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Abstract. The goal of this work is to design an acoustic mode converter. The wave number is fixed
so that two modes can propagate. We explain how to construct geometries such that the energy
of the modes is completely transmitted and additionally the mode 1 is converted into the mode 2
and conversely. To proceed, we work in a symmetric waveguide made of two branches connected
by two thin ligaments whose lengths and positions are carefully tuned. The approach is based on
asymptotic analysis for thin ligaments around resonance lengths. We also provide numerical results
to illustrate the theory.

Key words. Acoustic waveguide, mode converter, asymptotic analysis, thin ligament, scattering
coefficients, complex resonance.

1 Introduction
The mode converter is a classical device in waves physics which appears for example in optics
[15, 7, 18, 29, 36] or in the field of microwaves [37, 13]. In this article, we consider a rather academic
but universal problem of propagation of acoustic waves in a waveguide which is bounded in the
transverse direction. This problem also arises in electromagnetism and in water-wave theory in
certain configurations. We work in time-harmonic regime and the wavenumber is set so that two
modes, say modes 1 and 2, can propagate in the structure. When the mode 1 or the mode 2 is
incoming in the structure, in general it produces a reflection on the modes 1, 2 and a transmission
on the modes 1, 2. The latter are characterized by some complex reflection and transmission coef-
ficients (see (3), (4), (6) for precise definitions). The goal of this work is to construct a waveguide,
that is a geometry, which exhibits two main features at the given wavenumber. First, we want the
reflection coefficients to be null so that the energy of any incident field is completely transmitted.
Secondly, we wish the energy of the incident mode 1 to be transmitted only on the mode 2 and vice
versa to guarantee the mode conversion.

The main difficulty of the problem lies in the fact that the dependence of the scattering coeffi-
cients with respect to the geometry is not explicit and not linear. In order to address it, techniques
of optimization have been considered. We refer the reader in particular to [21, 30, 22, 24, 25, 23].
However the functionals involved in the analysis are non convex and unsatisfactory local minima
exist. Moreover, these methods do not allow the user to control the main features of the shape
compared to the approach we propose below.

To construct mode converters, we will work in waveguides as in Figure 1 made of two truncated
channels connected by thin ligaments of width ε > 0. Let us mention that we used a similar ap-
proach in [8] to design energy distributors, that is geometries with three channels where in the

1



monomode regime, the energy of an incoming wave is almost completely transmitted and where
additionally one can control the ratio of energy transmitted in the two other channels. The present
article reuses some analysis presented in [8] and can be seen as a second part of [8]. In general,
due to the geometrical properties of waveguides as in Figure 1, almost no energy passes through
the ligaments and it might not seem relevant at first sight to exploit them to get almost complete
transmission. However working around the resonance lengths of the ligaments (see (21)), it has
been shown that this can be achieved. This has been studied for example in [20, 4, 27, 28, 26] in the
context of the scattering of an incident wave by a periodic array of subwavelength slits. The core of
our approach is based on an asymptotic expansion of the scattering solutions with respect to ε as ε
tends to zero. This will allow us to derive relatively explicit formulas relating the scattering prop-
erties to the geometrical features. To obtain the expansions, we will apply techniques of matched
asymptotic expansions. For related methods, we refer the reader to [2, 11, 19, 32, 12, 33, 17, 1, 3].
We emphasize that an important feature of our study distinguishing it from the previous references
is that the lengths, and not only the widths, of the ligaments depend on ε (see (18)). This way of
considering the problem, which we used also in [34, 35, 8], is an essential ingredient to reveal the
resonant phenomena. From this perspective, our work shares similarities with [14, 5, 6] (see also
references therein).

The outline is as follows. In the next section, we describe the setting. We work in waveguides
which are symmetric with respect to the vertical axis and we explain how to split the problem
into two half-waveguide problems with Neumann or Dirichlet boundary condition at the end of the
truncated ligaments. In Section 3, we introduce auxiliary objects that will be used in the asymptotic
analysis. Sections 4 and 5 form the principal part of the article. There we compute asymptotic
expansions of the scattering solutions for the problems with respectively Neumann and Dirichlet
boundary condition at the end of the truncated ligaments as ε tends to zero. Then we exploit the
results in Section 6 to provide examples of geometries acting as mode converters. Then we illustrate
the theory in Section 7 with numerical experiments before discussing possible extensions and open
questions in Section 8. Finally, we give the proof of two technical lemmas needed in the study in a
short appendix. The main result of this article appears in Proposition 6.3.

2 Setting

x

y

Π− Π+

Lε
−

Lε
+

x = −1/2 x = 1/2

Figure 1: Geometry of the waveguide Ωε with two thin ligaments.

Define the domains Π± := {z = (x, y) ∈ R2 | (±x, y) ∈ (1/2; +∞) × (0; 1)}. Let us connect them
by two thin non intersecting ligaments Lε

−, Lε
+ of constant width ε > 0 whose features will be made

more precise below. Define the waveguide Ωε

Ωε = Π− ∪ Lε
− ∪ Lε

+ ∪ Π+ (1)

(see Figure 1). We assume that Ωε is connected and that its boundary ∂Ωε is Lipschitz. Interpreting
the domain Ωε as an acoustic waveguide, we are led to consider the following problem with Neumann
Boundary Conditions (BC)

∆uε + k2uε = 0 in Ωε

∂νuε = 0 on ∂Ωε.
(2)
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Here, ∆ is the Laplace operator while ∂ν corresponds to the derivative along the exterior normal.
Furthermore, uε is the acoustic pressure of the medium while k > 0 is the wave number. We fix
k ∈ (π; 2π) so that only the two modes

w±
1 (x, y) =

1
√

β1
e±iβ1x and w±

2 (x, y) =
1

√
β2

e±iβ2x
√

2 cos(πy)

with β1 := k, β2 :=
√

k2 − π2 can propagate. Note that the normalization factors are chosen to
have some simple relations of conservation of energy (see (5) and (15)). We are interested in the
solutions to the diffraction problem (2) generated by the incoming waves w+

