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ABSTRACT
Quality-Diversity optimization algorithms such as MAP-Elites, aim
to generate collections of both diverse and high-performing solu-
tions to an optimization problem. MAP-Elites has shown promising
results in a variety of applications. In particular in evolutionary
robotics tasks targeting the generation of behavioral repertoires
that highlight the versatility of robots. However, for most robot-
ics applications MAP-Elites is limited to using simple open-loop
or low-dimensional controllers. Here we present Policy Gradient
Assisted MAP-Elites (PGA-MAP-Elites), a novel algorithm that en-
ables MAP-Elites to efficiently evolve large neural network con-
trollers by introducing a gradient-based variation operator inspired
by Deep Reinforcement Learning. This operator leverages gradi-
ent estimates obtained from a critic neural network to rapidly find
higher-performing solutions and is paired with a traditional genetic
variation to maintain a divergent search behavior. The synergy of
these operators makes PGA-MAP-Elites an efficient yet powerful
algorithm for finding diverse and high-performing behaviors. We
evaluate our method on four different tasks for building behavioral
repertoires that use deep neural network controllers. The results
show that PGA-MAP-Elites significantly improves the quality of
the generated repertoires compared to existing methods.
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1 INTRODUCTION
Diversity is a catalyst of life. By finding a novel adaptation to the
environment, species can thrive while being neither the fastest,
strongest nor tallest globally [31]. This notion inspired researchers
in Evolutionary Computation (EC) to pursue Quality-Diversity
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Figure 1: The conceptual approach behind PGA-MAP-Elites.
While executing a standard MAP-Elites loop of repeated se-
lection, variation and evaluation of solutions, the variation
is split between two independent operators: 1) A Policy Gra-
dient (PG) variation for directed performance improvement.
2) A genetic (GA) variation for divergent search. By training
a critic neural network asynchronously to the MAP-Elites
loop using experience collected during evaluations, perfor-
mance gradients can swiftly be derived for any solution.

(QD) optimization [15, 43, 44]. In QD optimization, performance-
based competition is considered only locally between solutions
characterized as similar. Rather than optimizing strictly for a sin-
gle best-performing solution, QD optimization algorithms aim to
return a collection of solutions that are both as diverse as possible
and as high-performing as possible. In robotics, this allows learning
a repertoire of behaviors which is useful since this provides alterna-
tives if one behavior suddenly becomes ineffective due to changes
in the environment or damage to the robot [13, 47, 48]. In many
cases, it is also desirable for a robot to discover the entire range
of behaviors it is capable of rather than just a single behavior that
maximizes a certain objective [11, 16]. Greedily optimizing a given
objective may also cause the optimization process to prematurely
converge to a local optimum, while simultaneously searching for di-
verse behaviors can help to find stepping stones that overcome local
optima and lead to finding globally more optimal behaviors [17, 32].

QD optimization algorithms such as Multi-dimensional Archive
of Phenotypic Elites (MAP-Elites) [13, 40, 48], are traditionally
driven by a Genetic Algorithm (GA) for their capability of diver-
sifying the search. This reliance on GAs limits the applicability
of MAP-Elites to problems of low dimensionality. Typically the
number of optimized parameters is kept below 100 [13, 15, 40]. GAs
are also inefficient [12, 20] and prone to finding unstable solutions
located on narrow peaks in the optimization landscape that are not
repeatable in stochastic environments [14, 19, 25].

Deep Reinforcement Learning (DRL) [37–39] algorithms are
based on an opposing methodology where a single performance-
maximizing behavior is sought. In DRL, behaviors are learned via a
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deep neural network (DNN) controller that is trained to predict the
“optimal” action—the action that will most likely lead to maximiz-
ing the defined objective—to take given an observation. DRL lever-
ages the function approximation strength of DNNs and powerful
gradient-based training techniques, such as backpropagation [35],
to guide the learning process directly towards improving perfor-
mance. Using these techniques, DRL algorithms can solve problems
in robotics that require the complex and precise control only achiev-
able by DNNs with tens of thousands of parameters, in stochastic
environments where learning robust behaviors is essential [22, 33].

This paper introduces the Policy Gradient Assisted MAP-Elites
(PGA-MAP-Elites) algorithm, an extension of MAP-Elites which
incorporates gradient-based optimization via a method based on
DRL algorithm Twin Delayed Deep Deterministic policy gradient
(TD3) [22]. By evaluating PGA-MAP-Elites on a set of stochastic
behavior generation tasks requiring robots to be controlled by large
DNN, we show that PGA-MAP-Elites successfully scales the gener-
ation of behavioral repertoires to new domains where current ver-
sions of MAP-Elites fail. In these tasks PGA-MAP-Elites achieves a
powerful illumination of the search space, finding high-performing
and robust solutions across the entire range of possible behaviors,
where the highest performing solutions found rival those of modern
DRL algorithms. The benchmark tasks used to evaluate PGA-MAP-
Elites have been made available as the OpenAI Gym [5] based open-
source module QDgym (https://github.com/ollenilsson19/QDgym).
This module does not rely on any proprietary software, making our
benchmarks easy to use for other researchers.

2 BACKGROUND AND RELATEDWORK
2.1 Quality-Diversity Optimization
In contrast to standard optimization algorithms, which search for a
single global solution regardless of its characteristics, QD optimiza-
tion algorithms differentiate between solutions that have different
characteristics. The domain that characterizes solutions is called
the behavioral space [15] and is defined based on some property
of solutions that is meaningful for the type of diversity sought.
Characterization of a solution is called a behavioral descriptor (BD),
denoted b, that measures where in the behavioral space a solution
lies. For example, if the task is for a robot to discover the range of
gaits it is capable of, the BDmay be the proportion of time each foot
of the robot is in contact with the ground in a gait [7, 13, 48]. The
task of QD optimization algorithms is thus to produce a collection
of solutions that are as diverse as possible based on the defined
behavioral space, and as high-performing as possible in its local
region of the behavioral space. Each solution only competes based
on performance with solutions that have similar BDs, or in other
words, exist within the same niche of behavior.

