Article a wind study of venus’s cloud top: New doppler velocimetry observations - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Atmosphere Année : 2021

Article a wind study of venus’s cloud top: New doppler velocimetry observations

Résumé

At Venus’s cloud top, the circulation is dominated by the superroration, where zonal wind speed peaks at ∼100 ms−1, in the low-to-middle latitudes. The constraining of zonal and meridional circulations is essential to understanding the mechanisms driving the superrotation of Venus’s atmosphere, which are still poorly understood. We present new Doppler velocimetry measurements of horizontal wind velocities at Venus’s cloud top, around 70 km altitude. These results were based on March 2015 observations at the Canada–France–Hawaii Telescope (CFHT, Mauna Kea, Hawaii), using ESPaDOnS. The Doppler velocimetry method used has already successfully provided zonal and meridional results in previous works led by P. Machado and R. Gonçalves, proving to be a good reference ground-based technique in the study of the dynamics of Venus’s atmosphere. These observations were carried out between 27 and 29 March 2015, using the Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) which provides simultaneous visible-near IR spectra from 370 to 1050 nm, with a spectral resolution of 81000 allowing wind field characterization in the scattered Franuhofer solar lines by Venus’s cloud top on the dayside. The zonal velocities are consistent with previous results while also showing evidence of spatial variability, along planetocentric latitude and longitude (local-time). The meridional wind circulation presents a notably constant latitudinal structure with null velocities at lower latitudes, below 10◦ N–S, and peak velocities of ∼30 ms−1, centered around 35◦ N–S. The uncertainty of the meridional wind results from ground observations is of the same order as the uncertainty of meridional wind retrieved by space-based observations using cloud-tracking, as also shown by previous work led by R. Gonçalves and published in 2020. These March 2015 measurements present a unique and valuable contribution to the study of horizontal wind at the cloud top, from a period when Doppler velocimetry was the only available method to do so, since no space mission was orbiting Venus between Venus Express ending in January 2015 and Akatsuki’s orbit insertion in December 2015. These results from new observations provide (1) constraints on zonal wind temporal and spatial variability (latitude and local time), (2) constraints on the meridional wind latitudinal profile, (3) additional evidence of zonal and meridional wind stability for the period between 2011 and 2015 (along previous Doppler results) (4) further evidence of the consistency and robustness of our Doppler velocimetry method.
Fichier principal
Vignette du fichier
atmosphere-12-00002-v2.pdf (1.45 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03144768 , version 1 (17-02-2021)

Identifiants

Citer

Ruben Gonçalves, Pedro Machado, Thomas Widemann, Francisco Brasil, José Ribeiro. Article a wind study of venus’s cloud top: New doppler velocimetry observations. Atmosphere, 2021, 12 (1), pp.2. ⟨10.3390/atmos12010002⟩. ⟨hal-03144768⟩
104 Consultations
47 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More