1 , w+
2 in the channel

Π−. These solutions admit the decompositions

uε
1(x, y) =

w+
1 (x + 1/2, y) + rε

11w−
1 (x + 1/2, y) + rε

12w−
2 (x + 1/2, y) + . . . in Π−

tε
11w+

1 (x − 1/2, y) + tε
12w+

2 (x − 1/2, y) + . . . in Π+
(3)

uε
2(x, y) =

w+
2 (x + 1/2, y) + rε

21w−
1 (x + 1/2, y) + rε

22w−
2 (x + 1/2, y) + . . . in Π−

tε
21w+

1 (x − 1/2, y) + tε
22w+

2 (x − 1/2, y) + . . . in Π+
(4)

where the rε
ij ∈ C are reflection coefficients and tε

ij ∈ C are transmission coefficients. Here the
ellipses stand for remainders which decay at infinity with the rate e−(4π2−k2)1/2|x| in Π±. Due to
conservation of energy, for i = 1, 2, one can verify that there holds

|rε
i1|2 + |rε

i2|2 + |tε
i1|2 + |tε

i2|2 = 1. (5)

We define the reflection and transmission matrices

Rε :=
(

rε
11 rε

12

rε
21 rε

22

)
and T ε :=

(
tε
11 tε

12

tε
21 tε

22

)
. (6)

In general, due to the geometrical features of waveguides such as the one depicted in Figure 1,
almost no energy of the incident waves w+

1 , w+
2 passes through the thin ligaments Lε

± and one
observes almost complete reflection. More precisely, one finds that as ε tends to zero, there holds

Rε =
(

1 0
0 1

)
+ o(1), T ε =

(
0 0
0 0

)
+ o(1) (7)

(see the numerics in Figure 4). The main goal of this work is to show that by choosing carefully
the lengths of the thin ligaments as well as their positions, the energy of the waves w+

1 , w+
2 can be

almost completely transmitted. Moreover we can obtain mode conversion, that is we can ensure
that all the energy carried by the incident mode 1 be transferred on the mode 2 and vice versa.
In terms of scattering matrices, we will establish that by choosing carefully the properties of the
ligaments, as ε tends to zero, we can have

Rε =
(

0 0
0 0

)
+ o(1), T ε =

(
0 1
1 0

)
+ o(1). (8)

To diminish the number of parameters to play with, we work with waveguides which are symmetric
with respect to the (Oy) axis. In other words, we assume that Ωε = {(x, y) |(−x, y) ∈ Ωε} and we
set ωε := {(x, y) ∈ Ωε | x < 0} (see Figure 2). The solutions of the initial problem (2) in Ωε can be
expressed by means of solutions of two problems set in ωε that we present now.
Introduce the problem with Neumann Artificial Boundary Condition (ABC) at the end of the two
truncated ligaments

∆uε
N + k2uε

N = 0 in ωε

∂νuε
N = 0 on ∂ωε (9)
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Figure 2: Geometry of the waveguide ωε with two truncated ligaments.

as well as the one with Dirichlet ABC

∆uε
D + k2uε

D = 0 in ωε

∂νuε
D = 0 on ∂ωε ∩ ∂Ωε

uε
D = 0 on Σε := ∂ωε \ ∂Ωε.

(10)

These problems admit the solutions

uε
N1(x, y) = w+

1 (x + 1/2, y) + rεN
11 w−

1 (x + 1/2, y) + rεN
12 w−

2 (x + 1/2, y) + . . . in ωε (11)

uε
N2(x, y) = w+

2 (x + 1/2, y) + rεN
21 w−

1 (x + 1/2, y) + rεN
22 w−

2 (x + 1/2, y) + . . . in ωε (12)

and

uε
D1(x, y) = w+

1 (x + 1/2, y) + rεD
11 w−

1 (x + 1/2, y) + rεD
12 w−

2 (x + 1/2, y) + . . . in ωε (13)

uε
D2(x, y) = w+

2 (x + 1/2, y) + rεD
21 w−

1 (x + 1/2, y) + rεD
22 w−

2 (x + 1/2, y) + . . . in ωε. (14)

Again, the ellipses stand for remainders which decay at infinity with the rate e−(4π2−k2)1/2|x|. With
the reflection coefficients rεN

ij , rεD
ij ∈ C, we can form the scattering matrices of the two problems

Rε
N :=

(
rεN

11 rεN
12

rεN
21 rεN

22

)
and Rε

D :=
(

rεD
11 rεD

12

rεD
21 rεD

22

)
.

The scattering coefficients satisfy the relations of conservation of energy, for i = 1, 2,

|rεN
i1 |2 + |rεN

i2 |2 = 1, |rεD
i1 |2 + |rεD

i2 |2 = 1. (15)

Lemma 2.1. We have the identities

Rε =
Rε

N + Rε
D

2 and T ε =
Rε

N − Rε
D

2 . (16)

Proof. For i = 1, 2, define the function ei such that ei = uε
i − (uε

Ni + uε
Di)/2 in ωε and ei(x, y) =

uε
i (x, y)−(uε

Ni(−x, y)−uε
Di(−x, y))/2 in Ωε\ωε. Due to the boundary conditions satisfied by uε

Ni and
uε

Di, one can check that ei solves the problem (2). Then multiplying the equation ∆ei + k2ei = 0 by
ei, integrating by parts in Ωε

L := {(x, y) ∈ Ωε | |x| < L} and taking the imaginary part as L → +∞,
we get, for i = 1, 2,

2∑
j=1

∣∣∣∣∣rε
ij −

rεN
ij + rεD

ij

2

∣∣∣∣∣
2

+
2∑

j=1

∣∣∣∣∣tε
ij −

rεN
ij − rεD

ij

2

∣∣∣∣∣
2

= 0.