2.2 MAP-Elites Algorithm
MAP-Elites is a simple but effective QD optimization algorithm
that has been used to teach robots how to adapt to damage [13, 47,
48], generate aerodynamic designs [23] and to create content for
games [1, 2]. In MAP-Elites, the behavioral space is discretized into
a grid, which forms an archive for storing solutions where each cell
corresponds to a behavioral niche. The goal of the algorithm is to
return an archive with a maximum number of cells filled, where

Algorithm 1 MAP-Elites algorithm. Adapted from [48].

1: procedure MAP-Elites( )
2: (X,P) ←− create_empty_archive()
3: 𝑖 = 0
4: while 𝑖 < 𝐼 do ⊲ Main Loop: 𝐼 evaluations, batch-size 𝑏
5: if 𝑖 < 𝐺 then ⊲ Initialization: 𝐺 random x.
6: x̂1, . . . , x̂𝑏 = random_solutions(𝑏)
7: else ⊲ Selection and variation
8: x1, . . . , x𝑏 = selection(X, 𝑏) ⊲ Uniform sampling
9: x̂1, . . . , x̂𝑏 = variation(x1, . . . , x𝑏 )
10: 𝑖 += 𝑏

11: ADD_TO_ARCHIVE (x̂1, . . . , x̂𝑏 ,X,P)
12: return archive (X,P)
13: procedure ADD_TO_ARCHIVE(Solution-List,X,P)
14: for x in Solution-List do
15: (𝑝, b) ←− evaluate(x)
16: 𝑐 ←− get_cell_index(b)
17: if P(𝑐) = 𝑒𝑚𝑝𝑡𝑦 or P(𝑐) < 𝑝 then
18: P(𝑐) ←− 𝑝 , X(𝑐) ←− x

the solution in each cell is the highest performing solution possible
within that niche. The MAP-Elites algorithm follows a repeated
loop of uniformly selecting solutions from the current archive,
applying a variation to the selected solutions to form new ones and
evaluating the new solutions for addition to the archive. Solutions
are added to the archive based on the status of the cell a solution’s
BD falls within. If that cell is empty the solution is added. If that
cell is not empty, the solution replaces the one currently in that cell
if the new solution has a higher performance based on a defined
fitness function. For robotics applications, solutions are vectors x
that parameterize controllers (such as neural networks) to control
a robot with the goal of solving a certain task. The selection and
variation are repeated until 𝐼 solutions have been evaluated and the
final archive is returned as the solution of the algorithm. To initialize
the MAP-Elites algorithm an empty archive is first generated. The
archive is represented by X, that stores the parameter vector of the
solution in each cell 𝑐 , and P, that stores the corresponding fitness
value 𝑝 . The archive is then initialized by𝐺 random solutions before
entering the selection and variation loop. TheMAP-Elites algorithm
is further detailed in Alg. 1.

By using a GA as the variation operator, MAP-Elites achieves a
divergent search indirectly via the behavior-based archiving and
a variation agnostic to the fitness objective. This divergent search
methodology may cause inefficiencies or failure to learn. Even in
problems where only a few parameters are optimized, the GA vari-
ation causes a slow convergence [20]. In problems that require
behaviors to be encoded by DNNs with a large number of param-
eters, MAP-Elites with a GA variation typically fails to find the
locally optimal behaviors due to a lack of directed search power [7].
In stochastic tasks the archiving methodology can cause ineffi-
ciencies if the behaviors found are not robust, as the expected
fitness and BD of each solution need to be calculated by averaging
over several evaluations. This averaging requirement can reduce

https://github.com/ollenilsson19/QDgym
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data-efficiency by several orders of magnitude [14, 19, 25]. In se-
quential decision-making tasks, where each evaluation may require
thousands of costly simulation steps, MAP-Elites can thus become
resource-demanding and challenging to employ.

An extension of MAP-Elites called Centroidal Voronoi Tessel-
lation MAP-Elites (CVT-MAP-Elites) [48] automates the archive
creation by spreading 𝑘 cell-centroid locations maximally in behav-
ioral space and is used as the basis for developing PGA-MAP-Elites.

2.3 Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) for robotics applications is
formalized as a Markov Decision Process (MDP) that considers
a robot acting sequentially in an environment at discrete time-
steps 𝑡 . A deep neural network (DNN) controller with parameters
𝜙 encodes a behavior/policy 𝜋𝜙 (𝑠), that for each observed state
𝑠𝑡 , chooses an action 𝑎𝑡 , leading to a new state 𝑠𝑡+1. Each such
transition is scored by a reward function 𝑟 (𝑠𝑡 , 𝑎𝑡 ). The constraints
of an MDP requires that the observation made at each time-step
fully determines the robot’s current state. The objective is to learn,
from experience, the policy that maximizes the expected return
𝐽 (𝜙) = E [𝑅0] over a lifetime of 𝑇 time-steps. The return is defined
as 𝑅𝑡 =

∑𝑇
𝑖=𝑡 𝛾

𝑖−𝑡 𝑟 (𝑠𝑖 , 𝑎𝑖 ), where 𝛾 ∈ [0, 1] is the discount factor
which regulates importance of future rewards.

