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 10 

Abstract 11 

We discuss the significance of deformation structures in Quaternary sediments observed by Grube 12 

(2019) in the Peissen quarries (NW Germany) in light of the geological context. Evidence for 13 

polygonal patterns visible in aerial images in the study area shows that the wedge structures 14 

interpreted by Grube (2019) as earthquake-induced sand blows may rather correspond to thermal 15 

contraction cracks filled with aeolian sand in a permafrost environment. In the study sites, brittle 16 

deformations caused by (i) the rise of a salt diapir, (ii) salt dissolution, (iii) the development of 17 

Pleistocene permafrost and (iv) possibly, water circulation under pressure in the Scandinavian ice 18 

sheet margin may have coexisted. We support the idea that, while the morphology of deformation 19 

generally makes it possible to determine the stress state to which the sediments have been 20 

subjected and the quantity of water available in the system at the time of deformation, the nature of 21 

the factors causing the stresses remains difficult to identify. In the end, we highlight other useful 22 

criteria that should be privileged for palaeoseismic research in such complex geological settings. 23 

Keywords: Palaeoseismology; Permafrost; Brittle deformation 24 

 25 

1. Introduction 26 

Grube's (2019) article on brittle and ductile deformations affecting Quaternary sediments in the 27 

Peissen region (northwest Germany) provides interesting data on potential traces of 28 

palaeoearthquakes and is part of a recent effort to extend seismicity catalogues in Europe beyond 29 

the period for which instrumental data and historical texts are available. These deformation 30 
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structures complement the many other structures already described in northern Europe, particularly 31 

by Hoffmann and Reicherter (2012), Brandes and Winsemann (2013), van Loon and Pisarska-Jamrozy 32 

(2014) and van Loon et al. (2016), which were also interpreted as earthquake-induced. However, the 33 

geographical proximity of all these structures does not constitute proof of a common origin. The 34 

main reasons for this relate to the complex local geomorphological context, marked by (1) the 35 

development of permafrost during the last glaciation, (2) the proximity of the Scandinavian ice sheet 36 

during the last Glacial Maximum, and (3) the presence of a salt diapir in the immediate vicinity of the 37 

study sites. These aspects will be developed in detail here. The outcome of this analysis is that, while 38 

the morphology of deformation generally makes it possible to determine the stress state to which 39 

the sediments have been subjected and the quantity of water available in the system at the time of 40 

deformation, the nature of the factors causing the stresses remains difficult to identify. Laboratory 41 

experiments and field observations indicate that similar brittle and/or ductile deformations may 42 

occur in relation to various geomorphological processes. Therefore, the multiplicity of potential 43 

factors that may have been involved in the sector studied by Grube (2019) does not make it possible 44 

to determine confidently the origin of the deformation structures. 45 

 46 

2. Sand blows and sand wedges in a permafrost context 47 

The wedge-shaped structures filled with sand described by Grube (2019) and interpreted as sand 48 

blows due to ground fluidization caused by seismic shaking are very similar to the wedges caused by 49 

thermal contraction of the ground in periglacial environments and filled with aeolian sand (sand 50 

wedges) or a mixture of sand and ice (composite wedge pseudomorphs) (e.g., Murton, 2013; 51 

Andrieux et al., 2016a, b). These wedges have a V shape, sand veins extending from the base 52 

(apophyses), a depth (up to 1.7 m) and an internal organization typical of periglacial structures. 53 

Vertical lamination is preserved in one of the wedges illustrated in Fig. 11e of Grube (2019). The 54 

lamination, common in thermal contraction wedges, is related to repeated cracking of the ground 55 

during winters and the infiltration of aeolian sand into the crack (Fig. 1). When the filling is composed 56 

of sand and ice (composite wedges), melting of ice causes the lamination to vanish and the wedge to 57 

deform. Coarser material from the host sediment can fill the depression. Ghysels and Heyse (2006) 58 

and Buylaert et al (2009) have described similar examples in Belgium OSL-dated to the Weichselien 59 

and Saalien. Creep of fine-grained host material during melting or repeated thaw cycles can also lead 60 

to the formation of globular structures comparable to those shown in Grube's (2019) Fig. 11b (Fig. 61 