This gives (16).

From (16), we deduce that to obtain the relations (8) characterising the mode conversion, we have
to find geometries ωε where, when ε tends to zero,

Rε
N =

( 0 1

1 0

)
+ o(1) and Rε

D =
( 0 −1

−1 0

)
+ o(1). (17)
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In order to get these particular values for Rε
N , Rε

D, as already mentioned, we will tuned precisely the
parameters defining the thin ligaments. Let us describe in more details the geometry (see Figure
2). Pick two different numbers y± ∈ (0; 1) and set

A± := (−1/2, y±).

Let L ε
± be a simple 1D smooth curve connecting A± to some B± ∈ (Oy) (the position of the B±

has no influence in the study). We assume that the curves L ε
− and L ε

+ do not intersect, that the
tangents to L ε

± at A±, B± are parallel to the (Ox) axis and that L ε
± is of length

ℓε
± := ℓ± + εℓ′

± (18)

(similar to what has been done in [34, 35]). Here the values ℓ± > 0, ℓ′
± > 0 will be fixed later on

to observe interesting phenomena. In a neighbourhood of L ε
±, we introduce the local curvilinear

coordinates (n±, s±) where s± ∈ [0; ℓε
±] is the arc length (with s± = 0 at A±) and n± is the oriented

distance to L ε
±. Finally, we define the thin ligaments

Lε
± := {z | s± ∈ [0; ℓε

±), −ε/2 < n± < ε/2}.

The initial ligaments Lε
± introduced in (1) are then defined by symmetrization of Lε

± with respect
to the (Oy) axis. In the sequel, we will compute an asymptotic expansion of the functions uε

Ni, uε
Di

appearing in (11)–(14) as ε tends to zero. This will give us an expansion of the matrices Rε
N , Rε

D.
To proceed, first we introduce some auxiliary objects which will be useful in the analysis.

3 Auxiliary objects

⋆ Considering the limit ε → 0+ in the equation (9) restricted to the thin ligaments Lε
±, we are led

to study the one-dimensional Helmholtz problem with mixed BC

∂2
s v + k2v = 0 in L± := {z | s± ∈ (0; ℓ±), n± = 0}

v(0) = ∂sv(ℓ±) = 0.
(19)

Note that the condition v(0) = 0 is imposed artificially. Eigenvalues and eigenfunctions (up to a
multiplicative constant) of the problem (19) are given by

(π(m + 1/2)/ℓ±)2, v(s±) = sin(π(m + 1/2)s±/ℓ±) with m ∈ N := {0, 1, 2, 3, . . . }.

⋆ On the other hand, taking the limit ε → 0+ in the equation (10) restricted to Lε
±, we obtain the

problem with Dirichlet BC
∂2

s v + k2v = 0 in L±

v(0) = v(ℓ±) = 0.
(20)

Eigenvalues and eigenfunctions (up to a multiplicative constant) of the problem (20) are given by

(πm/ℓ±)2, v(s±) = sin(πms±/ℓ±) with m ∈ N∗ := {1, 2, 3, . . . }.

Importantly, in the sequel we shall choose ℓ−, ℓ+ such that at the limit ε → 0, the ligament Lε
− is

resonant for the problem (19) while Lε
+ is resonant for the problem (20). In other words, we select

ℓ−, ℓ+ such that
k ℓ− = π(m− + 1/2) and k ℓ+ = πm+ (21)

for some m− ∈ N, m+ ∈ N∗. Let us emphasize that the limit problems (19), (20) are set in the
fixed curves L±. But the true lengths ℓε

± = ℓ± + εℓ′
± of the ligaments Lε

± (and not only their
widths) depend on the parameter ε. This is an essential element in the analysis to bring to light
the resonant phenomena (see in the same spirit [34, 35]).
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ξx

Ξ− Ξ+
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Figure 3: Geometry of the inner field domain Ξ.

⋆ Now we present a third problem which is involved in the construction of asymptotics and which
will be used to describe the boundary layer phenomenon near the junction points A±. To capture
rapid variations of the field in the vicinity of A±, we introduce the stretched coordinates ξ± =
(ξ±

x , ξ±
y ) = ε−1(z − A±) = (ε−1(x + 1/2), ε−1(y − y±)). Observing that

(∆z + k2)uε(ε−1(z − A±)) = ε−2∆ξ±uε(ξ±) + . . . , (22)

we are led to consider the Neumann problem

− ∆ξY = 0 in Ξ, ∂νY = 0 on ∂Ξ. (23)

Here Ξ := Ξ− ∪ Ξ+ ⊂ R2 (see Figure 3) is the union of the half-plane Ξ− and the semi-strip Ξ+

such that

Ξ− := R2
− = {ξ = (ξx, ξy) : ξx < 0}, Ξ+ := {ξ : ξx ≥ 0, |ξy| < 1/2}.

In the method of matched asymptotic expansions (see the monographs [39, 16], [31, Chpt. 2] and
others) that we will use, we will work with solutions of (23) which are bounded or which have
polynomial growth in the semi-strip as ξx → +∞ as well as logarithmic growth in the half plane
as |ξ| → +∞. One of such solutions is evident and is given by Y 0 = 1. Another solution, which is
linearly independent with Y 0, is the unique function satisfying (23) and which has the representation

Y 1(ξ) =


ξx + CΞ + O(e−πξx) as ξx → +∞, ξ ∈ Ξ+

1
π

ln 1
|ξ|

+ O
( 1

|ξ|

)
as |ξ| → +∞, ξ ∈ Ξ−.

(24)

Here, CΞ is a universal constant whose value can be computed using conformal mapping, see for
example [38]. Note that the coefficients in front of the growing terms in (24) are related due to
the fact that a harmonic function has zero total flux at infinity. For the existence of Y 1 and the
uniqueness of its definition, we refer the reader for example to [3, Lemma 4.1].