2.4 TD3 Algorithm
The TD3 algorithm [22] is one of the state-of-the-art methods in
DRL for robotics. TD3 uses an actor-critic methodology to learn
a policy (actor) indirectly via maximization of the action-value
function 𝑄𝜋 (𝑠, 𝑎) = E [𝑅𝑡 | 𝑠, 𝑎 ], approximated by a pair of DNNs
(critics) with parameters \1 and \2. The action-value function en-
codes the expected return from being in state 𝑠 and taking action 𝑎,
thereafter following the policy 𝜋 . The policy that maximizes the
action-value function at every time-step thus maximizes the return.
While acting in the environment, TD3 stores experience in the form
of transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟 (𝑠𝑡 , 𝑎𝑡 ) , 𝑠𝑡+1) in a replay buffer B [34]. This
collection of experience is used to derive a performance gradient
for the policy. TD3 uses deterministic policies and calculates their
performance gradient via the deterministic policy gradient [46],

∇𝜙 𝐽 (𝜙) = E
[
∇𝜙𝜋𝜙 (𝑠) ∇𝑎𝑄\1 (𝑠, 𝑎)

��
𝑎=𝜋𝜙 (𝑠)

]
. (1)

To calculate this gradient, the critics are trained to approximate
the action-value function via the Bellman equation [4], which de-
scribes the relationship between the action-value of one state-action
pair and the action-value of the subsequent state-action pair,

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾E
[
𝑄𝜋 (𝑠𝑡+1, 𝜋 (𝑠𝑡+1))

]
. (2)

The action-value function can thus be learned by bootstrapping
from the critics’ current estimates to learn a better approximation.
As the policy is deterministic, the expectation in Eq. 2 depends
only on the environment and the action-value function can be
learned off-policy [51] from experience collected by acting in the
environment under any policy and stored in a replay buffer. TD3
calculates the update target in this bootstrapping by taking the
minimum action-value prediction between the two critics to avoid
overestimation feeding further overestimation and leading to in-
stabilities. To further promote stability, dedicated target networks

Algorithm 2 TD3 algorithm. Adapted from [22].
1: 𝜋𝜙 ←− initialize_actor_network()
2: 𝑄\1 , 𝑄\2 ←− initialize_critic_networks()
3: 𝜋𝜙′ ← 𝜋𝜙 , 𝑄\ ′1

, 𝑄\ ′2
← 𝑄\1 , 𝑄\2 ⊲ Initialize target networks

4: B ←− initialize_replay_buffer()
5: 𝑠𝑡 ∼ 𝑝 (𝑠1) ⊲ Sample initial state
6: for 𝑡 = 1→ 𝑛_𝑖𝑡𝑒𝑟 do ⊲ Training Loop: 𝑛_𝑖𝑡𝑒𝑟 iterations
7: 𝑎𝑡 ←− 𝜋𝜙 (𝑠𝑡 ) + N (0, 𝜎𝑎) ⊲ Select action and add noise
8: Apply action and observe 𝑟 (𝑠𝑡 , 𝑎𝑡 ) and 𝑠𝑡+1
9: add_to_replay_buffer ((𝑠𝑡 , 𝑎𝑡 , 𝑟 (𝑠𝑡 , 𝑎𝑡 ) , 𝑠𝑡+1) ,B)
10: Sample 𝑁 transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟 (𝑠𝑡 , 𝑎𝑡 ) , 𝑠𝑡+1) from B
11: 𝜖 ∼ clip(N (0, 𝜎𝑝 ),−𝑐, 𝑐) ⊲ Sample policy smoothing noise
12: 𝑎𝑡+1 ← 𝜋𝜙′ (𝑠𝑡+1) + 𝜖 ⊲ Predict next action and add noise
13: 𝑦 = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾 min

𝑖=1,2
𝑄\ ′

𝑖
(𝑠𝑡+1, 𝑎𝑡+1) ⊲ Calculate targets

14: \𝑖 ← argmin\𝑖
1
𝑁

∑ (
𝑦 −𝑄\𝑖 (𝑠, 𝑎)

)2
⊲ Update critics

15: if 𝑡 mod 𝑑 then
16: Update actor using gradient descent
17: ∇𝜙 𝐽 (𝜙) = 1

𝑁

∑∇𝜙𝜋𝜙 (𝑠𝑡 ) ∇𝑎𝑄\1 (𝑠𝑡 , 𝑎)
��
𝑎=𝜋𝜙 (𝑠𝑡 )

18: \ ′
𝑖
← 𝜏\𝑖 + (1 − 𝜏)\ ′𝑖 ⊲ Update critics targets

19: 𝜙 ′ ← 𝜏𝜙 + (1 − 𝜏)𝜙 ′ ⊲ Update actor target

(𝑄\ ′
𝑖
, 𝜋𝜙′ ) [38, 39] are used for both the critics and the actor to keep

the update target stable between iterations. By minimizing the loss,
𝐿 (\1, \2) =

(
𝑦 −𝑄\1 (𝑠𝑡 , 𝑎𝑡 )

)2 + (𝑦 −𝑄\2 (𝑠𝑡 , 𝑎𝑡 )
)2 over a batch of

𝑁 transitions of experience, TD3 updates the critics by gradient
descent towards the target 𝑦,

𝑦 = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾 min
𝑖=1,2

𝑄\ ′
𝑖

(
𝑠𝑡+1, 𝜋𝜙′ (𝑠𝑡+1) + 𝜖

)
. (3)

The next action is predicted as 𝑎𝑡+1 = 𝜋𝜙′ (𝑠𝑡+1) + 𝜖 , where
𝜖 ∼ clip(N (0, 𝜎𝑝 ),−𝑐, 𝑐) is sampled Gaussian noise with variance
𝜎𝑝 clipped to a maximum magnitude 𝑐 . The additional noise en-
forces higher action-values to actions more resistant to perturba-
tions, promoting robustness in stochastic environments. Every 𝑑
iterations the policy is updated via an approximation of Eq. 1 over
a batch of 𝑁 transitions of experience and the target networks
updated by a factor 𝜏 to slowly track the main networks,

\ ′
𝑖
← 𝜏\𝑖 + (1 − 𝜏)\ ′𝑖 ,

𝜙 ′ ← 𝜏𝜙 + (1 − 𝜏)𝜙 ′. (4)

As the polices are deterministic, exploration is achieved by adding
Gaussian noise with a variance 𝜎𝑎 to the selected action as the robot
interacts with the environment, 𝑎𝑡 = 𝜋𝜙 (𝑠𝑡 ) + N (0, 𝜎𝑎). The TD3
algorithm is further detailed in Alg. 2.