1D). 62 

One of the most relevant criteria for discriminating these structures from sand blows is their 63 

organization into large polygons, which reach 10 to 30 m in diameter. Unfortunately, Grube (2019) 64 



has not documented this aspect. However, some data indicate that the presence of sand wedges or 65 

composite wedge pseudomorphs is highly probable in the study area. These data are (1) polygons 66 

visible on satellite photographs accessible in Google Earth; one of the identified sites is located in the 67 

immediate vicinity of Pit 3, another of Pit 2 (Fig. 2); (2) the mention by Christensen (1978) of 68 

abundant fossil thermal contraction polygons visible in aerial photographs in Denmark and northern 69 

Germany; the geo-referencing of Christensen’s map shows that the study sites are located in an area 70 

where more than 5% of agricultural land is affected by polygons; and (3) the concomitance of 71 

continuous permafrost during the last glaciation (Vandenberghe et al., 2014) and coversand 72 

deposition (Kasse, 1997; Zeeberg, 1998), which is a pattern highly favourable to the formation of 73 

sand wedges over large surfaces. Therefore, the interpretation of these structures as periglacial sand 74 

wedges rather than seismogenic sand blows seems most likely in the current state of the analysis and 75 

a seismic origin cannot therefore be retained without more supporting evidence. 76 

3. Brittle deformation 77 

Unconsolidated and well-drained sediments under stress deform in a brittle manner. The stress can 78 

be caused by wide range of geological processes. Many experiments using analog models under 79 

stress have been described in the literature. These models use cohesionless granular materials, most 80 

often sand, sometimes interlayered with ductile levels (cohesive wet clays, or purely viscous silicone 81 

paste). The results constitute a data set that can be used to understand the brittle deformation of 82 

non-lithified Quaternary sediments. 83 

Experiments by Komuro (1987) and Walter and Troll (2001) reproduced the growth of a lenticular 84 

body (a putty ball or an inflated chamber) under a granular cover. The increase in volume leads to 85 

the formation of a dome and the development of subvertical radial cracks at the top (Fig. 3A,B). As 86 

the dome grows, cracks are formed that cut at right angles the radial cracks and are arranged in a 87 

more or less concentric pattern. At the top of the dome, the blocks bounded by the cracks collapse, 88 

leading to the formation of a polygonal central depression limited by normal faults. Walter and Troll 89 

(2001) reproduced the succession of growth phases followed by collapse of the cover. The 90 

interaction between the fractures created during swelling and those related to collapse generates 91 

blocks of variable size and a high degree of material fragmentation (Fig. 3F).  92 

This type of structure accurately reflects the fracturing of the sediment or peat layer that covers 93 

intrusive ice mounds (pingos, frost blisters) or segregated ice mounds (lithalsas) in a periglacial 94 

context. Examples have been described in the Canadian Arctic by Mackay (1988, 1998) and Pollard 95 

(1991) (Fig. 4A). Davison et al. (2000) and Marco et al. (2002) also observed a system of radial and 96 

tangential cracks in the sedimentary cover at the periphery of salt diapirs (Fig. 4B). In the example 97 



detailed by Marco et al. (2002), many structures correspond to clastic dykes and probably result from 98 

the filling of cracks opened from the surface, which were formed in connection with the rise of the 99 

diapir. 100 

Experiments that reproduce the rise of a block of substratum, and those that simulate the collapse of 101 

an unconsolidated cover over a cavity, provide comparable results. In both cases, the faults are 102 

concentrated to a limited area at the edge of the raised block or the cavity. Sanford’s (1959) 103 

experiments consisted in lifting a rigid block limited by vertical edges under a cover of sand or sand 104 

and clay. Reverse curved faults propagate towards the surface and the subsided area (Fig. 3C). As 105 

pointed out by Sanford (1959), the reverse faults, which are subvertical at the base and evolve into 106 

thrusts towards the surface, are not related to horizontal compression in the model, but to vertical 107 

movements at depth. Similar results were also obtained in a series of experiments designed to 108 

reproduce the roof collapse over a cavity (Roche et al., 2001; Walter and Troll, 2001; Geyer et al., 109 