4 Asymptotic analysis for the problem with Neumann ABC

In this section, we compute an asymptotic expansion of the fields uε
N1, uε

N2 appearing in (11), (12),
as ε tends to zero. The final results are summarized in (40), (44).

4.1 Scattering of the first mode

First, we focus our attention on the analysis for the field uε
N1. To shorten notation, we remove the

index N1.
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In the channel, we work with the ansatz

uε = u0 + εu′ + . . . in Π−, (25)

while in the thin ligaments, we consider the expansion

uε(x, y) = ε−1v−1
± (s±) + v0

±(s±) + . . . in Lε
±. (26)

Here the ellipses stand for higher order terms which are not important in our analysis. Taking the
formal limit ε → 0+, we find that v−1

± must solve the homogeneous problem (19). Note in particular
that the condition v−1

± (0) = 0 comes from the fact that the expansion (25) of uε in Π− remains
bounded as ε tends to zero. Under the assumption (21) for the lengths ℓ±, we must take v−1

+ = 0
(we recall that L+ is not resonant for the problem (19)) and v−1

− of the form

v−1
− (s−) = av(s−) with a ∈ C, v(s) = sin(ks).

Let us stress that the value of a is unknown and will be fixed during the construction of the
asymptotics of uε. At A−, the Taylor formula gives

ε−1v−1
− (s−) + v0

−(s−) = 0 + (CA−ξ−
x + v0

−(0)) + . . . with CA− := a∂sv(0) = ak. (27)

Here ξ−
x = ε−1(x + 1/2) is the stretched variable introduced just before (22).

We look for an inner expansion of uε in the vicinity of A− of the form

uε(x) = CA− Y 1(ξ−) + cA− + . . .

where Y 1 is introduced in (24), CA− is defined in (27) and cA− is a constant to determine.

Let us continue the matching procedure. Taking the limit ε → 0+, we find that the main term
u0 in (25) must solve the problem

∆u0 + k2u0 = 0 in Π−, ∂νu0 = 0 on ∂Π− \ {A−},

with the expansion

u0(x, y) = w+
1 (x + 1/2, y) + r0

1 w−
1 (x + 1/2, y) + r0

2 w−
2 (x + 1/2, y) + ũ0(x, y). (28)

Here r0
1, r0

2 ∈ C and ũ0 decay exponentially at infinity. The coefficients r0
1, r0

2 will provide the first
terms in the asymptotics of rεN

11 , rεN
12 , which by removing the indices N and 1, simply writes

rε
1 = r0

1 + . . . and rε
2 = r0

2 + . . . .

Matching the behaviours of the inner and outer expansions of uε in Π−, we find that at the point
A−, the function u0 must expand as

u0(x, y) = CA− 1
π

ln 1
rA−

+ U0 + O(rA−) as rA− := ((x + 1/2)2 + (y − y−)2)1/2 → 0+,

where U0 is a constant. Observe that u0 is singular at A−. For i = 1, 2, define the function Wi such
that

Wi(x, y) = w+
i (x + 1/2, y) + w−

i (x + 1/2, y).

Note that we have ∆Wi + k2Wi = 0 in Π− and ∂νWi = 0 on ∂Π−. Integrating by parts in

0 =
∫

Πρ
−

(∆u0 + k2u0)Wi − u0 (∆Wi + k2Wi) dz,

7



with Πρ
− := {(x, y) ∈ Π− , x > −ρ and rA

− > 1/ρ}, and taking the limit ρ → +∞, we get

2i
√

β1(r0
1 − 1) + 2CA− = 0

2i
√

β2r0
2 + 2 cos(πy−)

√
2CA− = 0.

(29)

From the expression of CA− (see (27)), this gives

r0
1 = 1 + ia

√
β1

r0
2 = ia cos(πy−)

√
2β1/

√
β2.

(30)

Then matching the constant behaviour between the outer expansion and the inner expansion inside
Π−, we get

U0 = CA− π−1 ln ε + cA− = −CA− π−1| ln ε| + cA− .

This sets the value of cA− . However U0 depends on a and we have to explicit this dependence. For
u0, we have the decomposition

u0(x, y) = w+
1 (x + 1/2, y) + w−

1 (x + 1/2, y) + CA−γ− (31)

where γ− are the outgoing functions such that

∆γ− + k2γ− = 0 in Π−
∂νγ− = δA− on ∂Π−.

(32)

Here δA− stands for the Dirac delta function at A−. Denote by Γ− the constant behaviour of γ− at
A−, that is the constant such that γ− behaves as

γ−(x, y) = 1
π

ln 1
rA−

+ Γ− + O(rA−) when rA− → 0+. (33)

Then from (31), we derive

U0 =
2

√
β1

+ akΓ−.

Matching the constant behaviour at A− inside the thin ligament Lε
−, we obtain

v0
−(0) = CA− CΞ + cA− = U0 + CA− (π−1| ln ε| + CΞ)

=
2

√
β1

+ ak (π−1| ln ε| + CΞ + Γ−).
(34)

Writing the compatibility condition so that the problem (19), supplemented with the condition (34)
instead of v0

−(0) = 0, admits a solution, we get

v0
−∂sv|0 − v0

−∂sv|ℓ− − (v∂sv0
−|0 − v∂sv0

−|ℓ−) = 0. (35)

Since v(0) = ∂sv(ℓ−) = 0, we obtain

kv0
−(0) + (−1)m−∂sv0

−(ℓ−) = 0.

On the other hand, from ∂ν(ε−1av)(ℓε
−)+v0

−(ℓε
−)+· · · = 0, we infer that ∂sv0

−(ℓ−) = k2aℓ′
− sin(kℓ−) =

(−1)m−k2aℓ′
−. Thus we get

2/
√

β1 + ak (π−1| ln ε| + CΞ + Γ− + ℓ′
−) = 0. (36)

Below, see Lemmas 8.1 and 8.2, we prove that CΞ ∈ R and ℑm (kΓ−) = 1+2β1 cos(πy−)2/β2. Thus
we have

a(η− + i(1 + 2β1 cos(πy−)2/β2)) = −2/
√

β1

8



with η− := k(π−1| ln ε| + CΞ + ℜe Γ− + ℓ′
−).

