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TIGHT RISK BOUND FOR HIGH DIMENSIONAL TIME SERIES COMPLETION

PIERRE ALQUIER, NICOLAS MARIE†, AND AMÉLIE ROSIER�

Abstract. Initially designed for independent datas, low-rank matrix completion was successfully ap-
plied in many domains to the reconstruction of partially observed high-dimensional time series. However,
there is a lack of theory to support the application of these methods to dependent datas. In this paper,
we propose a general model for multivariate, partially observed time series. We show that the least-
square method with a rank penalty leads to reconstruction error of the same order as for independent
datas. Moreover, when the time series has some additional properties such as periodicity or smoothness,
the rate can actually be faster than in the independent case.
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1. Introduction

Low-rank matrix completion methods were studied in depth in the past 10 years. This was partly
motivated by the popularity of the Netflix prize [9] in the machine learning community. The first theo-
retical papers on the topic covered matrix recovery from a few entries observed exactly [13, 14, 26]. The
same problem was studied with noisy observations in [11, 12, 27, 23]. The minimax rate of estimation
was derived by [30]. Since then, many estimators and many variants of this problem were studied in the
statistical literature, see [42, 28, 32, 29, 38, 46, 18, 16, 4, 36, 37] for instance.
High-dimensional time series often have strong correlation, and it is thus natural to assume that the ma-
trix that contains such a series is low-rank (exactly, or approximately). Many econometrics models are
designed to generate series with such a structure. For example, the factor model studied in [31, 33, 34, 22,
17, 24] can be interpreted as a high-dimensional autoregressive (AR) process with a low-rank transition
matrix. This model (and variants) was used and studied in signal processing [8] and statistics [42, 1].
Other papers focused on a simpler model where the series is represented by a deterministic low-rank
trend matrix plus some possibly correlated noise. This model was used by [51] to perform prediction,
and studied in [3].
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It is thus tempting to use low-rank matrix completion algorithms to recover partially observed high-
dimensional time series, and this was indeed done in many applications: [50, 48, 20] used low-rank matrix
completion to reconstruct data from multiple sensors. Similar techniques were used by [40, 39] to recover
the electricity consumption of many households from partial observations, by [5] on panel data in econom-
ics, and by [43, 7] for policy evaluation. Some algorithms were proposed to take into account the temporal
updates of the observations (see [45]). However, it is important to note that 1) all the aforementioned
theory on matrix completion, for example [30], was only developed for independent observations, and 2)
most papers using these techniques on time series did not provide any theoretical justification that it can
be used on dependent observations. One must however mention that [21] obtained theoretical results for
univariate time series prediction by embedding the time series into a Hankel matrix and using low-rank
matrix completion.
In this paper, we study low-rank matrix completion for partially observed high-dimensional time series
that indeed exhibit a temporal dependence. We provide a risk bound for the reconstruction of a rank-k
matrix, and a model selection procedure for the case where the rank k is unknown. Under the assumption
that the univariate series are φ-mixing, we prove that we can reconstruct the matrix with a similar error
than in the i.i.d case in [30]. If, moreover, the time series has some additional properties, as the ones
studied in [3] (periodicity or smoothness), the error can even be smaller than in the i.i.d case. This is
confirmed by a short simulation study.
From a technical point of view, we start by a reduction of the matrix completion problem to a structured
regression problem as in [38]. But on the contrary to [38], we have here dependent observations. We thus
follow the technique of [2] to obtain risk bounds for dependent observations. In [2], it is shown that one
can obtain risk bounds for dependent observations that are similar to the risk bounds for independent
observations under a φ-mixing assumption, using Samson’s version of Bernstein inequality [44]. For model
selection, we follow the guidelines of [41]: we introduce a penalty proportional to the rank. Using the
previous risk bounds, we show that this leads to an optimal rank selection.
The paper is organized as follows. In Section 2, we introduce our model, and the notations used through-
out the paper. In Section 3, we provide the risk analysis when the rank k is known. We then describe our
rank selection procedure in Section 4 and show that it satisfies a sharp oracle inequality. The numerical
experiments are in Section 5. All the proofs are gathered in Section 6.

Notations and basic definitions. Throughout the paper, Md,T (R) is equipped with the Fröbénius
scalar product

〈., .〉F : (A,B) ∈Md,T (R)2 7−→ trace(A∗B) =
∑
j,t

Aj,tBj,t

or with the spectral norm

‖.‖op : A ∈Md,T (R) 7−→ sup
‖x‖=1

‖Ax‖ = σ1(A).

Let us finally remind the definition of the φ-mixing condition on stochastic processes. Given two σ-
algebras A and B, we define the φ-mixing coefficient between A and B by

φ(A,B) := sup {|P(B)− P(B|A)| ; (A,B) ∈ A× B, P(A) 6= 0} .

When A and B are independent, φ(A,B) = 0, more generally, this coefficient measure how dependent A
and B are. Given a process (Zt)t∈N, we define its φ-mixing coefficients by

φZ(i) := sup {φ(A,B) ; t ∈ Z, A ∈ σ(Xh, h 6 t), B ∈ σ(X`, ` > t+ i)} .

Some properties and examples of applications of φ-mixing coefficients can be found in [19].

2. Setting of the problem and notations

Consider d, T ∈ N∗ and a d × T random matrix M. Assume that the rows M1,., . . . ,Md,. are time
series and that Y1, . . . , Yn are n ∈ {1, . . . , d× T} noisy entries of the matrix M:

(1) Yi = trace(X∗iM) + ξi ; i ∈ {1, . . . , n},
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where X1, . . . ,Xn are i.i.d random matrices distributed on

X := {eRd(j)eRT (t)∗ ; 1 6 j 6 d and 1 6 t 6 T},
and ξ1, . . . , ξn are i.i.d. centered random variables, with standard deviation σξ > 0, such that Xi and ξi
are independent for every i ∈ {1, . . . , n}. Note that, as X1, . . . ,Xn are independent, we do not exclude
multiple observations of the same entry. That is, our model of matrix completion is the one studied
in [30, 42, 38] rather than the model in [11, 12] where this is not possible.
Let us now describe the time series structure of each M1,., . . . ,Md,.. We assume that each series Mj,.

can be decomposed as a deterministic component Θ0
j,. plus some random noise εj,.. The noise can exhibit

some temporal dependence: εj,t will not be independent from εj,t′ in general. Moreover, as discussed
in [3], Θ0

j,. can have some more structure: Θ0
j,. = T0

j,.Λ for some known matrix Λ. Examples of such
structures (smoothness or periodicity) are discussed below. This gives

(2)
{

M = Θ0 + ε
Θ0 = T0Λ

,

where ε is a d× T random matrix having i.i.d. and centered rows, Λ ∈ Mτ,T (C) (τ 6 T ) is known and
T0 is an unknown element ofMd,τ (R) such that

(3) sup
j,t
|T0

j,t| 6
m0

mΛ(τ)
with m0 > 0 and 1 ∨ sup

T∈Md,τ (R)

{
supj,t |(TΛ)j,t|

supj,` |Tj,`|

}
6 mΛ(τ) <∞.

Note that this leads to

sup
j,t
|Θ0

j,t| 6 sup
j,`
|T0

j,`| ·
supj,t |(T0Λ)j,t|

supj,` |T0
j,`|

6 m0

and
mΛ := sup

j,t
|Λj,t| <∞.

We now make the additional assumption that the deterministic component is low-rank, reflecting the
strong correlation between the different series. Precisely, we assume that T0 is of rank k ∈ {1, . . . , d∧T}:
T0 = U0V0 with U0 ∈Md,k(R) and V0 ∈Mk,τ (R). The rows of the matrix V0 may be understood as
latent factors. By Equations (1) and (2), for any i ∈ {1, . . . , n},

(4) Yi = trace(X∗iΘ
0) + ξi

with ξi := trace(X∗i ε) + ξi. It is reasonable to assume that Xi and ξi, which are random terms related
to the observation instrument, are independent to ε, which is the stochastic component of the observed
process. Then, since ξi is a centered random variable and ε is a centered random matrix,

E(ξi) = E(〈Xi, ε〉F ) + E(ξi) =

d∑
j=1

T∑
t=1

E((Xi)j,t)E(εj,t) = 0.

