
HAL Id: hal-03135723
https://hal.science/hal-03135723v2

Submitted on 29 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Policy Gradient Assisted MAP-Elites
Olle Nilsson, Antoine Cully

To cite this version:
Olle Nilsson, Antoine Cully. Policy Gradient Assisted MAP-Elites. The Genetic and Evolutionary
Computation Conference, Jul 2021, Lille, France. �10.1145/3449639.3459304�. �hal-03135723v2�

https://hal.science/hal-03135723v2
https://hal.archives-ouvertes.fr

Policy Gradient Assisted MAP-Elites
Olle Nilsson

Imperial College London
London, United Kingdom

olle.nilsson19@imperial.ac.uk

Antoine Cully
Imperial College London
London, United Kingdom
a.cully@imperial.ac.uk

ABSTRACT
Quality-Diversity optimization algorithms such as MAP-Elites, aim
to generate collections of both diverse and high-performing solu-
tions to an optimization problem. MAP-Elites has shown promising
results in a variety of applications. In particular in evolutionary
robotics tasks targeting the generation of behavioral repertoires
that highlight the versatility of robots. However, for most robot-
ics applications MAP-Elites is limited to using simple open-loop
or low-dimensional controllers. Here we present Policy Gradient
Assisted MAP-Elites (PGA-MAP-Elites), a novel algorithm that en-
ables MAP-Elites to efficiently evolve large neural network con-
trollers by introducing a gradient-based variation operator inspired
by Deep Reinforcement Learning. This operator leverages gradi-
ent estimates obtained from a critic neural network to rapidly find
higher-performing solutions and is paired with a traditional genetic
variation to maintain a divergent search behavior. The synergy of
these operators makes PGA-MAP-Elites an efficient yet powerful
algorithm for finding diverse and high-performing behaviors. We
evaluate our method on four different tasks for building behavioral
repertoires that use deep neural network controllers. The results
show that PGA-MAP-Elites significantly improves the quality of
the generated repertoires compared to existing methods.

CCS CONCEPTS
• Computing methodologies→ Evolutionary robotics.

KEYWORDS
Quality-Diversity, MAP-Elites, Neuroevolution

ACM Reference Format:
Olle Nilsson and Antoine Cully. 2021. Policy Gradient Assisted MAP-Elites.
In 2021 Genetic and Evolutionary Computation Conference (GECCO ’21),
July 10–14, 2021, Lille, France. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3449639.3459304

1 INTRODUCTION
Diversity is a catalyst of life. By finding a novel adaptation to the
environment, species can thrive while being neither the fastest,
strongest nor tallest globally [31]. This notion inspired researchers
in Evolutionary Computation (EC) to pursue Quality-Diversity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’21, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8350-9/21/07. . . $15.00
https://doi.org/10.1145/3449639.3459304

Derive Fitness Gradient

Update Archive

Train Critic

MAP-Elites
Archive

Experience
Replay Buffer

Environment
PG

variation

GA
variation

Figure 1: The conceptual approach behind PGA-MAP-Elites.
While executing a standard MAP-Elites loop of repeated se-
lection, variation and evaluation of solutions, the variation
is split between two independent operators: 1) A Policy Gra-
dient (PG) variation for directed performance improvement.
2) A genetic (GA) variation for divergent search. By training
a critic neural network asynchronously to the MAP-Elites
loop using experience collected during evaluations, perfor-
mance gradients can swiftly be derived for any solution.

(QD) optimization [15, 43, 44]. In QD optimization, performance-
based competition is considered only locally between solutions
characterized as similar. Rather than optimizing strictly for a sin-
gle best-performing solution, QD optimization algorithms aim to
return a collection of solutions that are both as diverse as possible
and as high-performing as possible. In robotics, this allows learning
a repertoire of behaviors which is useful since this provides alterna-
tives if one behavior suddenly becomes ineffective due to changes
in the environment or damage to the robot [13, 47, 48]. In many
cases, it is also desirable for a robot to discover the entire range
of behaviors it is capable of rather than just a single behavior that
maximizes a certain objective [11, 16]. Greedily optimizing a given
objective may also cause the optimization process to prematurely
converge to a local optimum, while simultaneously searching for di-
verse behaviors can help to find stepping stones that overcome local
optima and lead to finding globally more optimal behaviors [17, 32].

QD optimization algorithms such as Multi-dimensional Archive
of Phenotypic Elites (MAP-Elites) [13, 40, 48], are traditionally
driven by a Genetic Algorithm (GA) for their capability of diver-
sifying the search. This reliance on GAs limits the applicability
of MAP-Elites to problems of low dimensionality. Typically the
number of optimized parameters is kept below 100 [13, 15, 40]. GAs
are also inefficient [12, 20] and prone to finding unstable solutions
located on narrow peaks in the optimization landscape that are not
repeatable in stochastic environments [14, 19, 25].