Gathering (29) and (36), we obtain the system

r0
1 = 1 + ia

√
β1

r0
2 = ia cos(πy−)

√
2β1/

√
β2

a(η− + i(1 + 2β1 cos(πy−)2/β2)) = −2/
√

β1.

(37)

In particular, when we choose ℓ′
− such that η− = 0, that is for ℓ′

− = −(π−1| ln ε| + CΞ + ℜe Γ−), we
have

a =
2i

√
β1 (1 + 2β1 cos(πy−)2/β2)

(38)

and so

r0
1 = 1 −

2
1 + 2β1 cos(πy−)2/β2

=
2β1 cos(πy−)2/β2 − 1
2β1 cos(πy−)2/β2 + 1, r0

2 = −
2 cos(πy−)

√
2β1/β2

2β1 cos(πy−)2/β2 + 1 .

This ends the asymptotic analysis of uε
N1, rNε

11 , rNε
12 as ε tends to zero. Let summarize the results

that we obtained. Assume that

ℓε
− = π(m− + 1/2)/k − εℓ′

−
= π(m− + 1/2)/k − ε(π−1| ln ε| + CΞ + ℜe Γ−)

and ℓε
+ = ℓ+ + o(1), (39)

where m− ∈ N and ℓ+ > 0 is such that ℓ+ /∈ {π(m− + 1/2)/k, m ∈ N}. Then when ε tends to zero,
we have the following expansions

uε
N1(x, y) = w+

1 (x + 1/2, y) + w−
1 (x + 1/2, y) + akγ−(x, y) + o(1) in Π−,

uε
N1(x, y) = ε−1a sin(ks) + O(1) in Lε

−, uε
N1(x, y) = O(1) in Lε

+, a given by (38),

rNε
11 =

2β1 cos(πy−)2/β2 − 1
2β1 cos(πy−)2/β2 + 1 + o(1), rNε

12 = −
2 cos(πy−)

√
2β1/β2

2β1 cos(πy−)2/β2 + 1 + o(1) .

(40)

Here γ− is the function introduced in (32). Let us formulate two comments on these results. First,
we emphasize that the influence of the non resonant ligament Lε

+ appears only at the next order in
ε. This is an important point which allows us to decouple the two problems (9) and (10) (at least
at first order in ε). Second, we observe that the first terms rN0

11 , rN0
12 in the asymptotic of rNε

11 , rNε
12

are such that |rN0
11 |2 + |rN0

12 |2 = 1. This is coherent with the identity of conservation of energy (15).

4.2 Scattering of the second mode

The asymptotic analysis for uε
N2 is very similar. We simply underline the main differences. First,

(28) becomes

u0(x, y) = w+
2 (x + 1/2, y) + r0

1 w−
1 (x + 1/2, y) + r0

2 w−
2 (x + 1/2, y) + ũ0(x, y) (41)

so that (29) now writes

2i
√

β1r0
1 + 2CA− = 0

2i
√

β2(r0
2 − 1) + 2 cos(πy−)

√
2CA− = 0

⇔
r0

1 = ia
√

β1

r0
2 = 1 + ia cos(πy−)

√
2β1/

√
β2.

On the other hand, decomposition (31) is now of the form

u0(x, y) = w+
2 (x + 1/2, y) + w−

2 (x + 1/2, y) + CA−γ−, (42)

which implies

U0 =
2
√

2 cos(πy−)
√

β2
+ akΓ−.

9



Then (34) becomes

v0
−(0) =

2
√

2 cos(πy−)
√

β2
+ ak (

| ln ε|
π

+ CΞ + Γ−).

Writing the compatibility condition as in (35), finally we arrive at the system

r0
1 = ia

√
β1

r0
2 = 1 + ia cos(πy−)

√
2β1/

√
β2

a(η− + i(1 + 2β1 cos(πy−)2/β2)) = −2
√

2 cos(πy−)/
√

β2

with again η− = k(π−1| ln ε| + CΞ + ℜe Γ− + ℓ′
−). For ℓ′

− chosen such that η− = 0, we find

a =
2
√

2i cos(πy−)
√

β2 (1 + 2β1 cos(πy−)2/β2)
(43)

and so

r0
1 = −

2 cos(πy−)
√

2β1/β2

1 + 2β1 cos(πy−)2/β2
, r0

2 = 1 −
4β1 cos(πy−)2/β2

1 + 2β1 cos(πy−)2/β2
=

1 − 2β1 cos(πy−)2/β2

1 + 2β1 cos(πy−)2/β2
.

Let us summarize the results for the asymptotic expansions of uε
N2, rNε

21 , rNε
22 . Assume that ℓε

−, ℓε
+

are as in (39). Then when ε tends to zero, we have

uε
N2(x, y) = w+

2 (x + 1/2, y) + w−
2 (x + 1/2, y) + akγ−(x, y) + o(1) in Π−,

uε
N2(x, y) = ε−1a sin(ks) + O(1) in Lε

−, uε
N2(x, y) = O(1) in Lε

+, a given by (43),

rNε
21 = −

2 cos(πy−)
√

2β1/β2

1 + 2β1 cos(πy−)2/β2
+ o(1), rNε

22 =
1 − 2β1 cos(πy−)2/β2

1 + 2β1 cos(πy−)2/β2
+ o(1) .

(44)

Here γ− is the function introduced in (32). Again the influence of the non resonant ligament Lε
+

appears only at the next order in ε and the first terms rN0
21 , rN0

22 in the asymptotic of rNε
21 , rNε

22 are
such that |rN0

21 |2 + |rN0
22 |2 = 1. Observe also that for y− = 1/2, that is for a ligament Lε

− located at
the mid line of the strip Π−, we have a = 0 and the amplitude of the field does not blow up in Lε

−
as ε tends to zero. In this case, the resonance is not excited and rNε

21 = o(1), rNε
22 = 1 + o(1) which

is what we expect.