This legitimates to consider the following least-square estimator of the matrix Θ0:

(5)

{
Θ̂k,τ = T̂k,τΛ

T̂k,τ ∈ arg min
T∈Sk,τ

rn(TΛ) ,

where Sk,τ is a subset of

Md,k,τ :=

{
UV ; (U,V) ∈Md,k(R)×Mk,τ (R) s.t. sup

j,`
|Uj,`| 6

√
m0

kmΛ(τ)

and sup
`,t
|V`,t| 6

√
m0

kmΛ(τ)

}
,

and

rn(A) :=
1

n

n∑
i=1

(Yi − 〈Xi,A〉F )2 ; ∀A ∈Md,T (R).
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Remark 2.1. In many cases, we will simply take Sk,τ = Md,k,τ . However, in many applications, it is
natural to impose stronger constraints on the estimators. For example, in nonnegative matrix factoriza-
tion, we would have

Sk,τ = {UV ; (U,V) ∈Md,k,τ s.t. ∀j, `, t, Uj,` > 0 and V`,t > 0}

(see e.g. [40]). So for now, we only assume that Sk,τ ⊂Md,k,τ . Later, we will specify some sets Sk,τ .

Let us conclude this section with two examples of matrices Λ corresponding to usual time series structures.
On the one hand, if the trend of the multivalued time series M is τ -periodic, with T ∈ τN∗, one
can take Λ = (Iτ | · · · |Iτ ), and then mΛ = 1 and mΛ(τ) := 1 works. So, in this case, note that the
usual matrix completion model of [30] is part of our framework by taking T = τ . On the other hand,
assume that for any j ∈ {1, . . . , d}, the trend of Mj,. is a sample on {0, 1/T, 2/T, . . . , 1} of a function
fj : [0, 1] → R belonging to a Hilbert space H. In this case, if (en)n∈Z is a Hilbert basis of H, one can
take Λ = (en(t/T ))|n|6N,16t6T . For instance, if fj ∈ L2([0, 1];R), a natural choice is the Fourier basis
en(t) = e2iπnt/T , and then mΛ = 1 and

supj,t |(TΛ)j,t|
supj,` |Tj,`|

6
1

supj,` |Tj,`|
· sup
j,t

τ∑
`=1

|Tj,`e
2iπnt/T | 6 τ =: mΛ(τ).

Here, the usual matrix completion model of [30] is not part of our framework because T is possibly huge
and to take τ = T implies that the coefficients of the matrix T0 are all unrealistically small by Condition
(3). However, wathever the time series structure taken into account via Λ, our model is designed for
small values of τ . Else, the model of [30] is appropriate. So, when Λ is the previous Fourier matrix,
and in general when mΛ(τ) is a non constant increasing function of τ , we assume that τ ∈ J1, τ0K with
τ0 � T .

3. Risk bound on T̂k,τ

3.1. Upper bound. First of all, since X1, . . . ,Xn are i.i.d X -valued random matrices, there exists a
probability measure Π on X such that

PXi
= Π ; ∀i ∈ {1, . . . , n}.

In addition to the two norms on Md,T (R) introduced above, let us consider the scalar product 〈., .〉F,Π
defined onMd,T (R) by

〈A,B〉F,Π :=

∫
Md,T (R)

〈X,A〉F 〈X,B〉FΠ(dX) ; ∀A,B ∈Md,T (R).

Remarks:
(1) For any deterministic d× T matrices A and B,

〈A,B〉F,Π = E(〈A,B〉n)

where 〈., .〉n is the empirical scalar product onMd,T (R) defined by

〈A,B〉n :=
1

n

n∑
i=1

〈Xi,A〉F 〈Xi,B〉F .

However, note that this relationship between 〈., .〉F,Π and 〈., .〉n doesn’t hold anymore when A
and B are random matrices.

(2) Note that if the sampling distribution Π is uniform, then ‖.‖2F,Π = (dT )−1‖.‖2F .
Notation. For every i ∈ {1, . . . , n}, let χi be the couple of coordinates of the nonzero element of Xi,
which is a E-valued random variable with E = {1, . . . , d} × {1, . . . , T}.

In the sequel, ε, ξ1, . . . , ξn and X1, . . . ,Xn fulfill the following additional conditions.
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Assumption 3.1. The rows of ε are independent and identically distributed. There is a process (εt)t∈Z
such that each εj,. has the same distribution than (ε1, . . . , εT ), and such that

Φε := 1 +

n∑
i=1

φε(i)
1/2 <∞.

Assumption 3.2. There exists a deterministic constant mε > 0 such that

sup
j,t
|εj,t| 6 mε.

Moreover, there exist two deterministic constants cξ, vξ > 0 such that

sup
i∈{1,...,n}

E(ξ2
i ) 6 vξ

and, for every q > 3,

sup
i∈{1,...,n}

E(|ξi|q) 6
vξc

q−2
ξ q!

2
.

This assumption means that the εj,t’s are bounded, and that the ξi’s are sub-exponential random vari-
ables. Sub-exponential random variables include bounded and Gaussian variables as special cases. Note
that this is the assumption made on the noise for the matrix completion in the i.i.d. framework in the
papers mentioned above [38, 30]. The boundedness of the εj,t’s can be seen as quite restrictive. However,
we are not aware of any way to avoid this assumption in this setting. Indeed, it allows to apply Samson’s
concentration inequality for φ-mixing processes (see Samson [44]). In [2], the authors prove sharp spar-
sity inequalities under a similar assumption, using Samson’s inequality. They also show that the other
concentration inequalities known for time series lead to slow rates of convergence.

Assumption 3.3. There is a constant cΠ > 0 such that

Π({eRd(j)eRT (t)∗}) 6 cΠ
dT

; ∀(j, t) ∈ E .

Note that when the sampling distribution Π is uniform, Assumption 3.3 is trivially satisfied with cΠ = 1.

Theorem 3.4. Let α ∈ (0, 1). Under Assumptions 3.1, 3.2 and 3.3, if n > max(d, τ), then

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π + c3.4

[
k(d+ τ)

log(n)

n
+

1

n
log

(
4

α

)]
with probability larger than 1−α, where c3.4 is a constant depending only on m0, vξ, cξ, mε, mΛ, Φε and
cΠ.

Actually, from the proof of the theorem, we know c3.4 explicitly. Indeed,

c3.4 = 72m0mΛcξ + 5c6.4,1 + 9m0c6.4,2

where c6.4,1 and c6.4,2 are constants (explicitly given in Theorem 6.4 in Section 6) depending themselves
only on m0, vξ, cξ, mε, mΛ, Φε and cΠ.

Remarks:
(1) Note that another classic way to formulate the risk bound in Theorem 3.4 is that for every s > 0,

with probability larger than 1− e−s,

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π + c3.4

[
k(d+ τ)

log(n)

n
+
s

n

]
.

(2) The φ-mixing assumption (Assumption 3.1) is known to be restrictive, we refer the reader to [19]
where it is compared to other mixing conditions. Some examples are provided in Examples 7,
8 and 9 in [2], including stationary AR processes with a noise that has a density with respect
to the Lebesgue measure on a compact interval. Interestingly, [2] also discusses weaker notions
of dependence. Under these conditions, we could here apply the inequalities used in [2], but it
is important to note that this would prevent us from taking λ of the order of n in the proof of
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Proposition 6.1. In other words, this would deteriorate the rates of convergence. A complete
study of all the possible dependence conditions on ε goes beyond the scope of this paper.

3.2. Lower bound. In the case where T = τ and Λ = IT , the model in [30] is included in our model,
and corresponds to the case where the temporally dependent noise ε is null: ε = 0. This means that the
lower bound provided by Theorem 5 in [30] holds in our setting. That is, when the ξi’s are N (0, 1) and
the Xi’s are uniform (so cΠ = 1), there are absolute constants cinf , β > 0 such that for any k 6 n

d∨T ,

inf
Â

sup
Θ0∈Md,k,T

P
(
‖Â−Θ0‖2F,Π > cinf

k(d+ T )

n

)
> 1− β.

In other words, the bound in Theorem 3.4 is tight, maybe up to the log(n) term (there is also a log term
in the upper bounds of [30]). We now extend this result to the case τ 6 T , in the special case where the
deterministic component of the series is τ -periodic: Λ = (Iτ | . . . |Iτ ).