2.5 Related Work
Several recent algorithms explore creating fruitful synergies be-
tween DRL and EC methods for single objective search [26–28,
36, 50]. Most notably, CEM-RL [42] shows that pairing TD3 with
population-based methods can improve performance in DRL bench-
marks for robotics. In QD-based search, MAP-Elites with Evolution
Strategies (MAP-Elites-ES) [7] is a recent algorithm that attempts
to scale up MAP-Elites for use with high-dimensional controllers
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represented by DNNs. By pairing MAP-Elites with the Evolution
Strategies (ES) optimization method proposed in [45], MAP-Elites-
ES create variation operators for directly optimizing a fitness objec-
tive and for directly optimizing a diversity objective based on the
behaviors found so far. These operators optimize their respective ob-
jectives by finding empirical gradient estimates from sampling and
evaluating a range of perturbations around a current solution. Us-
ing this method MAP-Elites-ES is able to find far higher-performing
behaviors than MAP-Elites with GA variation when building reper-
toires for robots controlled by large DNNs. However, calculating
gradients by sampling can require a large number of evaluations
when optimizing DNNs. MAP-Elites-ES therefore typically finds
repertoires containing far fewer behaviors than MAP-Elites with
GA variation given an equal amount of experience in the environ-
ment [7]. This means MAP-Elites-ES can become computationally
resource-demanding and impractical to use for building behavior
repertoires with large DNN controllers.

Recently, works in DRL have incorporated select ideas from QD
optimization such as using archives to collect solutions [30], using
GAs for exploration with neural networks [41] or solving several
tasks from a single learning process [24]. Although most common
is the incorporation of diversity to improve exploration [3, 6, 8, 9,
17, 18, 21]. In this last category, the recent QD-RL [6] algorithm is
of particular interest. QD-RL searches for diversity directly as a way
to overcome deceptive rewards in DRL problems by introducing
a policy gradient for diversity. This method requires defining an
additional behavior characterization at the time-step level, called
a “state-BD”, that must be a valid state description in an MDP and
simultaneously provide a meaningful space for searching for the
type of diversity sought. QD-RL pairs this search for diversity with
a standard PG method optimizing for performance, and maintains
a population from which solutions are sampled for optimization
based on the Pareto-front of the two measures. Replacing this popu-
lation with a MAP-Elites archive would allow evaluating the QD-RL
approach for the generation of behavior repertoires and could reveal
a potent QD optimization algorithm.

3 PGA-MAP-ELITES
Policy Gradient Assisted MAP-Elites (PGA-MAP-Elites) is an ex-
tension of MAP-Elites that targets evolving DNN controllers by
combining the search power and data-efficiency of Policy Gradient
methods with the exploration capabilities of Genetic Algorithms.
The main concept of PGA-MAP-Elites is illustrated in Fig. 1. While
following the usual MAP-Elites loop, PGA-MAP-Elites uses two
independent variation operators in parallel: 1) a Policy Gradient
(PG) operator. 2) a standard Genetic Algorithm (GA) operator. At
each iteration of the MAP-Elites loop, PGA-MAP-Elites collects
the experience from evaluating controllers to train a pair of critic
neural networks based on the methods of the TD3 algorithm. These
trained critics are used to derive fitness gradient approximations
for the PG variation, which updates controllers towards selecting
actions that maximize the first critic’s action-value predictions.

3.1 Training the Critics
More formally, PGA-MAP-Elites derives fitness gradients by train-
ing two critic neural networks, 𝑄\1 and 𝑄\2 , to approximate the

Algorithm 3 PGA-MAP-Elites algorithm. Uses notation from [48].

1: procedure PGA-MAP-Elites
2: (X,P) ←− create_empty_archive()
3: 𝑄\1 , 𝑄\2 , 𝜋𝜙𝑐

←− initialize_critic_networks()
4: 𝑄\ ′1

, 𝑄\ ′2
← 𝑄\1 , 𝑄\2 ⊲ Initialize target networks

5: 𝜋𝜙′𝑐 ← 𝜋𝜙𝑐
⊲ Initialize target network

6: B ←− initialize_replay_buffer()
7: 𝑖 = 0
8: while 𝑖 < 𝐼 do ⊲ Main Loop: 𝐼 evaluations, batch-size 𝑏
9: if 𝑖 < 𝐺 then ⊲ Initialization: 𝐺 random 𝜋𝜙 .
10: 𝜋

𝜙1
, . . . , 𝜋

𝜙𝑏
= random_solutions(𝑏)

11: else ⊲ Selection and variation
12: 𝜋

𝜙1
= TRAIN_CRITIC(𝑄\𝑖 , 𝑄\ ′

𝑖
, 𝜋𝜙𝑐

, 𝜋𝜙′𝑐 ,B) i=1,2
13: 𝜋

𝜙2
, . . . , 𝜋

𝜙𝑏
= VARIATION(𝑏 − 1,X, 𝑄\1 ,B)