5 Asymptotic analysis for the problem with Dirichlet ABC
In this section, we turn our attention to the asymptotic analysis of the fields uε

D1, uε
D2 appearing

in (13), (14), as ε tends to zero. The final results are summarized in (49), (50).

The approach is exactly the same as the one followed in the previous section. We simply un-
derline the main differences. We start with the study for the field uε

D1. We consider the same
ansatz as in (25), (26). Taking the formal limit ε → 0+, this time we find that v−1

± must solve the
homogeneous problem (20). Under the assumption (21) for the lengths ℓ±, we must take v−1

− = 0
(because L− is not resonant for the problem (20)) and v−1

+ of the form

v−1
+ (s+) = av(s+) with a ∈ C, v(s) = sin(ks).

Then the analysis is the same as previously with A− replaced by A+. In particular, instead of
working with the function γ− in (32), we need to introduce γ+ the outgoing function such that

∆γ+ + k2γ+ = 0 in Π−
∂νγ+ = δA+ on ∂Π−

(45)
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where δA+ stands for the Dirac delta function at A+. Denote also Γ+ the constant behaviour of γ+
at A+, that is the constant such that

γ+(x, y) = 1
π

ln 1
rA+

+ Γ+ + O(rA+) when rA+ := ((x + 1/2)2 + (y − y+)2)1/2 → 0+. (46)

Now in the compatibility condition (35), since v(0) = v(ℓ+) = 0, we obtain

v0
+(0) − (−1)m+v0

−(ℓ+) = 0.

On the other hand, from (ε−1av + v0
+ + . . . )(ℓε

+) = 0, we infer that v0
+(ℓ+) = −kaℓ′

+ cos(kℓ+) =
−(−1)m+kaℓ′

+. Thus we get

2/
√

β1 + ak (π−1| ln ε| + CΞ + Γ+ + ℓ′
+) = 0, (47)

which leads to a system similar to (37). Assume that

ℓε
− = ℓ− + o(1), and ℓε

+ = πm+/k − εℓ′
+

= πm+/k − ε(π−1| ln ε| + CΞ + ℜe Γ+) (48)

where ℓ− > 0 is such that ℓ− /∈ {πm/k, m ∈ N∗} and m+ ∈ N∗. Then when ε tends to zero, we
have

uε
D1(x, y) = w+

1 (x + 1/2, y) + w−
1 (x + 1/2, y) + akγ+(x, y) + o(1) in Π−,

uε
D1(x, y) = O(1) in Lε

−, uε
D1(x, y) = ε−1a sin(ks) + O(1) in Lε

+,

with a =
2i

√
β1 (1 + 2β1 cos(πy+)2/β2)

, and

rDε
11 =

2β1 cos(πy+)2/β2 − 1
2β1 cos(πy+)2/β2 + 1 + o(1), rDε

12 = −
2 cos(πy+)

√
2β1/β2

2β1 cos(πy+)2/β2 + 1 + o(1).

(49)

Working analogously for uε
D2, for ℓε

−, ℓε
+ as in (48), when ε tends to zero, we get

uε
D2(x, y) = w+

2 (x + 1/2, y) + w−
2 (x + 1/2, y) + akγ+(x, y) + o(1) in Π−,

uε
D2(x, y) = O(1) in Lε

−, uε
D2(x, y) = ε−1a sin(ks) + O(1) in Lε

+,

with a =
2
√

2i cos(πy+)
√

β2 (1 + 2β1 cos(πy+)2/β2)
, and

rDε
21 = −

2 cos(πy+)
√

2β1/β2

1 + 2β1 cos(πy+)2/β2
+ o(1), rDε

22 =
1 − 2β1 cos(πy+)2/β2

1 + 2β1 cos(πy+)2/β2
+ o(1).

(50)

In (49), (50), the function γ+ is the one introduced in (45). This time, it is the influence of the
ligament Lε

− which is negligible for these problems. Let us mention also that, as expected, we have
the relations |rD0

i1 |2 + |rD0
i2 |2 = 1 for the first terms rD0

i1 , rD0
i2 in the asymptotic of rDε

i1 , rDε
i2 .

6 Analysis of the results
In this section, we gather the results of the previous steps to exhibit a waveguide acting as a mode
converter. First, from the results (40), (44), we observe that by picking the parameter y− ∈ (0; 1)
such that

2β1 cos(πy−)2/β2 − 1 = 0 ⇔ cos(πy−)2 =
β2

2β1
=

√
k2 − π2

2k
, (51)
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when ε tends to zero, for ℓε
−, ℓε

+ as in (39), we have

Rε
N =

( 0 −sign(cos(πy−))

−sign(cos(πy−)) 0

)
+ o(1).

Note that for k ∈ (π; 2π), the equations (51) admit exactly two different solutions in (0; 1). And
there is a unique y− ∈ (0; 1) such that additionally there holds

− sign(cos(πy−)) = 1. (52)

In this case, we have the desired asymptotics (17) for Rε
N as ε tends to zero.

Remark 6.1. The equation (51) has been obtained by imposing rN0
11 = 0. It is quite fortunate

that we can find a position of the ligament Lε
− to achieve this. But it is even more fortunate

that we can do it while imposing in the same time rN0
12 = 1. Calculus we did and which is not

presented here indicates that this does not hold in general for domains different from the geometry
Π− = (−∞; 1/2) × (0; 1) (see Figure 12).

Second, from the results (49), (50), we note that by picking the parameter y+ ∈ (0; 1) such that

2β1 cos(πy+)2/β2 − 1 = 0 ⇔ cos(πy+)2 =
β2

2β1
=

√
k2 − π2

2k
, (53)

when ε tends to zero, for ℓε
−, ℓε

+ as in (48), we have

Rε
N =

( 0 −sign(cos(πy+))

−sign(cos(πy+)) 0

)
+ o(1).