Theorem 3.5. Assume the ξi’s are N (0, 1), the Xi’s are uniform (so cΠ = 1) and the temporally
dependent noise ε = 0. There are absolute constants cinf , β > 0 such that for any τ ∈ {1, . . . , T}, in the
case Λ = (Iτ | . . . |Iτ ), for any k 6 (256m2

0n/(d ∨ τ))1/3,

inf
Â

sup
Θ0∈Md,k,τ

P
(
‖Â−Θ0Λ‖2F,Π > cinf

k(d+ τ)

n

)
> 1− β.

For τ = T , we recover Theorem 5 in [30], but our result also guarantees that the bound in Theorem 3.4
is tight (up to log terms) even when τ < T .

4. Model selection

The purpose of this section is to provide a selection method of the parameter k. First, for the sake of
readability, Sk,τ and T̂k,τ are respectively denoted by Sk and T̂k in the sequel. The adaptive estimator
studied here is Θ̂ := T̂Λ, where T̂ := T̂k̂,

k̂ ∈ arg min
k∈K
{rn(T̂kΛ) + pen(k)} with K = {1, . . . , k∗} ⊂ N∗,

and

pen(k) := 16cpen
log(n)

n
k(d+ τ) with cpen = 2

(
1

c6.1
∧ λ∗

)−1

.

Note that the value of the constant cpen could be deduced from the proofs. It would however depend on
quantities that are unknown in practice, such as cΠ or Φε. Moreover, the value of cpen provided by the
proofs would probably be too large for practical purposes. In practice, we recommend to use the slope
heuristics to estimate this constant. The slope heuristic is defined as follows: for each C > 0, let us define

k(C) ∈ arg min
k∈K
{rn(T̂kΛ) + C · k}.

Then, let us define C̃ as the location of the largest jump of the function

C 7−→ rn(T̂k(C)Λ)

and choose the rank k̃ = k(2C). This popular procedure leads to good practical results in most situations.
Its theoretical properties are available only in limited situations (see [6]), though, so we will focus our
theoretical result to k̂.

Theorem 4.1. Under Assumptions 3.1, 3.2 and 3.3, if n > max(d, τ), then

‖Θ̂−Θ0‖2F,Π 6 4 min
k∈K

{
3 min

T∈Sk
‖(T−T0)Λ‖2F,Π + c4.1,1k(d+ τ)

log(n)

n

}
+
c4.1,1
n

log

(
4k∗

α

)
+

c4.1,2
n

with probability larger than 1− α, where
c4.1,1 = 4c3.4 + 16cpen + 72m0cξ and c4.1,2 = 9c6.4,2m0.
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5. Numerical experiments

This section describes an experimental study of the estimator of the matrix T0 introduced at Section
2. In particular, we compare on simulated periodic data the completion procedure using the periodicity
information, to the standard procedure, and we observe a clear improvement. We also illustrate our
results on real data from Paris sharing bike system.
In the case where no particular temporal structure is used, that is, Λ = IT , standard packages such as
softImpute [25] could be used. However, this is not necessarily the case for a general Λ, thus we imple-
mented a standard alternate least square (ALS) procedure. That is, we iterate U := arg minU rn(UVΛ)
and V := arg minV rn(UVΛ) until convergence. Each step is a linear regression and has an explicit
solution. Despite its extreme simplicity, this type of alternate optimization is known to lead to very
good results in practice [35], and such a method is actually used by softImpute [25]. The code of all the
experiments can be found on the third author webpage https://amelierosier8.wixsite.com/website.

5.1. Experiments on simulated datas. The experiments in this subsection are done on datas simu-
lated the following way:

(1) We generate a matrix T0 = U0V0 with U0 ∈ Md,k(R) and V0 ∈ Mk,τ (R). Each entries of U0

and V0 are generated independently by simulating i.i.d. N (0, 1) random variables.
(2) We multiply T0 by a known matrix Λ ∈ Mτ,T (R). This matrix depends on the time series

structure assumed on M. Here, we consider the periodic case: T = pτ , p ∈ N∗ and Λ =
(Iτ | . . . |Iτ ).

(3) The matrix M is then obtained by adding a matrix ε such that ε1,., . . . , εd,. are generated inde-
pendently by simulating i.i.d. AR(1) processes with compactly supported error in order to meet
the φ-mixing condition. We multiply ε by the coefficient σε which value will vary according to
the experiments. The goal is to evaluate the impact of adding more noise in the estimation.
Only 30% of the entries of M, taken randomly, are observed. These entries are then corrupted
by i.i.d. observation errors ξ1, . . . , ξn  N (0, 0.012). To meet Assumption 3.2, we also consider
uniform errors ξ1, . . . , ξn  U([−a, a]), where a =

√
3/100 ≈ 0.017 to keep the same variance

than previously. The first experiments will show that the estimation remains quite good even if
the ξi’s are not bounded.

Given the observed entries, our goal is to complete the missing values of the matrix and check if they
correspond to the simulated data in two different cases:

(1) Our first model doesn’t take into account the time series structure in the matrix M. Thus, we
simply apply our fonction als to the dataframe containing the values of the noisy entries in
addition to their position in the matrix M (number of the line j and number of the column t
with 1 6 j 6 d, 1 6 t 6 T ). The output of the function gives directly an estimator of the matrix
Θ0.

(2) Our second model takes into account the time series structure in M and more precisely the
periodicity of the time series datas. In order to have an estimator of the matrix Θ0, some
transformation are required on the data: the fonction als is now applied to the dataframe in
which all the observed entries at the position (j, t) (1 6 j 6 d, 1 6 t 6 T ) are now moved to
the position (j, t[mod]τ). The output of this function needs to be remultiplied by Λ to have an
estimator of Θ0.

We will evaluate the MSE of the estimator with respect to several parameters and show that there is a
gain to take into account the time series structure in the model. As expected, the more Θ0 is perturbed,
either with ε or ξ1, . . . , ξn, the more difficult it is to reconstruct the matrix. In the same way, increasing
the value of the rank k will lead to a worse estimation. Finally, we study the effect of replacing the
uniform error in each AR(1) by a Gaussian one.

The first experiments are done with d = 1000, T = 100 and τ = 25 to be in concordance with the
experiments on real data (see subsection 5.3). Here are the MSE obtained for both models, 3 val-
ues of the rank k and for two kinds of observation errors ξ1, . . . , ξn: Gaussian N (0, 0.012) v.s. uniform

https://amelierosier8.wixsite.com/website
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U([−0.017, 0.017]). The errors in the AR(1) processes generating the rows of ε remain uniform U([−1, 1]).

MSE ξi  N (0, 0.012) ξi  U([−0.017, 0.017])
Model w/o time series struct. 0.00012 0.00014
Model with time series struct. 0.00009 0.00010

Table 1. MSE for both models, k = 2.

MSE ξi  N (0, 0.012) ξi  U([−0.017, 0.017])
Model w/o time series struct. 0.00018 0.00022
Model with time series struct. 0.00012 0.00013

Table 2. MSE for both models, k = 5.

MSE ξi  N (0, 0.012) ξi  U([−0.017, 0.017])
Model w/o time series struct. 0.00026 0.00045
Model with time series struct. 0.00013 0.00017

Table 3. MSE for both models, k = 8.

Thus, both of the rank k and the nature of the error considered for the ξi’s seem to play a key role on
the reduction of the MSE. Regarding the rank k (d, T and τ being fixed) being fixed), our numerical
results are consistent with respect to the theoretical rate of convergence of order O(k(d + τ) log(n)/n)
obtained at Theorem 3.4 when we consider the time series structure of the data (see Tables 1, 2 and 3).
Indeed, for both models, the MSE is increasing when the value of the rank k is higher but this increase
is always more significant in the model without time series structure, which is also consistent with the
rate of convergence of order O(k(d+ T ) log(n)/n) obtained in this case. Note that when we look at one
model at a time, for each tested values of k, whatever the distribution of the errors ξ1, . . . , ξn (Gaussian
or uniform), the MSE remains of same order with a slight improvement when we considered Gaussian
errors. This justifies to take ξ1, . . . , ξn  N (0, 0.012) in the following experiments.