14: ADD_TO_ARCHIVE
(
𝜋
𝜙1
, . . . , 𝜋

𝜙𝑏
,X,P,B

)
15: 𝑖 += 𝑏

16: return archive (X,P)
17: procedure ADD_TO_ARCHIVE(Controller-List,X,P,B)
18: for 𝜋𝜙 in Controller-List do
19: (𝑝, b, transitions) ←− evaluate(𝜋𝜙 )
20: add_to_replay_buffer (transitions,B)
21: 𝑐 ←− get_cell_index(b)
22: if P(𝑐) = 𝑒𝑚𝑝𝑡𝑦 or P(𝑐) < 𝑝 then
23: P(𝑐) ←− 𝑝 , X(𝑐) ←− 𝜋𝜙

action-value function. A single “greedy” controller is trained to-
gether with the critics to predict the action with the maximum
action-value for calculation of the critic update target in the same
way the actor is used in TD3 (see Eq. 3). However, unlike the actor
in TD3 the greedy controller does not directly interact with the
environment. The greedy controller is denoted 𝜋𝜙𝑐

and is a neural
network with parameters 𝜙𝑐 , of the same architecture as the con-
trollers evolved in the MAP-Elites loop. For each iteration of PGA-
MAP-Elites, controllers are sampled from the archive, modified
according to the variation operator and re-evaluated for addition to
the archive. New experience from controller evaluations is collected
in a replay buffer B. The replay buffer has a limited maximum size
and old experience is overwritten on a first-in-first-out basis. Asyn-
chronous to each iteration of selection, variation and evaluation,
the critics are trained for 𝑛_𝑐𝑟𝑖𝑡 steps of gradient descent. For each
training step, the parameters of both critics are updated such that
the average action-value prediction of both critics tend towards
the target 𝑦. Each training step thus aims to minimize the loss
𝐿 (\1, \2) =

(
𝑦 −𝑄\1 (𝑠𝑡 , 𝑎𝑡 )

)2 + (
𝑦 −𝑄\2 (𝑠𝑡 , 𝑎𝑡 )

)2, averaged over
𝑁 transitions of experience sampled uniformly from the replay
buffer. The target is calculated in the same way as in TD3, via the
Bellman equation (Eq. 2) and taking the minimum action-value
prediction between the two critics,

𝑦 = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾 min
𝑖=1,2

𝑄\ ′
𝑖

(
𝑠𝑡+1, 𝜋𝜙′𝑐 (𝑠𝑡+1) + 𝜖

)
. (5)

The subsequent action is predicted by the greedy controller as
𝜋𝜙′𝑐 (𝑠𝑡+1), with the addition of sampled noise 𝜖 , carried over from
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Algorithm 4 PGA-MAP-Elites Critic Training

1: procedure TRAIN_CRITIC(𝑄\1 , 𝑄\2 , 𝑄\ ′1
, 𝑄\ ′2

, 𝜋𝜙𝑐
, 𝜋𝜙′𝑐 ,B)

2: for 𝑡 = 1→ 𝑛_𝑐𝑟𝑖𝑡 do ⊲ Training Loop: 𝑛_𝑐𝑟𝑖𝑡 iterations
3: Sample 𝑁 transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟 (𝑠𝑡 , 𝑎𝑡 ) , 𝑠𝑡+1) from B
4: 𝜖 ∼ clip(N (0, 𝜎𝑝 ),−𝑐, 𝑐) ⊲ Sample smoothing noise

5: 𝑦 = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾 min
𝑖=1,2

𝑄\ ′
𝑖

(
𝑠𝑡+1, 𝜋𝜙′𝑐 (𝑠𝑡+1) + 𝜖

)
6: \𝑖 ← argmin\𝑖

1
𝑁

∑ (
𝑦 −𝑄\𝑖 (𝑠, 𝑎)

)2
⊲ Update Critics

7: if 𝑡 mod 𝑑 then
8: Update greedy controller using gradient descent
9: ∇𝜙 𝐽 (𝜙) = 1

𝑁

∑∇𝜙𝜋𝜙𝑐
(𝑠𝑡 ) ∇𝑎𝑄\1 (𝑠𝑡 , 𝑎)

��
𝑎=𝜋𝜙𝑐 (𝑠𝑡 )

10: \ ′
𝑖
← 𝜏\𝑖 + (1 − 𝜏)\ ′𝑖 ⊲ Update targets

11: 𝜙 ′𝑐 ← 𝜏𝜙𝑐 + (1 − 𝜏)𝜙 ′𝑐 ⊲ Update target
12: return controller 𝜋𝜙𝑐

TD3. This noise addition is critical as it implicitly favors robust
behaviors. The PG variation operator will thus be less prone to
converging to behaviors that exist on narrow peaks in the fitness
landscape which increases robustness in stochastic environments.
In Eq. 5,𝑄\ ′

𝑖
and 𝜋𝜙′𝑐 denotes separate target neural networks for the

critics and greedy controller that are used in the target calculation
to promote stability. The target networks are updated to slowly
track the main networks following Eq. 4. Every 𝑑 training steps
the greedy controller is updated towards choosing the actions that
maximize the action-value predictions of the critic𝑄\1 . This update
is calculated via the deterministic policy gradient (Eq. 1) based on 𝑁
transitions of experience sampled uniformly from the replay buffer.
Both this update and the critic update are applied using the Adam
optimizing method [29].

The critic training procedure is further detailed in Alg. 4, and is
called in Alg. 3 Line 12. This call represents the synchronization
of the critic training with the MAP-Elites loop to transfer infor-
mation between the processes. Experience from the latest batch of
controller evaluations is sent to the critic training and the current
state of the critic 𝑄\1 and replay buffer is sent to be used in the PG
variation. The current state of the greedy controller is added for
evaluation as this controller may provide a useful behavior. Delay-
ing the start of the critic training until after initialization ensures a
good initial distribution of experience in the replay buffer.