For k ∈ (π; 2π), the equations (53) admit exactly two different solutions in (0; 1). And there is a
unique y+ ∈ (0; 1) such that additionally there holds

sign(cos(πy+)) = 1. (54)

Then with this choice, we obtain the desired asymptotics (17) for Rε
D as ε tends to zero. Observe

in particular that y− and y+ are located symmetrically with respect to the line y = 1/2.

Remark 6.2. Again the possibility of imposing both rD0
11 = 0 and rD0

12 = −1 is a small miracle
which does not happen for generic Π−.

Finally from Lemma 2.1, we can state the following proposition, the main result of the article.

Proposition 6.3. Assume that

y− solves (51) − (52); ℓε
− = π(m− + 1/2)/k − ε(π−1| ln ε| + CΞ + ℜe Γ−);

y+ solves (53) − (54); ℓε
+ = πm+/k − ε(π−1| ln ε| + CΞ + ℜe Γ+).

(55)

Then when ε tends to zero, the reflection and transmission matrices Rε, T ε in (6) are such that

Rε =
(

0 0
0 0

)
+ o(1), T ε =

(
0 1
1 0

)
+ o(1). (56)

Here m− ∈ N, m+ ∈ N∗ and CΞ, Γ−, Γ+ are respectively introduced in (24), (33), (46).
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7 Numerics

In this section, we illustrate the results that we have obtained above. We take k = 3π/2 ∈ (π; 2π).
According to the case, we compute numerically the scattering solutions uε

1, uε
2, uε

N1, uε
N2, uε

D1,
uε

D2 defined respectively in (3), (4), (11), (12), (13), (14). To proceed, we use a P2 finite element
method in domains obtained by truncating either Ωε or ωε. On the artificial boundary created by
the truncation, a Dirichlet-to-Neumann operator with 15 terms serves as a transparent condition.
For k = 3π/2, the critical lengths (21) are given by

ℓ− =
π

k
(m− + 1/2) =

2
3 (m− + 1/2) and ℓ+ =

π

k
m+ =

2
3 m+. (57)

Below we pick m− = 1, m+ = 2 so that ℓ− = 1, ℓ+ = 4/3. On the other hand, the parameters y±
for the ordinates of the starting points of the ligaments are set by solving (51)–(54) as indicated
in Proposition 6.3. Once we have computed the uε

i , uε
Ni, uε

Di, it is easy to obtain the scattering
coefficients in the representations (3)–(4), (11)–(14). For example, for R > 1/2, we have

rεN
11 =

∫ 1

0
(uε

N1(−R, y) − w+
1 (−R + 1/2))w+

1 (−R + 1/2) dy,

rεN
12 =

∫ 1

0
(uε

N1(−R, y) − w+
1 (−R + 1/2))w+

2 (−R + 1/2) dy.

Figure 4: Real parts of uε
1 (top) and uε

2 (bottom) for ε = 0.01. Here the lengths of the ligaments
are close to the critical values (57) but not particularly selected to get mode conversion.

In Figure 4, we display the real parts of the fields uε
1, uε

2 in a geometry with some ligaments
whose lengths are close to the critical values (57) but not particularly tuned. As expected, we
observe that almost all the energy is backscatted and there is no mode conversion. More precisely,
we find scattering matrices such that

Rε ≈
(

0.98 − 0.09i 0.02 + 0.1i

0.02 + 0.1i 0.98 − 0.09i

)
, T ε ≈

(
−0.02 − 0.12i 0.02 + 0.07i

0.02 + 0.07i −0.02 − 0.12i

)
.

This is coherent with (7).
In Figures 5, 6, we display the fields uε

1, uε
2 in a geometry with some ligaments whose lengths

have been carefully tuned to get mode conversion. We observe clearly the desired phenomenon.
Numerically, we find

Rε =
(

0.3 − 0.4i 0 − 8i

0 − 8i 0.2 − 0.4i

)
10−3, T ε =

(
0 1 − 10−3i

1 − 10−3i 0

)
.
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Figure 5: Real parts of uε
1 (top) and uε

2 (bottom) for ε = 0.01. The lengths of the ligaments have
been tuned to get mode conversion.

Figure 6: Imaginary parts of uε
1 (top) and uε

2 (bottom) for ε = 0.01. The lengths of the ligaments
have been tuned to get mode conversion.

Figure 7: Cost function J(ℓε
−, ℓε

+) defined in (58) for ℓε
−, ℓε

+ varying around the critical values (57).
Here ε = 0.01.
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This is coherent with the theory which predicts mode conversion up to an error in O(ε). On the
other hand, formula (40), (44), (49), (50) indicate that in the ligaments, the real parts of the fields
uε

1, uε
2 should be in O(1) whereas the imaginary parts should be in O(ε−1) (note that each of the a

in (40), (44), (49), (50) are purely imaginary). Numerically this is indeed what we observe with an
amplitude of the real part around 0.75 while it goes to around 23 for the imaginary part. In Figure
7, we present the plot of the cost function J such that

J(ℓε
−, ℓε

+) = ln
(

|Rε
N (ℓε

−, ℓε
+) − R†

N | + |Rε
D(ℓε

−, ℓε
+) − R†

D|
)

(58)

where ℓε
−, ℓε

+ vary around the values (57). In this definition, we take

R†
N :=

(
1 0
0 1

)
, R†

D :=
(

−1 0
0 −1

)
.

We obtain a peak for some values (ℓε
−, ℓε

+) = (ℓ⋆
−, ℓ⋆

+). We notice that there holds ℓ⋆
− < ℓ− = 1,

ℓ⋆
+ < ℓ+ = 4/3. This is in agreement with the formula (55) of Proposition 6.3.