This study can be summarized in the following experiment which shows the evolution of the MSE with
respect to the rank k (k = 1, . . . , 10) for both models. Once again, we take d = 1000, T = 100, τ = 25
but the ξi’s remain i.i.d. N (0, 0.012) random variables, and ε1,., . . . , εd,. are i.i.d. AR(1) processes with
Gaussian errors.
As expected (see Figure 1), the MSE is much better with the model taking into account the time series
structure. The MSE in both cases degrades when the value of the rank is increasing, the maximum being
reached for k = 10 with the value 0.0173 for the time series model compared to 0.0206 in the classic case,
which still remains very low.

As we said, the estimation seems to be more precise with Gaussian errors in ε, and the more Θ0 is
perturbed via ε or ξ1, . . . , ξn, the more the completion process is complicated and the MSE degrades.
So, we now evaluate the consequence on the MSE of changing the value of σε. For both models (with
or without taking into account the time series structure), the following figure shows the evolution of the
MSE with respect to σε when the errors in ε are N (0, 1/3) random variables and all the other parameters
remain the same than previously, we are still considering 30% of observed entries.
Once again, as expected (see Figure 2), the MSE with time series model is smaller than the one with the
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Figure 1. Models (time series (dotted line) v.s. classic (solid line)) MSEs with respect
to the rank k.
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Figure 2. Models (time series (dotted line) v.s. classic (solid line)) MSEs with respect
to σε, Gaussian errors.

classic model for each values of σε. The fact that the MSE increases with respect to σε with both models
illustrates that more noise always complicates the completion process. In our experiments, the values of
σε range from 0.02 to 2. We can notice that, the more we add noise with σε, the more significant the
gap between the MSE of both models is. With σε equal to 2, the MSE reaches the value 0.2241 for the
time series model and 0.3040 for the classic one. Our method has increasing difficulty in reconstructing
the matrix when we add too much noise to the model. See also Table 4.
Let us do the same experiment but with uniform U([−1, 1]) errors in the AR(1) processes generating the
rows of ε.
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Min. MSE Max. MSE
Model w/o time series struct. 0.0023 0.3040
Model with time series struct. 0.0021 0.2241

Table 4. Min. and max. values reached by the MSE with Gaussian errors in ε.
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Figure 3. Models (time series (dotted line) v.s. classic (solid line)) MSEs with respect
to σε, uniform errors.

The curves shape on Figure 3 is pretty much the same as in the previous graph: the MSE for the model
taking into account the time series structure is still smaller than for the classic model and this difference
between the two models is even greater when we increase the value of σε. However, this time, the MSE
for both models reaches higher values, leading to a huge misestimation when σε = 2 (see Table 5).

Min. MSE Max. MSE
Model w/o time series struct. 0.0082 1.4088
Model with time series struct. 0.0076 0.9027

Table 5. Min. and max. values reached by the MSE with uniform errors in ε.

Finally, as mentioned, the previous numerical experiments were done by assuming that k is known,
which is mostly uncommon in practice. So, our purpose in the last part of this section is to implement
the model selection method introduced at Section 4. Let us recall the criterion to minimize:{

crit(k) = rn(T̂kΛ) + pen(k)
pen(k) = ccalk(d+ τ) log(n)/n

; k ∈ {1, . . . , 20}.

In the sequel, ξ1, . . . , ξn  N (0, 0.5), ε1,., . . . , εd,. are i.i.d. AR(1) processes with N (0, 1/3) errors, and
σε = 0.2. Percentage of observed entries is still 30%. The penalty term in crit(.) depends on the constant
ccal > 0 which is calibrated here by using the slope heuristic presented at Section 4.
On 20 independent experiments, Table 6 gives the mean MSE obtained for the estimator computed with
the true rank k = 5 and the associated adaptative estimator computed with k̂ selected by minimizing
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the criterion studied in Section 4. Table 7 gives the frequence of the different values of k selected. Our

Mean MSE for T̂kΛ 0.10712
Mean MSE for T̂k̂Λ 0.17601

Table 6. Mean MSE over 20 simulations for T̂kΛ and T̂k̂Λ.

method select the true k 8 times over 20.

k selected 4 5 6 7 8 9
Frequence 0.05 0.4 0.1 0.15 0.2 0.1

Table 7. Frequence of k-values selected

5.2. Experiments on real datas. Modern transportation data are often high-dimensional and have
strong patterns including periodicity. For this reason, matrix factorization methods are very popular in
this field [15, 47]. The data used in this section comes from the funFEM package (the real time data are
available at https://developer.jcdecaux.com/). We used the Velib data set which contains data from
the bike sharing system of Paris. These data provide the occupancy (number of available bikes/number of
bike docks) of 1189 bike stations over one week. The data were collected every hour during the following
period: Sunday 1st Sept. - Sunday 7th Sept., 2014. We removed the time points collected during the
week-end (50 time points in total) insofar as the week-end occupancy of the bike stations differs from the
week. Loading profiles of 6 different stations (week-end excluded) are represented on Figure 4.

We clearly notice the daily periodic behaviour of our time series. Thus, the experiments of this section
are done with the real time data in the matrix M of dimensions d = 1189, τ = 25 (which corresponds
to one day) and T = 125 (four days, from Monday to Thursday). Once again, we evaluate the MSE of
the estimator with and without taking into account the time series structure, that is the periodicity in
this case. Different percentages of the entries observed are tested. As for the simulated data, for the
model without considering the temporal structure of our series, we apply directly our function als on
the dataframe containing the observed entries with their position in the matrix, without any additional
transformation on the data. The output gives directly an estimator of M. As regards the model consid-
ering the periodic behaviour of the Velib time series in M, the ALS optimization procedure is applied
on the dataframe which has received the same transformation than the one explained at point (2) in
the previous section. Once again, the output needs to be multiplied by Λ to have an estimator of M at
the end. The MSEs obtained for both models are gathered in Table 8. We study how the MSEs vary
according to the percentage of observed entries.

15% 30%
Model w/o time series struct. 0.0609 0.0315
Model with time series struct. 0.0436 0.0381

Table 8. MSE according to the number of observed entries (%).

Of course, the real data is not exactly periodic (as can bee seen in some of the series in Figure 4. This
means that the bias term of in Theorem 3.4, is larger for the method imposing periodicity than for the
standard method: minT∈Sk,τ ‖(T−T0)Λ‖F,Π ≥ minT∈Sk,T ‖T−T0‖F,Π. On the other hand, the variance
term of the method using periodicity is much smaller: k(d+τ)/n ≤ k(d+T )/n. Thus, it is expected that

https://developer.jcdecaux.com/
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Figure 4. Occupancy of six Velib stations over one week (week-end excluded).

when the sample size n is small, using periodicity can improve on the standard method, but that this is
not the case for larger values of n. This is perfectly illustrated by our experiments: Table 8 show that
when we observe 15% of the original data, exploiting periodicity improves on the reconstruction of the
data by the standard method by more than 25%. On the other hand, when we the sample size doubles,
the standard method already performs slightly better.

6. Proofs

This section is organized as follows. We first state an exponential inequality that will serve as a basis
for all the proofs. From this inequality, we prove Theorem 6.4, a prototype of Theorem 3.4 that holds
when the set Sk,τ is finite or infinite but compact by using ε-nets (ε > 0). In the proof of Theorem 3.4,
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we provide an explicit risk-bound by using the ε-net Sεk,τ of Sk,τ constructed in Candès and Plan [12],
Lemma 3.1.

6.1. Exponential inequality. This sections deals with the proof of the following exponential inequality,
the cornerstone of the paper, which is derived from the usual Bernstein inequality and its extension to
φ-mixing processes due to Samson [44].

Proposition 6.1. Let T ∈ Sk,τ . Under Assumptions 3.1, 3.2 and 3.3,

(6) E
[
exp

(
λ

4

((
1 + c6.1

λ

n

)
(R(T0Λ)−R(TΛ)) + rn(TΛ)− rn(T0Λ)

))]
6 1

and

(7) E
[
exp

(
λ

4

((
1− c6.1

λ

n

)
(R(TΛ)−R(T0Λ)) + rn(T0Λ)− rn(TΛ)

))]
6 1

for every T ∈ Sk,τ and λ ∈ (0, nλ∗), where

R(A) := E(|Y1 − 〈X1,A〉F |2) ; ∀A ∈Md,T (R),

c6.1 = 4 max{4m2
0, 4vξ, 4m

2
ε, 2m

2
εΦ

2
εcΠ} and λ∗ = (16m0 max{m0,mε, cξ})−1.