Deep Reinforcement Learning (DRL) [37–39] algorithms are
based on an opposing methodology where a single performance-
maximizing behavior is sought. In DRL, behaviors are learned via a

https://doi.org/10.1145/3449639.3459304
https://doi.org/10.1145/3449639.3459304
https://doi.org/10.1145/3449639.3459304

GECCO ’21, July 10–14, 2021, Lille, France O. Nilsson and A. Cully

deep neural network (DNN) controller that is trained to predict the
“optimal” action—the action that will most likely lead to maximiz-
ing the defined objective—to take given an observation. DRL lever-
ages the function approximation strength of DNNs and powerful
gradient-based training techniques, such as backpropagation [35],
to guide the learning process directly towards improving perfor-
mance. Using these techniques, DRL algorithms can solve problems
in robotics that require the complex and precise control only achiev-
able by DNNs with tens of thousands of parameters, in stochastic
environments where learning robust behaviors is essential [22, 33].

This paper introduces the Policy Gradient Assisted MAP-Elites
(PGA-MAP-Elites) algorithm, an extension of MAP-Elites which
incorporates gradient-based optimization via a method based on
DRL algorithm Twin Delayed Deep Deterministic policy gradient
(TD3) [22]. By evaluating PGA-MAP-Elites on a set of stochastic
behavior generation tasks requiring robots to be controlled by large
DNN, we show that PGA-MAP-Elites successfully scales the gener-
ation of behavioral repertoires to new domains where current ver-
sions of MAP-Elites fail. In these tasks PGA-MAP-Elites achieves a
powerful illumination of the search space, finding high-performing
and robust solutions across the entire range of possible behaviors,
where the highest performing solutions found rival those of modern
DRL algorithms. The benchmark tasks used to evaluate PGA-MAP-
Elites have been made available as the OpenAI Gym [5] based open-
source module QDgym (https://github.com/ollenilsson19/QDgym).
This module does not rely on any proprietary software, making our
benchmarks easy to use for other researchers.

2 BACKGROUND AND RELATEDWORK
2.1 Quality-Diversity Optimization
In contrast to standard optimization algorithms, which search for a
single global solution regardless of its characteristics, QD optimiza-
tion algorithms differentiate between solutions that have different
characteristics. The domain that characterizes solutions is called
the behavioral space [15] and is defined based on some property
of solutions that is meaningful for the type of diversity sought.
Characterization of a solution is called a behavioral descriptor (BD),
denoted b, that measures where in the behavioral space a solution
lies. For example, if the task is for a robot to discover the range of
gaits it is capable of, the BDmay be the proportion of time each foot
of the robot is in contact with the ground in a gait [7, 13, 48]. The
task of QD optimization algorithms is thus to produce a collection
of solutions that are as diverse as possible based on the defined
behavioral space, and as high-performing as possible in its local
region of the behavioral space. Each solution only competes based
on performance with solutions that have similar BDs, or in other
words, exist within the same niche of behavior.

2.2 MAP-Elites Algorithm
MAP-Elites is a simple but effective QD optimization algorithm
that has been used to teach robots how to adapt to damage [13, 47,
48], generate aerodynamic designs [23] and to create content for
games [1, 2]. In MAP-Elites, the behavioral space is discretized into
a grid, which forms an archive for storing solutions where each cell
corresponds to a behavioral niche. The goal of the algorithm is to
return an archive with a maximum number of cells filled, where

Algorithm 1 MAP-Elites algorithm. Adapted from [48].

1: procedure MAP-Elites()
2: (X,P) ←− create_empty_archive()
3: 𝑖 = 0
4: while 𝑖 < 𝐼 do ⊲ Main Loop: 𝐼 evaluations, batch-size 𝑏
5: if 𝑖 < 𝐺 then ⊲ Initialization: 𝐺 random x.
6: x̂1, . . . , x̂𝑏 = random_solutions(𝑏)
7: else ⊲ Selection and variation
8: x1, . . . , x𝑏 = selection(X, 𝑏) ⊲ Uniform sampling
9: x̂1, . . . , x̂𝑏 = variation(x1, . . . , x𝑏)
10: 𝑖 += 𝑏

11: ADD_TO_ARCHIVE (x̂1, . . . , x̂𝑏 ,X,P)
12: return archive (X,P)
13: procedure ADD_TO_ARCHIVE(Solution-List,X,P)
14: for x in Solution-List do
15: (𝑝, b) ←− evaluate(x)
16: 𝑐 ←− get_cell_index(b)
17: if P(𝑐) = 𝑒𝑚𝑝𝑡𝑦 or P(𝑐) < 𝑝 then
18: P(𝑐) ←− 𝑝 , X(𝑐) ←− x