2006; Coumans and Stix, 2016). In these experiments, bell-shaped reverse fractures form above the 110 

cavity together with annular extension fractures starting from the surface at the periphery. 111 

Progressive roof collapse occurs in connection with the propagation of the bell-shaped fractures up 112 

to the surface (Fig. 3D,E). Coumans and Stix (2016) reproduced the situation in which the thickness of 113 

the cover is not homogeneous. In this case, subsidence associated with reverse faulting occurs where 114 

the sediment thickness above the cavity is lowest, whereas normal faults develops at the opposite 115 

side (Fig. 3G). The final depression has an asymmetrical shape. 116 

Many examples of curved reverse faults and associated normal faults have been described in natural 117 

environments. They comprise the cover of salt diapirs undergoing dissolution (Simon and Soriano, 118 

1986; Davison et al., 1996) (Fig. 4B), sediments affected by the collapse of a karstic cavity (Soriano et 119 

al., 2012; Simon et al., 2014; Luzón et al., 2012) (Fig. 4E), subglacial deposits (eskers) deformed by 120 

glacier melt-out (McDonald and Shilts, 1975), and lahars or fluvioglacial deposits (jökulhlaup) 121 

deformed by melting of ice-blocks (Branney and Gilbert, 1995; Fay, 2000). Calmels et al. (2008) 122 

identified reverse ice-filled faults dipping 50 to 90° in a segregated ice mound (lithalsa) in northern 123 

Quebec. According to Calmels et al. (2008), these faults formed during the growth of ice lenses 124 

during permafrost build-up. Reverse faults have also been identified in ramparts created by the 125 

melting of Pleistocene ice mounds (Payette and Séguin, 1979; Kasse and Bohncke, 1992; Pissart, 126 

2000; Bertran et al., 2018) and in thermokarst lake deposits (Murton, 1996; Bertran et al., 2018) (Fig. 127 

4C).  128 

Other experiments have reproduced deformations created by shortening (Bonini et al., 2000; Bonini, 129 

2007). In these models, detachment occurs at the substratum - cover interface and reverse faults 130 



with low dip (thrusts) form in the cover to accommodate the shortening (Fig. 3E). Thrusting leads to 131 

the formation of an anticline at the top of the ramp and conjugate reverse faults delimiting pop-up 132 

structures develop. The frontal bulge can collapse along normal faults that form as shortening and 133 

bulging progress. 134 

This type of deformation is typically observed in the frontal bulge of landslides (Coombs and Norris, 135 

1981; McCalpin and Thakkar, 2003) (Fig. 4D) and at the front of emerging deep-seated reverse faults 136 

(Philip et al., 1992; McCalpin and Thakkar, 2003). 137 

In summary, the available models show that it is possible to identify the stress state that caused 138 

brittle deformation from the fracture geometry. However, the factors underlying stress remain more 139 

difficult to determine and observations in natural environments indicate that many geological 140 

processes are able to generate similar deformations. Comparable conclusions were also drawn for 141 

soft-sediment deformations (e.g., Moretti et al., 2016). Analysis of the fracture pattern can provide 142 

insight into the factors that may be involved. However, the usually limited extent (i.e., a few tens of 143 

metres) of the outcrops is one of the main limitations for documenting accurately the general 144 

fracture pattern. An exception is fracturing due to thermal contraction of the ground in a periglacial 145 

context, where the growth of ice or sand wedges generates easily identifiable polygonal patterns. 146 

The site studied by Grube (2019) is located in a complex geological environment, where 147 

deformations created by the rise of a salt diapir, salt dissolution, the development of Pleistocene 148 

permafrost and possibly, by water circulation under pressure in the Scandinavian ice sheet margin 149 