Proof of Proposition 6.1. The proof relies on Bernstein’s inequality as stated in [10], that we remind in
the following lemma.

Lemma 6.2. Let T1, . . . , Tn be some independent and real-valued random variables. Assume that there
are v > 0 and c > 0 such that

n∑
i=1

E(T 2
i ) 6 v

and, for any q > 3,
n∑
i=1

E(T qi ) 6
vcq−2q!

2
.

Then, for every λ ∈ (0, 1/c),

E

[
exp

[
λ

n∑
i=1

(Ti − E(Ti))

]]
6 exp

(
vλ2

2(1− cλ)

)
.

We will also use a variant of this inequality for time series due to Samson, stated in the proof of Theorem
3 in [44].

Lemma 6.3. Consider m ∈ N∗, M > 0, a stationary sequence of Rm-valued random variables Z =
(Zt)t∈Z, and

ΦZ := 1 +

T∑
t=1

φZ(t)1/2,

where φZ(t), t ∈ Z, are the φ-mixing coefficients of Z. For every smooth and convex function f :
[0,M ]T → R such that ‖∇f‖ 6 L a.e, for any λ > 0,

E(exp(λ(f(Z1, . . . , ZT )− E[f(Z1, . . . , ZT )]))) 6 exp

(
λ2L2Φ2

ZM
2

2

)
.

Let T ∈ Sk,τ be arbitrarily chosen. Consider the deterministic map X : E →Md,T (R) such that

Xi = X(χi) ; ∀i ∈ {1, . . . , n},

Ξi := (ξi, χi) for any i ∈ {1, . . . , n}, and h : R× E → R the map defined by

h(x, y) :=
1

n
(2x〈X(y), (T0 −T)Λ〉F + 〈X(y), (T0 −T)Λ〉2F ) ; ∀(x, y) ∈ R× E .
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Note that

h(Ξi) =
1

n
(2ξi〈Xi, (T

0 −T)Λ〉F + 〈Xi, (T
0 −T)Λ〉2F )

=
1

n
((ξi + 〈Xi, (T

0 −T)Λ〉F )2 − ξ2

i )

=
1

n
((Yi − 〈Xi,TΛ〉F )2 − (Yi − 〈Xi,T

0Λ〉F )2)

and
n∑
i=1

(h(Ξi)− E(h(Ξi))) = rn(TΛ)− rn(T0Λ) +R(T0Λ)−R(TΛ).

Now, replacing ξi by its expression in terms of Xi, ξi and ε,
n∑
i=1

(h(Ξi)− E(h(Ξi))) =

n∑
i=1

(
2

n
ξi〈Xi, (T

0 −T)Λ〉F
)

+

n∑
i=1

(
2

n
〈Xi, ε〉F 〈Xi, (T

0 −T)Λ〉F
)

+

n∑
i=1

(
1

n
〈Xi, (T

0 −T)Λ〉2F − E(h(Ξi))

)

=:

n∑
i=1

Ai +

n∑
i=1

Bi +

n∑
i=1

(Ci − E(h(Ξi))).

In order to conclude, by using Lemmas 6.2 and 6.3, let us provide suitable bounds for the exponentiel
moments of each terms of the previous decomposition:

• Bounds for the Ai’s and the Ci’s. First, note that since X1, ξ1 and ε are independent,

R(TΛ)−R(T0Λ) = E((Y1 − 〈X1,TΛ〉F )2 − (Y1 − 〈X1,T
0Λ〉F )2)

= 2E(ξ1〈X1, (T
0 −T)Λ〉F ) + E(〈X1, (T

0 −T)Λ〉2F )

= 2〈E(〈X1, (T
0 −T)Λ〉FX1),E(ε)〉F

+2E(ξ1)E(〈X1, (T
0 −T)Λ〉F ) + ‖(T0 −T)Λ‖2F,Π

= ‖(T0 −T)Λ‖2F,Π.(8)

On the one hand,

E(A2
i ) 6

4

n2
E(ξ2

i )E(〈Xi, (T
0 −T)Λ〉2F ) 6

4

n2
vξ(R(T0Λ)−R(TΛ))

thanks to Equality (8). Moreover,

E(|Ai|q) 6
2q

nq
E(|ξi|q)E(〈Xi, (T

0 −T)Λ〉qF )

6

(
4cξm0

n

)q−2
q!

2
· 4vξ
n2

(R(T0Λ)−R(TΛ)).

So, we can use Lemma 6.2 with

v =
4

n
vξ(R(T0Λ)−R(TΛ)) and c =

4cξm0

n
to obtain:

E

[
exp

(
λ

n∑
i=1

Ai

)]
6 exp

[
2vξ(R(T0Λ)−R(TΛ))λ2

n− 4cξm0λ

]
for any λ ∈ (0, n/(4cξm0)). On the other hand, |Ci| 6 4m2

0/n and

E(C2
i ) =

1

n2
E(〈Xi, (T

0 −T)Λ〉4F ) 6
4m2

0

n2
‖(T0 −T)Λ‖2F,Π =

4

n2
m2

0(R(T0Λ)−R(TΛ))
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thanks to Equality (8). So, we can use Lemma 6.2 with

v =
4

n
m2

0(R(T0Λ)−R(TΛ)) and c =
4m2

0

n

to obtain:

E

[
exp

(
λ

n∑
i=1

(Ci − E(h(Ξi)))

)]
6 exp

[
2m2

0(R(T0Λ)−R(TΛ))λ2

n− 4m2
0λ

]
for any λ ∈ (0, n/(4m2

0)).
• Bounds for the Bi’s. First, write

n∑
i=1

Bi =

n∑
i=1

(Bi − E(Bi|ε)) +

n∑
i=1

E(Bi|ε) =:

n∑
i=1

Di +

n∑
i=1

Ei,

and note that

E(Bi|ε) =
2

n
E(〈Xi, ε〉F 〈Xi, (T

0 −T)Λ〉F |ε)(9)

=
2

n

∑
j,t

E(1χi=(j,t)[(T
0 −T)Λ]χi)εj,t =

2

n

∑
j,t

pj,t[(T
0 −T)Λ]j,tεj,t

and

(10) ‖(T0 −T)Λ‖2F,Π = E(〈Xi, (T
0 −T)Λ〉2F ) = E([(T0 −T)Λ]2χi) =

∑
j,t

pj,t[(T
0 −T)Λ]2j,t,

where
pj,t := P(χ1 = (j, t)) = Π({eRd(j)eRT (t)∗})

for every (j, t) ∈ E . On the one hand, given ε, the Di’s are i.i.d, |Di| 6 8mεm0/n and

E(B2
i |ε) =

4

n2
E(〈Xi, ε〉2F 〈Xi, (T

0 −T)Λ〉2F |ε)

6
4

n2
m2
εE(〈Xi, (T

0 −T)Λ〉2F |ε) =
4

n2
m2
εE(〈Xi, (T

0 −T)Λ〉2F ) =
4

n2
m2
ε(R(T0Λ)−R(TΛ))

thanks to Equality (8). So, conditionnally on ε, we can apply Lemma 6.2 with

v =
4

n
m2
ε(R(T0Λ)−R(TΛ)) and c =

8mεm0

n

to obtain:

E

[
exp

(
λ

n∑
i=1

Di

)∣∣∣∣∣ ε
]
6 exp

[
2m2

ε(R(T0Λ)−R(TΛ))λ2

n− 8mεm0λ

]
for any λ ∈ (0, n/(8mεm0)). Taking the expectation of both sides gives:

E

[
exp

(
λ

n∑
i=1

Di

)]
6 exp

[
2m2

ε(R(T0Λ)−R(TΛ))λ2

n− 8mεm0λ

]
.

On the other hand, let us focus on the Ei’s. Thanks to Equality (9) and since the rows of ε are
independent,

E

[
exp

(
λ

n∑
i=1

Ei

)]
= E

exp

2λ
∑
j,t

pj,t[(T
0 −T)Λ]j,tεj,t


=

d∏
j=1

E

[
exp

(
2λ

T∑
t=1

pj,t[(T
0 −T)Λ]j,tεj,t

)]
.
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Now, for any j ∈ {1, . . . , d}, let us apply Lemma 6.3 to (εj,1, . . . , εj,T ), which is a sample of a
φ-mixing sequence, and to the function fj : [0,mε]

T → R defined by

fj(u1, . . . , uT ) := 2

T∑
t=1

pj,t[(T
0 −T)Λ]j,tut ; ∀u ∈ [0,mε]

T .