3.2 Variation Operator
After each iteration of the algorithm, the current state of the critic
𝑄\1 and replay buffer B are used to derive the PG-based variation
for the subsequent iteration. This variation applies 𝑛_𝑔𝑟𝑎𝑑 consec-
utive steps of gradient descent to a controller based on maximizing
the action-value predictions of the critic 𝑄\1 . For each step, the
deterministic policy gradient (Eq. 1) is calculated (over a batch
of 𝑁 transitions sampled uniformly from the replay buffer) and
applied using the Adam optimizing method [29]. In practice, this
gradient is calculated by maximizing 𝑄\1 (𝑠, 𝜋𝜙 (𝑠)) over the batch
of transitions by back-propagating gradients of this expression w.r.t
the controller parameters 𝜙 . This means fitness gradient estimates
are obtained effectively immediately for any controller, without

Algorithm 5 PGA-MAP-Elites Variation Operator

1: procedure VARIATION(batch_size,X, 𝑄\1 ,B)
2: for 𝑖 = 1→ batch_size do
3: if 𝑖 ≤ 𝑛_𝑒𝑣𝑜 then
4: 𝜋𝜙𝑎

, 𝜋𝜙𝑏 = selection(X) ⊲ Uniform sampling
5: 𝜋

𝜙𝑖
= VARIATION_GA(𝜋𝜙𝑎

, 𝜋𝜙𝑏 )
6: else
7: 𝜋𝜙 = selection(X) ⊲ Uniform sampling
8: 𝜋

𝜙𝑖
= VARIATION_PG(𝜋𝜙 , 𝑄\1 ,B)

9: return controllers 𝜋
𝜙1
, . . . , 𝜋

𝜙batch_size

10: procedure VARIATION_GA(𝜋𝜙1 , 𝜋𝜙2 )
11: 𝜙 = 𝜙1 + 𝜎1N(0, I) + 𝜎2 (𝜙2 − 𝜙1) N (0, 1) .
12: return controller 𝜋

𝜙

13: procedure VARIATION_PG(𝜋𝜙 , 𝑄\1 ,B)
14: Update 𝜙 to 𝜙 using gradient descent
15: for 𝑖 = 1→ 𝑛_𝑔𝑟𝑎𝑑 do ⊲ 𝑛_𝑔𝑟𝑎𝑑 steps of PG
16: Sample 𝑁 transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟 (𝑠𝑡 , 𝑎𝑡 ) , 𝑠𝑡+1) from B
17: ∇𝜙 𝐽 (𝜙) = 1

𝑁

∑∇𝜙𝜋𝜙 (𝑠𝑡 ) ∇𝑎𝑄\1 (𝑠𝑡 , 𝑎)
��
𝑎=𝜋𝜙 (𝑠𝑡 )

18: return controller 𝜋
𝜙

requiring any environment interaction by the controller the fitness
gradient is being calculated for.

To maintain the divergent search methodology of standard MAP-
Elites the PG variation operator is paired with a GA variation opera-
tor. We specifically use the directional variation introduced in [49],

𝜙 = 𝜙1 + 𝜎1N(0, I) + 𝜎2 (𝜙2 − 𝜙1) N (0, 1) . (6)

The offspring controller parameters 𝜙 are created by adding
Gaussian noise with a scalar covariance matrix 𝜎1N(0, I) to the
first parent controller’s parameters𝜙1, and displacing the parameter
vector along the line from 𝜙1 towards the second parent controller’s
parameter vector𝜙2. Displacement is decided by sampling a number
from a Gaussian distribution with zero mean and variance 𝜎2.

The PG variation operator and the GA variation operator are
combined in the function VARIATION, detailed in Alg. 5, and called
in Alg. 3 Line 13. This function generates at each iteration the next
batch of controllers to be evaluated. The number of controllers to
sample is calculated as 𝑏 − 1, where 𝑏 is the total size of the batch,
to make room for evaluation of the current state of the greedy con-
troller. This VARIATION function returns a list of new controllers
modified by either PG-based or GA-based variation, where the dis-
tribution between the two is determined by the parameter 𝑛_𝑒𝑣𝑜 ,
typically set to create an equal proportion.

3.3 Implementation
The source code of PGA-MAP-Elites is available at (https://github.
com/ollenilsson19/PGA-MAP-Elites) including containerized envi-
ronments in which the experiments from the next section can be
replicated. The implementation is based on source code from the
authors of CVT-MAP-Elites [48] and authors of TD3 [22].

https://github.com/ollenilsson19/PGA-MAP-Elites
https://github.com/ollenilsson19/PGA-MAP-Elites
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QDWalker QDHalfCheetah QDAnt QDHopper

Figure 2: The evaluation tasks which extend the original Py-
Bullet environments for generating behavioral repertoires.