(see Boulton et al., 1993; Murton, 2005; Ravier et al., 2015) have overlapped. Consequently, this site 150 

seems unfavourable to the detection of palaeoearthquakes, insofar as the structures observed at the 151 

scale of the outcrops do not allow the factors potentially involved to be discriminated against. The 152 

association of normal and reverse faults (Fig. 12 of Grube (2019)) may well reflect the deformation 153 

associated with the rise and dissolution of the underlying salt diapir, or that created by the growth 154 

and melting of ice bodies during the Weichselian, rather than earthquake-induced processes. Diapir 155 

uplift caused by loading of the surrounding land by the Weichselian ice sheet likely occurred as 156 

demonstrated by Lang et al. (2014). 157 

4. Conclusion and prospects 158 

The arguments proposed by Grube (2019) for a seismic origin of the structures observed in the 159 

Peissen quarries are not convincing when considering the context. In such geological settings, the 160 

types of criteria that should be favoured in palaeoseismic research are (1) surface lineation 161 

identifiable by the relief or an offset in geological structures, which may reflect the emergence of 162 

deep-seated faults (although possibly non-seismogenic), and (2) fractured pebbles associated with a 163 



fault or in the associated damage zone, which provide evidence for the seismogenic nature of the 164 

fault. 165 

The first criterion is traditionally used in palaeoseismology (e.g., Chardon et al., 2005; Camelbeeck et 166 

al., 2007; Baize et al., 2019) and serves as a guide for trenching to study the fault’s history. This 167 

approach ensures that the structures analysed in cross-section are effectively related to a deep-168 

seated fault. The persistence of relief, however, implies that the fault has been active recently.  169 

Pebble fracturing along seismogenic faults is attested by some authors, particularly Kübler et al 170 

(2018), in settings where the lithostatic stress is null (subsurface). Fragmentation results from the 171 

development of stress higher than pebble strength (especially in the case of poorly resistant 172 

lithologies such as argillites or sandstones) caused by shearing along the fault. This stress remains 173 

significantly lower than that required for quartz grain cataclasis (typically in deep fault gouges, e.g., 174 

Cashman and Cashman, 2000; Torabi et al., 2007; Mair and Abe, 2008; Kristensen et al., 2013) and 175 

requires the pebbles to be in contact with each other (clast-supported material). According to Radjai 176 

et al. (1998), the stress transmitted along the load-bearing network is much higher than the average 177 

vertical stress, allowing pressures higher than pebble strength to develop during shear. Seismic 178 

compression waves and waves released by the bursting of neighbouring pebbles are likely to be 179 

involved in fracturing (Davies et al., 2012), as long as fracturing is not observed along non-180 

seismogenic faults. 181 

Cataclasis could thus provide a reliable indicator that can be used in palaeoseismological analysis, 182 

particularly when it affects many pebbles in the damage zone around a fault (Fig. 5A, B). Other 183 

factors that can cause fracturing of subsurface pebbles include gelifraction (Matsuoka, 2001, 2008; 184 

Jia et al., 2017) and mass flow of debris. Gelifraction is caused by crack expansion resulting from ice 185 

growth in fissured rocks and segregation ice growth due to water migration in weak and highly 186 

porous rocks such as chalk. Gelifraction is a common feature in cold environments and mainly affects 187 

limestones, shales and all kinds of fractured rocks (Fig. 5C, D). It remains ineffective on compact rocks 188 

such as most alluvial pebbles, for which the impacts caused by the fluvial transport have eliminated 189 

the least resistant and most fissured parts. Fractured pebbles are actually rare (but not totally 190 

absent) in Quaternary alluvial deposits and are scattered throughout the deposits. Cataclasis typifies 191 

the sedimentary flows involving a large volume of debris, i.e., rock avalanches (Siebert, 1984; 192 

Yarnold, 1993; Bertran, 2003). It develops within the whole flow and does not concentrate along 193 

identifiable faults. It gives rise to so-called "jigsaw" structures (Fig. 5E, F). In smaller flows (debris 194 

flows, snow avalanches), flaking of the transported blocks dominates. In most cases, 195 



sedimentological criteria and the non-localized nature of cataclasis make it possible to identify the 196 

factor involved.   197 

Fractured pebbles associated with faults and embedded in unconsolidated or weakly cemented 198 

fluvial deposits were mentioned by several authors (Jorda, 1982; Carbon et al., 1993; Baize et al., 199 