Since

‖∇fj(u1, . . . , uT )‖2 = 4

T∑
t=1

p2
j,t[(T

0 −T)Λ]2j,t ; ∀u ∈ [0,mε]
T ,

by Lemma 6.3:

E

[
exp

(
2λ

T∑
t=1

pj,t[(T
0 −T)Λ]j,tεj,t

)]
= E(exp(λ(fj(εj,1, . . . , εj,T )− E[fj(εj,1, . . . , εj,T )])))

6 exp

(
2m2

ελ
2Φ2

ε

T∑
t=1

p2
j,t[(T

0 −T)Λ]2j,t

)
.

Thus, for any λ > 0, by Equalities (8) and (10) together with n 6 dT ,

E

[
exp

(
λ

n∑
i=1

Ei

)]
=

d∏
j=1

E

[
exp

(
2λ

T∑
t=1

pj,t[(T
0 −T)Λ]j,tεj,t

)]

6
d∏
j=1

exp

(
2m2

ελ
2Φ2

ε

T∑
t=1

p2
j,t[(T

0 −T)Λ]2j,t

)

6 exp

2m2
ελ

2Φ2
εcΠ

dT

∑
j,t

pj,t[(T
0 −T)Λ]2j,t

 6 exp

[
2m2

ελ
2Φ2

εcΠ
n

(R(T0Λ)−R(TΛ))

]
.

Therefore, these bounds together with Jensen’s inequality give:

E exp

(
λ

4
[rn(TΛ)− rn(T0Λ) +R(T0Λ)−R(TΛ)]

)
= E

[
exp

(
λ

4

n∑
i=1

(h(Ξi)− E(h(Ξi)))

)]

= E

[
exp

(
λ

4

n∑
i=1

Ai +
λ

4

n∑
i=1

(Ci − E(h(Ξi))) +
λ

4

n∑
i=1

Di +
λ

4

n∑
i=1

Ei

)]

6
1

4

[
E

[
exp

(
λ

n∑
i=1

Ai

)]
+ E

[
exp

(
λ

n∑
i=1

(Ci − E(h(Ξi)))

)]

+ E

[
exp

(
λ

n∑
i=1

Di

)]
+ E

[
exp

(
λ

n∑
i=1

Ei

)]]

6 exp

[
2vξ

1− 4cξm0λ/n
· λ

2

n
(R(T0Λ)−R(TΛ))

]
+ exp

[
2m2

0

1− 4m2
0λ/n

· λ
2

n
(R(T0Λ)−R(TΛ))

]
+ exp

[
2m2

ε

1− 8mεm0λ/n
· λ

2

n
(R(T0Λ)−R(TΛ))

]
+ exp

[
2m2

εΦ
2
εcΠ

λ2

n
(R(T0Λ)−R(TΛ))

]
6 exp

[
cλ
λ2

n
(R(T0Λ)−R(TΛ))

]
with

cλ = max

{
2vξ

1− 4cξm0λ/n
,

2m2
0

1− 4m2
0λ/n

,
2m2

ε

1− 8mεm0λ/n
, 2m2

εΦ
2
εcΠ

}



TIGHT RISK BOUND FOR HIGH DIMENSIONAL TIME SERIES COMPLETION 17

and

0 < λ < nmin

{
1

4cξm0
,

1

4m2
0

,
1

8mεm0

}
.

In particular, for
λ <

n

16m0 max{m0,mε, cξ}
,

we have
cλ 6 max{4m2

0, 4vξ, 4m
2
ε, 2m

2
εΦ

2
εcΠ}.

This ends the proof of the first inequality. �

6.2. A preliminary non-explicit risk bound. We now provide a simpler version of Theorem 3.4, that
holds in the case where Sk,τ is finite: (1) in the following theorem. When this is not the case, we provide
a similar bound using a general ε-net, that is (2) in the theorem.

Theorem 6.4. Consider α ∈]0, 1[.
(1) Under Assumptions 3.1, 3.2 and 3.3, if |Sk,τ | <∞, then

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π +
c6.4,1
n

log

(
2

α
|Sk,τ |

)
with probability larger than 1− α, where c6.4,1 = 32(c−1

6.1 ∧ λ∗)−1.
(2) Under Assumptions 3.1, 3.2 and 3.3, for every ε > 0, there exists a finite subset Sεk,τ of Sk,τ such

that

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π +
c6.4,1
n

log

(
2

α
|Sεk,τ |

)
+

[
c6.4,2 + 8mΛcξ log

(
1

α

)]
ε

with probability larger than 1− α, where c6.4,2 = 4mΛ(v
1/2
ξ + vξ/(2cξ) + mε + 3m0).

Proof of Theorem 6.4. (1) Assume that |Sk,τ | < ∞. For any x > 0, λ ∈ (0, nλ∗) and S ⊂ Md,τ (R),
consider the events

Ω−x,λ,S(T) :=

{(
1− c6.1

λ

n

)
‖(T−T0)Λ‖2F,Π − (rn(TΛ)− rn(T0Λ)) > 4x

}
, T ∈ S

and
Ω−x,λ,S :=

⋃
T∈S

Ω−x,λ,S(T).

By Markov’s inequality together with Proposition 6.1, Inequality (7),

P(Ω−x,λ,Sk,τ ) 6
∑

T∈Sk,τ

P
(

exp

(
λ

4

((
1− c6.1

λ

n

)
(R(TΛ)−R(T0Λ))− (rn(TΛ)− rn(T0Λ))

))
> eλx

)
6 |Sk,τ |e−λx.

In the same way, with

Ω+
x,λ,S(T) :=

{
−
(

1 + c6.1
λ

n

)
‖(T−T0)Λ‖2F,Π + rn(TΛ)− rn(T0Λ) > 4x

}
, T ∈ S

and
Ω+
x,λ,S :=

⋃
T∈S

Ω+
x,λ,S(T),

by Markov’s inequality together with Proposition 6.1, Inequality (6), P(Ω+
x,λ,Sk,τ ) 6 |Sk,τ |e−λx.

Then,
P(Ωx,λ,Sk,τ ) > 1− 2|Sk,τ |e−λx

with

Ωx,λ,S := (Ω−x,λ,S)c ∩ (Ω+
x,λ,S)c ⊂ Ω−x,λ,S(T̂k,τ )c ∩ Ω+

x,λ,S(T̂k,τ )c =: Ωx,λ,Sk,τ (T̂k,τ ).
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Moreover, on the event Ωx,λ,Sk,τ , by the definition of T̂k,τ ,

‖Θ̂k,τ −Θ0‖2F,Π 6
(

1− c6.1
λ

n

)−1

(rn(T̂k,τΛ)− rn(T0Λ) + 4x)

=

(
1− c6.1

λ

n

)−1(
min

T∈Sk,τ
{rn(TΛ)− rn(T0Λ)}+ 4x

)
6

1 + c6.1λn
−1

1− c6.1λn−1
min

T∈Sk,τ
‖(T−T0)Λ‖2F,Π +

8x

1− c6.1λn−1
.

So, for any α ∈]0, 1[, with probability larger than 1− α,

‖Θ̂k,τ −Θ0‖2F,Π 6
1 + c6.1λn

−1

1− c6.1λn−1
min

T∈Sk,τ
‖(T−T0)Λ‖2F,Π +

8λ−1 log(2α−1|Sk,τ |)
1− c6.1λn−1

.

Now, let us take

λ =
n

2

(
1

c6.1
∧ λ∗

)
∈ (0, nλ∗) and x =

1

λ
log

(
2

α
|Sk,τ |

)
.

In particular, c6.1λn−1 6 1/2, and then

1 + c6.1λn
−1

1− c6.1λn−1
6 3 and

8λ−1

1− c6.1λn−1
6 32

(
1

c6.1
∧ λ∗

)−1
1

n
.

Therefore, with probability larger than 1− α,

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π + 32

(
1

c6.1
∧ λ∗

)−1
1

n
log

(
2

α
|Sk,τ |

)
.

