) is monotonically increasing
from negative to positive. Therefore, the root of h(ν), which
corresponds to the minimum of g(ν|φ(k)), is unique [22]. In
order to obtain the minimum numerically, we adopt the ratio-
nal approximation method [23]: At a given iteration point νq ,
the function h(ν) is approximated by a rational function of
type u(ν) = a− b

ν with two parameters a and b such that
h(νq) = u(νq) and h′(νq) = u′(νq). (23)

Then, the next iteration point νq+1 is computed as the root of
the rational approximant, i.e., u(νq+1) = 0. The expression
to compute the next iteration point νq+1 from the current iter-
ation point νq is given in Step 4 of Algorithm 1. Using argu-
ments similar to the proof in [23, Sec. 3], the convergence rate
of Algorithm 1 is quadratic, which is identical to the Newton’s
method. In practice, the number of iterations of Algorithm 1
is approximately one third of that using the Newton’s method
for a given accuracy. This phenomenon can be explained as
follows: Newton’s method, which is based on linear approx-
imation of the derivative, requires several restarts if the con-
straint νq+1 > 0 is violated. In contrast, if the current point νq
is positive, it can be proven that the pole ν = 0 of the ratio-
nal approximant u(ν) prevents the next iteration point νq+1

from being negative. As a result, restart is not required in
Algorithm 1 for any starting point ν0 > 0.
Updating the remaining parameters {θ,S,B, σ2}
Taking the derivative of the cost function in (14) w.r.t. σ2

while keeping A = A(θ), B and S fixed, the optimal value
for σ2 is given by(

σ(k+1)
)2

=
f
(
A,S,B|φ(k)

)
MT

, (24)

Algorithm 1 Updating the number of DOF ν

1: Initialization: Inner iteration index q = 0, starting point
νq = ν(k) > 0 from the k-th EM iteration.

2: while not converged do
3: Compute h(νq) in (20) and h′(νq) in (21).

4: Compute νq+1 =
ν2
qh
′(νq)

h(νq)+νqh′(νq)
.

5: q ← q + 1.
6: end while
7: return Number of DOF ν(k+1) = νq .

where f
(
A,S,B|φ(k)

)
is defined in (16). Substituting

(24) back to (14), the maximization step in the EM al-
gorithm is equivalent to the minimization of the function
f = f

(
A,S,B|φ(k)

)
. As the function f is quadratic w.r.t.

B, the minimizerB(k+1) is given by
B(k+1) = (X −AS)UHV −1. (25)

SubstituteB = B(k+1) in (25) back to (16), the concentrated
cost function f w.r.t.A and S reads
f = ||(X −AS)D||2F −

∣∣∣∣∣∣(X −AS)UHV −1/2
∣∣∣∣∣∣2

F
. (26)

From (13) and (16), it is not difficult to show that
W = DDH −UHV −1U �DΠ⊥D−1UHDH � 0. (27)

From (27) and direct algebraic manipulation, the expression
in (26) is reformulated as follows:

f =
∣∣∣∣∣∣(X −AS)W 1/2

∣∣∣∣∣∣2
F
. (28)

The minimizer S(k+1) of (28) in dependence ofA is given by
S(k+1) = A†X. (29)

Substitute S = S(k+1) back to (28), the DOA vector θ(k+1)

is obtained from the following optimization problem

θ(k+1) = arg min
θ

tr
{

Π⊥A(θ)XWXH
}
. (30)

We remark that the DOA estimation step in (30) resembles
the conventional DML estimator under the spatially uniform
Gaussian noise [4]. Nevertheless, a key difference is the in-
troduction of the weighting matrixW in (27), which accounts
for the expected texture realization in each iteration. As the
DOA estimation problem in (30) requires an N -dimensional
search, we propose the use of the PR-DML estimator in [1],
which is a relaxed variant of the conventional DML estima-
tor. Specifically, the DOA parameters are estimated from the
location of the N -deepest local minima of the PR-DML one-
dimensional null-spectrum:

FPR-DML(θ) =

M∑
m=N

λm(Π⊥a(θ)XWXH). (31)

In (31), λm(·) denotes the m-th largest eigenvalue of the ma-
trix argument. We remark that the null-spectrum in (31) can
be efficiently implemented as in [1, Sec. V.] without the full
eigenvalue decomposition. Furthermore, the estimated DOAs
from (31) results in a decrease of theQ function in (9) in prac-
tice, which implies the convergence of the EM Algorithm. To
summarize, the proposed EM algorithm for the DOA estima-
tion under non-Gaussian, spatially-colored interference-plus-
noise is presented in Algorithm 2.