2002; Guignard et al., 2005) in southeastern France, the most seismic region of the country during 200 

historical times, and provide reliable indices for palaeo-earthquakes. To our knowledge, similar such 201 

structures have not been reported in areas further north and should focus research. 202 
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 381 

Figure captions 382 

Figure 1. (A) Pleistocene sand wedge, Salaunes (SW France), (B) Close up view of the vertical 383 

lamination in a sand wedge from La Louverie (Loire valley, France), (C) Sand wedge with apophyses, 384 

Saint-Amand-les-Eaux (N France), (D) Globular structure (DSW) caused by the deformation of a sand 385 

wedge, Saint-André-de-Cubzac (SW France); the sand wedge (SW) is visible on the bottom of the 386 

trench below the dotted line. 387 

Figure 2. (A) Ground thermal contraction polygons, Peissen (X = 9.5878°E, Y = 54.0414°N); (B) 388 

Polygons, Beldorf (X = 9.3540°E, Y = 54.1213°N) (Google Earth, photos 2009). 389 

Figure 3. Brittle deformation of sandy soil models. (A) Radial fractures and central polygonal 390 

depression formed by the rise of a ball under a granular cover, redrawn from Komuro (1987); (B) 391 

Fracturing of a sand cover following chamber inflation, from Walter and Troll (2001); (C) Formation of 392 

curved reverse faults in sand due to the lifting of a substratum block, from Sanford (1959); (D) Bell-393 

shaped reverse faults above a cavity, from Geyer et al. (2006); (E) Annular fracture above a cavity, 394 

from Walter and Troll (2001) (the chamber is indicated by the grey dashed line); (F) Deformation 395 

after swelling followed by emptying of a chamber, from Walter and Troll (2001); (G) Asymmetric 396 

collapse above a cavity in the presence of a relief, from Coumans and Stix (2016); (H) Deformation of 397 

a cover as a result of horizontal shortening, from Ballard et al. (1987). 398 

Figure 4. (A) Radial cracks on a pingo (ice-cored mound), Tuktoyaktuk, Canada (Google Earth); (B) 399 

Radial and tangential faults around a salt diapir, redrawn from Davison et al. (2000); (C) Reverse 400 

faults in Pleistocene thermokarst lake deposits, Gourgançon (Paris Basin, France); (D) Thrust planes 401 

at the toe of a landslide, Les Leches (SW France); (E) Bell-shaped reverse faults above a karstic cavity, 402 

Mérignac (SW France). 403 



Figure 5. (A, B) Fractured pebbles in the Lower Pleistocene Valensole II Formation, near Sisteron (SE 404 

France); the finer-grained material to the left of photo B is a fault gouge; the largest pebble is 10 cm 405 

long; (C) Gelifracted pebble in an active layer above permafrost, Tuktoyaktuk (Canada); (D) 406 

Gelifracted sandy limestones, French Pyrenees (France); the largest pebbles are 20 cm in diameter; 407 

(E) Jigsaw structure in the Mont Granier rock avalanche (French Alps); knife for scale; (F) Jigsaw 408 

structure in a volcanic rock avalanche, Guadeloupe Island (French West Indies); the section is 1.5 m 409 

high. 410 



Figure (Color)
Click here to download high resolution image

http://ees.elsevier.com/geomor/download.aspx?id=801310&guid=71cd897a-6315-4f82-ab4b-5a3a8e13dd18&scheme=1


Figure (Color)
Click here to download high resolution image

http://ees.elsevier.com/geomor/download.aspx?id=801311&guid=db686094-6771-4eb6-8b06-97ec9f5c5d0b&scheme=1


Figure (Color)
Click here to download high resolution image

http://ees.elsevier.com/geomor/download.aspx?id=801317&guid=9f80d337-1483-46f6-ae02-6b6b835e5990&scheme=1


Figure (Color)
Click here to download high resolution image

http://ees.elsevier.com/geomor/download.aspx?id=801312&guid=9819ed6f-eab2-4a7d-bb53-30146f7a63e3&scheme=1


Figure (Color)
Click here to download high resolution image

http://ees.elsevier.com/geomor/download.aspx?id=801313&guid=5955c00f-ecd8-4afc-b9b6-7e8ca8f05ae5&scheme=1