4 EXPERIMENTAL EVALUATION
4.1 Evaluation Tasks
We evaluate PGA-MAP-Elites on four tasks for building behav-
ior repertoires derived from standard PyBullet [10] DRL bench-
marks for robotic locomotion. We call these tasks “QDWalker”,
“QDHalfCheetah”, “QDAnt” and “QDHopper” (see Fig. 2). In each
task, a simulated robot aims to discover all possible ways it can
walk while maximizing a trade-off between speed and energy con-
sumption. Fitness is defined as in the original PyBullet tasks by the
accumulated forward progress made over the lifespan of the simu-
lation (1000 steps) with an energy usage penalty and a reward for
surviving each time-step of the simulation (see [10]). The progress
made by a certain action in a certain state is attributed to that
transition for training the critics. States are defined as the current
center of gravity height, x, y and z velocity, roll, pitch and yaw
angles and the relative position of the robot’s joints. States thus
have 22, 26, 28 and 15-dimensions for respective tasks. Actions are
continuous-valued torques to apply to the robot’s joints to control
it. 6, 6, 8 and 3-dimensions for respective tasks. The BD used is the
time proportion each foot of the robot is in contact with the ground
in a behavior. This is a common definition also used in [7, 13, 48]
for similar tasks. The BD thus has 2, 2, 4 and 1-dimension(s) for
respective tasks. The tasks are stochastic in the sense that the initial
joint-positions are sampled from a Gaussian distribution.

4.2 Comparisons
For comparison, we consider four algorithms: standard (CVT)-
MAP-Elites [48] with directional variation (equivalent to setting
𝑛_𝑒𝑣𝑜 = 𝑏 in Alg. 5), MAP-Elites-ES [7], QD-RL [6] with a MAP-
Elites archive and a version of TD3 [22] where a MAP-Elites archive
is used to passively collect behaviors for comparison purposes. We
also include a version of PGA-MAP-Elites using only PG variation
by setting 𝑛_𝑒𝑣𝑜 = 0 in Alg. 5. We use implementations provided by
the original authors of MAP-Elites-ES [7] and QD-RL1 for the com-
parisons of these algorithms. Each task is repeated for 20 random
seeds, over one-million controller evaluations.

4.3 Hyper-parameters
Hyper-parameters values used for PGA-MAP-Elites are given in
Table 1. Common hyper-parameters are identical between standard
MAP-Elites, TD3 and PGA-MAP-Elites and based on what worked
1We use the source code of an improved work-in-progress version of QD-RL that trails
a MAP-Elites archive for population management and was provided by its authors.

Table 1: Hyper-parameter values.

Parameter Value

Neurons controller networks [128, 128, action dim.]
Neurons critic networks [256, 256, 1]
Nr. of evaluations (𝐼 ) 106
Nr. of random init. (𝐺) 500
Evaluation batch size (𝑏) 100
Critic training steps (𝑛_𝑐𝑟𝑖𝑡 ) 300
Critic training learning rates 3 × 10−4
Networks training batch size (𝑁 ) 256
Replay buffer max. size 106
Discount factor (𝛾 ) 0.99
Target networks update rate (𝜏) 0.005
Smoothing noise variance (𝜎𝑝 ) 0.2
Smoothing noise clip value (𝑐) 0.5
Target networks update freq. (𝑑) 2
Variation operators split (𝑛_𝑒𝑣𝑜) 𝑏 * 0.5 = 50
PG variation steps (𝑛_𝑔𝑟𝑎𝑑) 10
PG variation learning rate 0.001
GA variation param. 1 (𝜎1) 0.005
GA variation param. 2 (𝜎2) 0.05

best for MAP-Elites and TD3. We use neural network controllers
with three layers. The first two layers have 128 neurons each and
the number of neurons in the last layer equals the action dimension.
This leads to the behavior being encoded by 20230 parameters in
the QDWalker task, 20742 in QDHalfCheetah, 21256 in QDAnt and
18947 in QDHopper. We use this controller architecture to have the
fewest parameters possible, but still enough to solve the tasks well.
This was determined by running TD3 on the original PyBullet tasks
with progressively smaller networks until a performance loss was
observed. This choice gives standard MAP-Elites the best chance of
finding high-performing behaviors. As these controllers have 3-4
times fewer parameters than used in the original MAP-Elites-ES
paper [7], we reduce the sample-size in the gradient estimates from
10000 to 1000, allowing MAP-Elites-ES to make more additions to
the archive to find the best repertoires possible within the compu-
tational resources available to us. Otherwise, hyper-parameters are
those reported in the original papers for the damage adaptation
task in MAP-Elites-ES and the Ant-Maze in QD-RL. The behavior
space is discretized into 1024 niches (32 bins per dimension) in
QDWalker and QDHalfCheetah, 1296 niches (6 bins per dimension)
in QDAnt and 1000 niches in QDHopper.

4.4 Evaluation Metrics
We consider four main metrics for evaluation and report p-values
based on the Wilcoxon rank-sum test.

• QD-score [43]: The total sum of fitness across all solutions in
the archive. As fitness can be negative, the fitness of all behaviors
is offset by the lowest fitness behavior found across all compared
algorithms for a given task when calculating the QD-score. This
avoids penalizing algorithms for discovering additional solutions.
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Figure 3: Results for the compared algorithms in each evaluation task. Each task is repeated for 20 runs with different random
seeds, over one-million controller evaluations for each run. Each evaluation metrics is displayed with the median over the 20
seeds as a solid line with a shaded area around it bounded by the first and third quartiles.

• Coverage: The total number of solutions in the archive. Full
coverage is achieved when a solution is found for each cell in the
archive.
• Max Fitness: The overall fittest solution in the archive.
• Fitness Difference: To evaluate the robustness of each algo-
rithm in stochastic environments, the fitness difference between
a single evaluation and the fitness averaged over 10 evaluations
for the current max fitness solution is considered. Each algorithm
is only allowed a single evaluation for adding solutions to the
archive which needs to be robust for the algorithm to be efficient
in stochastic environments. We use the solution with max fitness
for assessing robustness as it is likely the most sensitive to noise.