(2) Now, assume that |Sk,τ | =∞. Since dim(Md,τ (R)) <∞ and Sk,τ is a bounded subset ofMd,τ (R)
(equipped with T 7→ supj,t |Tj,t|), Sk,τ is compact in (Md,τ (R), ‖.‖F ). Then, for any ε > 0, there
exists a finite subset Sεk,τ of Sk,τ such that

(11) ∀T ∈ Sk,τ ,∃Tε ∈ Sεk,τ : ‖T−Tε‖F 6 ε.

On the one hand, for any T ∈ Sk,τ and Tε ∈ Sεk,τ satisfying (11), since 〈Xi, (T − Tε)Λ〉F =

〈XiΛ
∗,T−Tε〉F for every i ∈ {1, . . . , n},

|rn(TΛ)− rn(TεΛ)| 6 1

n

n∑
i=1

|〈Xi, (T−Tε)Λ〉F (2Yi − 〈Xi, (T + Tε)Λ〉F )|

6
ε

n

n∑
i=1

‖XiΛ
∗‖F

(
2|Yi|+ sup

j,t

∣∣∣∣∣
τ∑
`=1

(T + Tε)j,`Λ`,t

∣∣∣∣∣
)

6 εmΛ

(
2

n

n∑
i=1

|Yi|+ 2m0

)
6 c1(ξ1, . . . , ξn)ε(12)

with

c1(ξ1, . . . , ξn) := 2mΛ

(
1

n

n∑
i=1

|ξi|+ mε + 2m0

)
,

and thanks to Equality (8),

|R(TΛ)−R(TεΛ)| = |R(TΛ)−R(T0Λ)− (R(TεΛ)−R(T0Λ))|
= |‖(T−T0)Λ‖2F,Π − ‖(Tε −T0)Λ‖2F,Π|
6 E(|〈Xi, (T−Tε)Λ〉F 〈Xi, (T + Tε − 2T0)Λ〉F |) 6 c2ε(13)

with c2 = 4m0mΛ. On the other hand, consider

(14) T̂ε
k,τ = arg min

T∈Sεk,τ
‖T− T̂k,τ‖F .
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On the event Ωx,λ,Sεk,τ with x > 0 and λ ∈ (0, nλ∗), by the definitions of T̂ε
k,τ and T̂k,τ , and

thanks to Inequalities (12) and (13),

‖Θ̂k,τ −Θ0‖2F,Π 6 ‖(T̂ε
k,τ −T0)Λ‖2F,Π + c2ε 6

(
1− c6.1

λ

n

)−1

(rn(T̂ε
k,τΛ)− rn(T0Λ) + 4x) + c2ε

6

(
1− c6.1

λ

n

)−1

[rn(T̂k,τΛ)− rn(T0Λ) + c1(ξ1, . . . , ξn)ε+ 4x] + c2ε

=

(
1− c6.1

λ

n

)−1 [
min

T∈Sk,τ
{rn(TΛ)− rn(T0Λ)}+ c1(ξ1, . . . , ξn)ε+ 4x

]
+ c2ε

6
1 + c6.1λn

−1

1− c6.1λn−1
min

T∈Sk,τ
‖(T−T0)Λ‖2F,Π +

8x

1− c6.1λn−1
+

[
c1(ξ1, . . . , ξn)

1− c6.1λn−1
+ c2

]
ε.

So, by taking

λ =
n

2

(
1

c6.1
∧ λ∗

)
and x =

1

λ
log

(
2

α
|Sεk,τ |

)
,

as in the proof of Theorem 6.4.(1), with probability larger than 1− α,

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π + 32

(
1

c6.1
∧ λ∗

)−1
1

n
log

(
2

α
|Sεk,τ |

)
(15)

+

[
4mΛ

(
1

n

n∑
i=1

|ξi|+ mε + 2m0

)
+ c2

]
ε.

Thanks to Markov’s inequality together with Lemma 6.2, for λ0 = 1/(2ncξ),

P

(
n∑
i=1

|ξi| >
n∑
i=1

E(|ξi|) + s

)
6 exp

[
nvξλ

2
0

2(1− ncξλ0)
− λ0s

]

= exp

(
vξ

4nc2ξ
− s

2ncξ

)
= α

with

s =
vξ
2cξ

+ 2ncξ log

(
1

α

)
.

Then, since E(|ξi|) 6 E(ξ2
i )1/2 6 v

1/2
ξ for every i ∈ {1, . . . , n},

(16) P

[
1

n

n∑
i=1

|ξi| > v
1/2
ξ +

vξ
2ncξ

+ 2cξ log

(
1

α

)]
6 α.

Finally, note that if P(U > V + c) 6 α and P(V > v) 6 α with c, v ∈ R+ and (U, V ) a R2-valued
random variable, then

P(U > v + c) = P(U > v + c, V > v) + P(U > v + c, V 6 v)

6 P(V > v) + P(U > V + c, V 6 v) 6 2α.(17)

Therefore, by (15) and (16), with probability larger than 1− 2α,

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π + 32

(
1

c6.1
∧ λ∗

)−1
1

n
log

(
2

α
|Sεk,τ |

)
+

[
4mΛ

(
2cξ log

(
1

α

)
+ v

1/2
ξ +

vξ
2cξ

+ mε + 2m0

)
+ c2

]
ε.

�
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6.3. Proof of Theorem 3.4. The proof is dissected in two steps:

Step 1. Consider
Md,τ,k(R) := {T ∈Md,τ (R) : rank(T) = k}.

For every T ∈ Md,τ,k(R) and ρ > 0, let us denote the closed ball (resp. the sphere) of center T and
of radius ρ of Md,τ,k(R) by Bk(T, ρ) (resp. Sk(T, ρ)). For any ε > 0, thanks to Candès and Plan [12],
Lemma 3.1, there exists an ε-net Sεk(0, 1) covering Sk(0, 1) and such that

|Sεk(0, 1)| 6
(

9

ε

)k(d+τ+1)

.

Then, for every ρ > 0, there exists an ε-net Sεk(0, ρ) covering Sk(0, ρ) and such that

|Sεk(0, ρ)| 6
(

9ρ

ε

)k(d+τ+1)

.

Moreover, for any ρ∗ > 0,
Bk(0, ρ∗) =

⋃
ρ∈[0,ρ∗]

Sk(0, ρ).

So,

Bεk(0, ρ∗) :=

[ρ∗/ε]+1⋃
j=0

Sεk(0, jε)

is an ε-net covering Bk(0, ρ∗) and such that

|Bεk(0, ρ∗)| 6
[ρ∗/ε]+1∑
j=0

|Sεk(0, jε)| 6
([

ρ∗

ε

]
+ 2

)(
9ρ∗

ε

)k(d+τ+1)

.

If in addition ρ∗ > ε, then

|Bεk(0, ρ∗)| 6 3ρ∗

ε

(
9ρ∗

ε

)k(d+τ+1)

6

(
9ρ∗

ε

)2k(d+τ)

.

Step 2. For any T ∈ Sk,τ ,
sup
j,t
|Tj,t| 6

m0

mΛ(τ)
.

Then,

‖T‖F =

 d∑
j=1

τ∑
t=1

T2
j,t

1/2

6 ρ∗d,τ := m0
d1/2τ1/2

mΛ(τ)
.

So, Sk,τ ⊂ Bk(0, ρ∗d,τ ), and by the first step of the proof, there exists an ε-net Sεk,τ covering Sk,τ and such
that

|Sεk,τ | 6
(

9ρ∗d,τ
ε

)2k(d+τ)

=

(
9m0

d1/2τ1/2

mΛ(τ)ε

)2k(d+τ)

.

By taking ε = 9m0d
1/2τ1/2mΛ(τ)−1n−2, thanks to Theorem 6.4.(2), with probability larger than 1− α,

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π

+
c6.4,1
n

[
log

(
2

α

)
+ 2k(d+ τ) log

(
9m0

d1/2τ1/2

mΛ(τ)ε

)]
+

[
c6.4,2 + 8mΛcξ log

(
1

α

)]
ε

= 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π

+
c6.4,1
n

[
log

(
2

α

)
+ 4k(d+ τ) log(n)

]
+ 9m0

d1/2τ1/2

mΛ(τ)n2

[
c6.4,2 + 8mΛcξ log

(
1

α

)]
.
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Therefore, since n > max(d, τ) and mΛ(τ) > 1, with probability larger than 1− 2α,

‖Θ̂k,τ −Θ0‖2F,Π 6 3 min
T∈Sk,τ

‖(T−T0)Λ‖2F,Π

+(4c6.4,1 + 9m0c6.4,2)k(d+ τ)
log(n)

n
+

c6.4,1 + 72m0mΛcξ
n

log

(
2

α

)
.