Figure 8: Real parts of uε
1 (top) and uε

2 (bottom) for ε = 0.1. The lengths of the ligaments have
been tuned to get mode conversion.

In Figures 8–10, we display the same quantities as in Figures 5–7 but with ε = 0.1 instead of
ε = 0.01. Numerically for (ℓε

−, ℓε
+) = (ℓ⋆

−, ℓ⋆
+), we find

Rε =
(

−3 − 4.7i 0 − 0.1i

0 − 0.1i −0.1 − 4.7i

)
10−2, T ε =

(
(−0.1 + 1.4i) 10−3 0.997 − 0.05i

0.997 − 0.05i (−0.5 + 1.4i) 10−3

)
.

Interestingly, we note that the mode conversion phenomenon still appear reasonably with ligaments
which are not that thin. Of course the smaller ε is, the better the transmission and the conversion
are. But by comparing Figures 7 and 10, we remark that the variation of the scattering coefficients
gets even quicker as ε is small. This is a fact which can be inferred from the asymptotic analysis.
It indicates that the mode conversion is more robust to perturbations of the setting for rather thick
ligaments. In other words, when ε is very small, the lengths of the ligaments have to be tuned very
precisely to observe the mode conversion.
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Figure 9: Imaginary parts of uε
1 (top) and uε

2 (bottom) for ε = 0.1. The lengths of the ligaments
have been tuned to get mode conversion.

Figure 10: Cost function J(ℓε
−, ℓε

+) defined in (58) for ℓε
−, ℓε

+ varying around the critical values (57).
Here ε = 0.1.

8 Concluding remarks

i) Only the length of the ligaments and not their shapes matters in the analysis. This is because
we impose relations on the scattering coefficients at order ε0. The shape of the ligaments has an
influence on higher order terms.

ii) We can place the thin ligaments on other parts of the waveguide, for example as depicted
in Figure 11. In this case, the results of the asymptotic analysis are a bit different, in particular
the abscissa of the starting point of the ligaments play a role, but the method is completely similar.
Note that this offers more degrees of freedom which can be useful if one wishes to work at higher
wave number with more than two propagating modes. Let us underline that in this configuration,
several targets can be desired for the transmission matrix.

iii) We considered a quite academic geometry with two straight channels. One may wonder if this
assumption could be relaxed and if for example one could work in domains as illustrated in Figure
12 with symmetric bumps. The answer is no in general. The decomposition with the Neumann
and Dirichlet problems would be the same and the asymptotic procedure would be very similar.
This is an interest of the method proposed here compared for example to the technique of [9, 10]
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Figure 11: Real parts of uε
1 (top) and uε

2 (bottom). The lengths of the ligaments have been tuned
to get mode conversion.

Π− Π+

Figure 12: Geometry of a waveguide with symmetric bumps.

based on decomposition in Fourier series or the one of [28, 26] relying on integral equations with an
explicit kernel, we do not need separation of variables in Π±. But as already announced in Remarks
6.1, 6.2, for a generic domain, we can not position the ligaments to get (17). In such a situation,
it is necessary to work with a higher number of ligaments. But then coupling effects between the
ligaments appear and they are not so simple to deal with.

iv) On the other hand, we worked in 2D but what we proposed could be adapted in 3D. How-
ever the asymptotic procedure would be different. This comes in particular from the fact that in
3D, the Y 1 appearing in (24) would have a different expansion at infinity (see more details in [34]).

v) The trick consisting in working a geometry which is symmetric with respect to the vertical
axis is quite important in the analysis. It allows us to uncouple the influence of the two ligaments.
Without it, we can still proceed to the asymptotic analysis in a similar way. But the results we
obtain are less simple to exploit to get the mode conversion because then coupling constants de-
pending non explicitly on the positions of the ligaments appear in the expansions.

vi) What we proposed here is very specific to the Neumann BC and cannot be adapted for the
Dirichlet BC (quantum waveguides). The reason is that with Dirichlet BC almost nothing passes
through the thin ligaments. Another idea has to be found to design a mode converter for a waveguide
with Dirichlet BC.
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Appendix: auxiliary results

Lemma 8.1. The constant CΞ appearing in the decomposition (24) of the function Y 1 is real.

Proof. Since there holds ∆Y 1 = 0 in Ξ, for all ρ > 0, we have

0 =
∫

Ξρ

(Y 1 − Y 1)∆Y 1 − ∆(Y 1 − Y 1)Y 1 dξxdξy

with Ξρ := {(ξx, ξy) ∈ Ξ, ξx < 0 and |ξ| < ρ}∪{(ξx, ξy) ∈ [0; ρ)× (−1/2; 1/2)}. Integrating by parts
and taking the limit ρ → +∞, we get CΞ − CΞ = 0. This shows that CΞ is real.

Lemma 8.2. The constants Γ± corresponding to the constant behaviour of γ± at A± (see (33),
(46)) are such that

ℑm (kΓ±) = 1 + 2β1 cos(πy±)2/β2.

Proof. Since the functions γ± are outgoing, we have the expansions

γ±(x, y) = s±1w−
1 (x + 1/2, y) + s±2w−

2 (x + 1/2, y) + γ̃±(x, y)

where s±i ∈ C and γ̃± are exponentially decaying at infinity. For i = 1, 2, integrating by parts in

0 =
∫

Πρ
−

(∆γ± + k2γ±)Wi − γ± (∆Wi + k2Wi) dz,

and taking the limit ρ → +∞, we obtain

s±1 = i/
√

β1 and s±2 = i cos(πy±)
√

2/
√

β2. (59)

On the other hand, integrating by parts in

0 =
∫

Πρ
−

(∆γ± + k2γ±)γ± − γ± (∆γ± + k2γ±) dz,

and taking again the limit ρ → +∞, we obtain 2(|s±1|2 + |s±2|2) − 2ℑm Γ = 0. From (59), this
yields the desired result.
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