4.5 Experimental Results
Figure 3 shows the main evaluation metrics for each algorithm in
each task. PGA-MAP-Elites achieves the best overall repertoire in
all tasks as seen by the significantly higher QD-Scores compared to
other algorithms (p < 10−5). The coverage metric shows that PGA-
MAP-Elites retains the divergent search capability of MAP-Elites
and achieves similar or better (p < 0.03 for QDAnt and QDHopper)
coverage in each task. Compared to other algorithms PGA-MAP-
Elites has better coverage in all tasks (p < 10−5). Although standard
MAP-Elites achieves a good coverage in all tasks, the generated
archives (Fig. 4) show that most behaviors found are of low fit-
ness. PGA-MAP-Elites on the other hand is able to combine this

good coverage with finding high-performing solutions across the
behavior space (Fig. 4).

In the max fitness metric, PGA-MAP-Elites outperforms all other
algorithms in the QDWalker and QDHopper tasks (p < 0.01). In
QDHalfCheetah the max fitness difference is not statistically signifi-
cant between PGA-MAP-Elites and TD3 but in QDAnt TD3 achieves
a higher max fitness (p < 10−6). It is not surprising that TD3 is
able to find a few higher-performing behaviors in certain tasks as
the critics in TD3 only have to estimate the action-value function
well around the current policy for TD3 to continuously improve. In
PGA-MAP-Elites, the critics need to estimate the action-value func-
tion over the entire behavior space which likely is more difficult.
The archive plots (Fig. 4) confirm that TD3 can find best solution
with a similar fitness to those found by PGA-MAP-Elites. However,
PGA-MAP-Elites finds many more solutions in the medium to high
fitness range leading to much better archives overall.

The fitness difference metric shows that PGA-MAP-Elites learns
very robust behaviors in all tasks, except in QDHopper where the
fitness difference (loss in this case) is large. The fitness difference
for the PG only variant shows that the PG variation operator helps
to improve sensitivity also in this task. This indicates that the
sensitivity to noise exhibited by PGA-MAP-Elites in the QDHopper
task is related to the GA variation operator. A solution to this could
thus be to apply a step of PG variation to each solution after the
GA variation has been applied.
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Figure 4: Typical archives found by each algorithm in the QDWalker and QDHalfCheetah tasks. In these tasks the archives
form square grids as the BDs are 2-dimensional. Increasing feet contact time from left to right and from bottom to top.

MAP-Elites-ES finds good behaviors in the QDAnt and QD-
HalfCheetah tasks where it looks like it would eventually catch
up with PGA-MAP-Elites given additional evaluations. However,
despite finding a few good behaviors the overall repertoires found
by MAP-Elites-ES have far fewer behaviors than other algorithms.
MAP-Elites-ES therefore also lacks in the QD-Score metric. Figure 4
shows that the final archive for QDHalfCheetah is typically scat-
tered butMAP-Elites-ES is able to find a number of high-performing
behaviors in one local region of the behavior space. Given enough
evaluations, MAP-Elites-ES would likely build strong repertoires in
these two tasks. In the QDWalker and QDHopper tasks MAP-Elites-
ES seemingly fails to find high-performing behaviors which may
be related to the behavior space being relatively easy to cover and
doing so does not correlate strongly with finding high-performing
behaviors. The learning process of MAP-Elites-ES could thus be
halted by its directed optimization for diversity, as finding behav-
iors that cover new regions of the behavior space is not necessarily
meaningful for advancing the learning process.

QD-RL seemingly fails in all tasks which is likely related to the
method used to directly optimize for diversity. Like in MAP-Elites-
ES, the directed optimization for diversity may not be meaningful
given that diversity in the BD and performance are not aligned.
Moreover, as QD-RL optimizes for diversity based on an MDP, it
assumes that the sum of the novelty of each state (based on the
state-BD) provides a meaningful characterization for the novelty
of the entire behavior. We define the state-BD at each time-step as
the feet contact time up to that time-step as this is the space where
we seek diversity. This is likely not appropriate for QD-RL. The
ability to define a state-BD compatible with the commonly used
BD considered in this paper remains an open question. QD-RL per-
forms slightly better in QDHalfCheetah . In this task QD-RL finds
behaviors able to survive the entire 1000 simulation steps without
falling over, creating an increased resource demand for QD-RL in
this task compared to other tasks. The use of only four agents in
parallel (following the source code provided by the QD-RL authors)
compared to 100 in PGA-MAP-Elites means our resources can not
run QD-RL for more than 2 × 105 evaluations in QDHalfCheetah.

5 CONCLUSIONS
This paper present the PGA-MAP-Elites algorithm as an approach
to building high-quality behavior repertoires for simulated robots
where large DNN controllers are required. PGA-MAP-Elites in-
troduces a PG-based variation to MAP-Elites for increased search
power and data-efficiency and pairs it with the exploration capa-
bilities of GA-based variation. The evaluation on four different
repertoire-building tasks shows that PGA-MAP-Elites is able to
efficiently build high-quality repertoires that significantly outper-
form those found by existing methods and successfully scales the
use of MAP-Elites to evolving controllers with more than 20000
parameters.

PGA-MAP-Elites was developed to specifically target the gener-
ation of behavior repertoires for locomotion, but for future work
we will investigate our approach for manipulation-based tasks and
tasks where the BDs are aligned with performance to a high de-
gree. Task with highly deceptive fitness structures are of particular
interest as the MAP-Elites-ES and QD-RL approaches are likely to
be more competitive in comparison in such tasks because of their
ability to directly optimize for diversity.

This paper has shown clear benefits for using a PG variation
with MAP-Elites. The benefits of using a PG variation come with
the costs of the limitations of PG methods. In particular, the type
of controllers that can be used with PGA-MAP-Elites are limited
to differentiable function approximators such as neural networks.
The setup of the PG variation is also limited to problems with
full observability, satisfying the theoretical constraints of an MDP.
These are two restrictions that do not apply to standard MAP-Elites
variants.
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