Let us replace α by α/2 to end the proof.

6.4. Proof of Theorem 3.5. Put k = 2blog2(k)c, and note that k/2 6 k 6 k. Fix a > 0 and define the
set of matrices

A =
{

A = (Ai,j)16i6d∨τ,16j6k : Ai,j ∈ {0, a}
}
.

By Varshamov-Gilbert bound, there is a finite subset B ⊂ A with card(B) > 2
k(d∨τ)

8 + 1, 0 ∈ B, and each
pair A 6= A′ in B differ by at least k(d ∨ τ) coordinates. This implies

‖A−A′‖2F >
k(d ∨ τ)

8
a2 >

k(d ∨ τ)

16
a2.

For any A, define by block A = (A|0) of dimension (d ∨ τ) × k (so the 0 has k − k columns). We then
define Ã of dimension d× τ . The construction differs depending on d and τ :

• If d > τ ,
Ã = (A| . . . |A|0).

• If d < τ ,
Ã = (A| . . . |A|0)∗.

Note that this is clearly inspired by the construction in the proof of Theorem 5 in [30], however, here, we
have to take care that, for a small enough, each Ã ∈ A is also inMd,k,τ . In order to do so, we introduce
the vectors in Rk:

v[1] =

√
1

k
( 1 . . . 1︸ ︷︷ ︸

k

)∗,

v[2] =

√
1

k
( 1 . . . 1︸ ︷︷ ︸

k/2

| −1 . . . −1︸ ︷︷ ︸
k/2

)∗,

...

v[k] =

√
1

k
( 1 −1 . . . 1 −1︸ ︷︷ ︸

k

)∗.

Now, remark that for A ∈ A we have

A =
√
ak

 v[1]∗

...
v[k]∗


︸ ︷︷ ︸

B

(
n∑
i=1

v[i]1Ai,1 6=0

∣∣∣∣∣ . . .
∣∣∣∣∣
n∑
i=1

v[i]1Ai,k 6=0

)√
a

k︸ ︷︷ ︸
C

and under this decomposition, it is clear that the entries of B and C are in [0,
√
a]. Playing with blocks,

this gives trivially to a decomposition Ã = UV where U is d × k, V is k × τ and the entries of U and
V are also in [0,

√
a]. In other words, Ã ∈ Md,k,τ holds as soon as a 6 m0/k. Now, let PA be the

data-generating distribution when Θ0 = Ã for A ∈ B, and KL be the Kullback-Leibler divergence. We
have

KL(P0,PA) =
n

2
‖ÃΛ‖2F,Π 6

n

2
a2.
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Thus, we look for a such that the condition

n

2
a2 6 α log(card(B)− 1) =

αk(d ∨ τ)

8

is satisfied for a given 0 < α < 1/8. Fix α = 1/16. As k 6 k/2, it’s easy to check that

a =
1

8

√
k(d ∨ τ)

2n

satisfies the condition. Also, remember that Ã ∈Md,k,τ if a 6 m0/k, which adds the condition

k 6

(
256m2

0n

d ∨ τ

)1/3

.

Theorem 2.5 in [49] then tells us that the rate is given by the minimal distance, for A 6= A′ in B:

‖ÃΛ− Ã′Λ‖2F,Π =
1

dτ
‖Ã− Ã′‖2F =

1

dτ

⌊
d ∧ τ
k

⌋
‖Ã− Ã′‖2F

>
1

dτ

⌊
d ∧ τ
k

⌋
k(d ∨ τ)

16
a2

>
a2

32
=
k(d ∨ τ)

4096n
.

6.5. Proof of Theorem 4.1. For any k ∈ K, let Sεk := Sεk,τ be the ε-net introduced in the proof of
Theorem 3.4, and recall that for ε = 9m0d

1/2τ1/2mΛ(τ)−1n−2,

|Sεk| 6
(

9m0
d1/2τ1/2

mΛ(τ)ε

)2k(d+τ)

= n4k(d+τ).

Then, for α ∈ (0, 1) and xk,ε := λ−1 log(2α−1|K| · |Sεk|) with λ = nc−1
pen ∈ (0, nλ∗),

4xk,ε − pen(k) =
4cpen

n
log

(
2

α
|K| · |Sεk|

)
− 16cpen

log(n)

n
k(d+ τ)

6
4cpen

n

[
4k(d+ τ) log(n) + log

(
2

α
|K|
)]
− 16cpen

log(n)

n
k(d+ τ)

6
4cpen

n
log

(
2

α
|K|
)

=: mn.(18)

Now, consider the event Ωλ,ε := (Ω−λ,ε)
c ∩ (Ω+

λ,ε)
c with

Ω−λ,ε :=
⋃
k∈K

⋃
T∈Sεk

Ω−xk,ε,λ,Sεk
(T) and Ω+

λ,ε :=
⋃
k∈K

⋃
T∈Sεk

Ω+
xk,ε,λ,Sεk

(T).

So,

P(Ωcλ,ε) 6
∑
k∈K

∑
T∈Sεk

[P(Ω−xk,ε,λ,Sεk
(T)) + P(Ω+

xk,ε,λ,Sεk
(T))] 6 2

∑
k∈K

|Sεk|e−λxk,ε = α

and Ωx
k̂,ε
,λ,Sε

k̂
(T̂ε

k̂
) ⊂ Ωλ,ε, where T̂ε

k is a solution of the minimization problem (14) for every k ∈ K.
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On the event Ωλ,ε, by the definition of k̂, and thanks to Inequalities (12), (13) and (14),

‖Θ̂−Θ0‖2F,Π 6 ‖(T̂ε
k̂
−T0)Λ‖2F,Π + c2ε 6

(
1− c6.1

λ

n

)−1

(rn(T̂ε
k̂
Λ)− rn(T0Λ) + 4xk̂,ε) + c2ε

6

(
1− c6.1

λ

n

)−1

(rn(T̂k̂Λ)− rn(T0Λ) + c1(ξ1, . . . , ξn)ε+ 4xk̂,ε) + c2ε

=

(
1− c6.1

λ

n

)−1

×
(

min
k∈K
{rn(T̂kΛ)− rn(T0Λ) + pen(k)}+ c1(ξ1, . . . , ξn)ε+ 4xk̂,ε − pen(k̂)

)
+ c2ε

6
1

1− c6.1λn−1
min
k∈K
{(1 + c6.1λn

−1)‖(T̂k −T0)Λ‖2F,Π + 4xk,ε + pen(k)}

+
mn + c1(ξ1, . . . , ξn)ε

1− c6.1λn−1
+ c2ε

6 2 min
k∈K
{3/2‖(T̂k −T0)Λ‖2F,Π + 2pen(k)}+ 4mn + (2c1(ξ1, . . . , ξn) + c2)ε(19)

with

c1(ξ1, . . . , ξn) := 2mΛ

(
1

n

n∑
i=1

|ξi|+ mε + 2m0

)
and c2 = 4m0mΛ.

Moreover, by following the proof of Theorem 6.4 and Theorem 3.4 on the same event Ωλ,ε,

‖(T̂k −T0)Λ‖2F,Π 6 3 min
T∈Sk

‖(T−T0)Λ‖2F,Π + c3.4

[
k(d+ τ)

log(n)

n
+

1

n
log

(
2

α
|K|
)]

for every k ∈ K. Therefore, thanks to (16), (17) and (19), with probability larger than 1− 2α,

‖Θ̂−Θ0‖2F,Π 6 4 min
k∈K

{
3 min

T∈Sk
‖(T−T0)Λ‖2F,Π + (c3.4 + 16cpen)k(d+ τ)

log(n)

n

}
+

4c3.4 + 16cpen

n
log

(
2

α
|K|
)

+ 9m0
d1/2τ1/2

mΛ(τ)n2

[
c6.4,2 + 8mΛcξ log

(
1

α

)]
.

To end the proof, let us replace α by α/2 and note that d1/2τ1/2/(mΛ(τ)n2) 6 1/n because n > max(d, τ)
and mΛ(τ) > 1.
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