Algorithm 2 EM-PR-DML Algorithm

1: Initialization: Outer iteration index k = 0, initial quan-
tities θ(0), S(0),B(0),

(
σ(0)

)2
and ν(0)

2: while not converged do
3: k ← k + 1.
4: E-step: Compute necessary expectation quantities in

(12)-(13) and update the matrices D, U , V and W in
(17)-(19) and (27), respectively.

5: M-step:
6: Update ν(k+1) as presented in Algorithm 1.
7: Update θ(k+1) from the local minima of the null-

spectrum in (31) andA(k+1) = A
(
θ(k+1)

)
.

8: Update S(k+1) =
(
A(k+1)

)†
Y .

9: UpdateB(k+1) =
(
Y −A(k+1)S(k+1)

)
UHV −1.

10: Update
(
σ(k+1)

)2
=

tr
{

Π⊥A(k+1)XWXH
}

MT
.

11: end while
12: return The estimated DOAs θ(k)

5. SIMULATION RESULTS
In this section, simulation results regarding the estimation
performance of different DOA estimators are presented and
compared with the CRB in (4). The number of Monte-Carlo
trials is NR = 5000. The Root-Mean-Squared-Error (RMSE)

is computed as
( NR∑
r=1

N∑
n=1

(
θ̂
(r)
n − θn

)2
/(NRN)

)1/2
, where

the estimated DOAs in the r-th Monte-Carlo run θ̂
(r)

=
[θ̂

(r)
1 , . . . , θ̂

(r)
N ]T and the true DOAs θ = [θ1, . . . , θN ]

T are
sorted in ascending order. In our simulations we assume a
ULA of M = 10 antennas with the spacing equal to half of
the wavelength. The number of snapshots is set to T = 100.
The matrixB associated with the interfering signals is chosen
such that ||B||2F = MR. The Signal-to-Noise-Ratio (SNR) is
calculated as SNR = 1/σ2.

To illustrate the robustness of the proposed EM-PR-DML
algorithm, in the first setup, we assume two uncorrelated
source signals with unit power located at θ = [10◦, 35◦]

T.
The SNR is varied between −10 and 10 dB. The receive sig-
nal at the sensor array is additionally corrupted by R = 2
interfering signals with ν = 2. However, we assume an
incorrect number of interferers R′ = 4 in all considered
algorithms. In Fig. 1, we observe that the AML estima-
tor [10] cannot detect two source signals due to the cor-
ruption of spatially-correlated low-rank interference. The
estimation performances of the conventional MUSIC [3] and
PR-DML [1] slightly degrades due to the non-Gaussianity of
the interference and noise. The RG-MUSIC [16] and our pro-
posed EM-PR-DML algorithm exhibit similar performances.
Nevertheless, only our proposed estimator achieves the CRB
in the high SNR regime.

In Fig. 2, we assume no interference corrupting the receive
signal. The sources are closely-spaced at θ = [10◦, 15◦]

T.
However, we assume the presence of a Gaussian noise
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Fig. 1: RMSE vs SNR, overestimate the interference rank
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Fig. 2: RMSE vs SNR, model mismatch

n(t) ∼ CN (0, σ2I) in 90% of the snapshots. The remain-
ing 10% of the snapshots contains outliers (specifically,
outliers are generated as compound Gaussian noise with
1/τ(t) = 100). We assume the number of interferers in our
proposed EM-PR-DML estimator to be R′ = 2 to account for
the model mismatch [24] of the noise when compared with
that under the signal model in Section 2. We observe that the
non-robust MUSIC and PR-DML estimator cannot resolve
the DOAs of two sources in all Monte-Carlo trials. The pro-
posed EM-PR-DML estimator outperforms RG-MUSIC and
AML methods in both threshold and asymptotic regimes.

6. CONCLUSION AND OUTLOOK
In this paper, we propose a novel robust DOA estimator based
on the EM algorithm and the PR framework. The proposed
estimator jointly estimates the DOAs and the non-Gaussianity
of the receive signal in each EM iteration. In order to maintain
a low computational complexity, the PR framework is applied
to substitute for the conventional deterministic ML. Simula-
tion results show that the proposed DOA estimator possesses
near-optimal performances under the assumed model without
sacrificing robustness against model mismatch.

For future work, the theoretical explanation of the ro-
bustness of the EM-PR-DML estimator requires further com-
prehensive investigation. In addition, extensions to consider
more realistic scenarios, e.g., decentralized DOA estimation
among local subarrays or missing data, are of great interest.
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