the solution in each cell is the highest performing solution possible
within that niche. The MAP-Elites algorithm follows a repeated
loop of uniformly selecting solutions from the current archive,
applying a variation to the selected solutions to form new ones and
evaluating the new solutions for addition to the archive. Solutions
are added to the archive based on the status of the cell a solution’s
BD falls within. If that cell is empty the solution is added. If that
cell is not empty, the solution replaces the one currently in that cell
if the new solution has a higher performance based on a defined
fitness function. For robotics applications, solutions are vectors x
that parameterize controllers (such as neural networks) to control
a robot with the goal of solving a certain task. The selection and
variation are repeated until 𝐼 solutions have been evaluated and the
final archive is returned as the solution of the algorithm. To initialize
the MAP-Elites algorithm an empty archive is first generated. The
archive is represented by X, that stores the parameter vector of the
solution in each cell 𝑐 , and P, that stores the corresponding fitness
value 𝑝 . The archive is then initialized by𝐺 random solutions before
entering the selection and variation loop. TheMAP-Elites algorithm
is further detailed in Alg. 1.

By using a GA as the variation operator, MAP-Elites achieves a
divergent search indirectly via the behavior-based archiving and
a variation agnostic to the fitness objective. This divergent search
methodology may cause inefficiencies or failure to learn. Even in
problems where only a few parameters are optimized, the GA vari-
ation causes a slow convergence [20]. In problems that require
behaviors to be encoded by DNNs with a large number of param-
eters, MAP-Elites with a GA variation typically fails to find the
locally optimal behaviors due to a lack of directed search power [7].
In stochastic tasks the archiving methodology can cause ineffi-
ciencies if the behaviors found are not robust, as the expected
fitness and BD of each solution need to be calculated by averaging
over several evaluations. This averaging requirement can reduce

https://github.com/ollenilsson19/QDgym

Policy Gradient Assisted MAP-Elites GECCO ’21, July 10–14, 2021, Lille, France

data-efficiency by several orders of magnitude [14, 19, 25]. In se-
quential decision-making tasks, where each evaluation may require
thousands of costly simulation steps, MAP-Elites can thus become
resource-demanding and challenging to employ.

An extension of MAP-Elites called Centroidal Voronoi Tessel-
lation MAP-Elites (CVT-MAP-Elites) [48] automates the archive
creation by spreading 𝑘 cell-centroid locations maximally in behav-
ioral space and is used as the basis for developing PGA-MAP-Elites.

2.3 Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) for robotics applications is
formalized as a Markov Decision Process (MDP) that considers
a robot acting sequentially in an environment at discrete time-
steps 𝑡 . A deep neural network (DNN) controller with parameters
𝜙 encodes a behavior/policy 𝜋𝜙 (𝑠), that for each observed state
𝑠𝑡 , chooses an action 𝑎𝑡 , leading to a new state 𝑠𝑡+1. Each such
transition is scored by a reward function 𝑟 (𝑠𝑡 , 𝑎𝑡). The constraints
of an MDP requires that the observation made at each time-step
fully determines the robot’s current state. The objective is to learn,
from experience, the policy that maximizes the expected return
𝐽 (𝜙) = E [𝑅0] over a lifetime of 𝑇 time-steps. The return is defined
as 𝑅𝑡 =

∑𝑇
𝑖=𝑡 𝛾

𝑖−𝑡 𝑟 (𝑠𝑖 , 𝑎𝑖), where 𝛾 ∈ [0, 1] is the discount factor
which regulates importance of future rewards.

2.4 TD3 Algorithm
The TD3 algorithm [22] is one of the state-of-the-art methods in
DRL for robotics. TD3 uses an actor-critic methodology to learn
a policy (actor) indirectly via maximization of the action-value
function 𝑄𝜋 (𝑠, 𝑎) = E [𝑅𝑡 | 𝑠, 𝑎], approximated by a pair of DNNs
(critics) with parameters \1 and \2. The action-value function en-
codes the expected return from being in state 𝑠 and taking action 𝑎,
thereafter following the policy 𝜋 . The policy that maximizes the
action-value function at every time-step thus maximizes the return.
While acting in the environment, TD3 stores experience in the form
of transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟 (𝑠𝑡 , 𝑎𝑡) , 𝑠𝑡+1) in a replay buffer B [34]. This
collection of experience is used to derive a performance gradient
for the policy. TD3 uses deterministic policies and calculates their
performance gradient via the deterministic policy gradient [46],

∇𝜙 𝐽 (𝜙) = E
[
∇𝜙𝜋𝜙 (𝑠) ∇𝑎𝑄\1 (𝑠, 𝑎)

��
𝑎=𝜋𝜙 (𝑠)

]
. (1)

To calculate this gradient, the critics are trained to approximate
the action-value function via the Bellman equation [4], which de-
scribes the relationship between the action-value of one state-action
pair and the action-value of the subsequent state-action pair,

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) = 𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾E
[
𝑄𝜋 (𝑠𝑡+1, 𝜋 (𝑠𝑡+1))

]
. (2)

The action-value function can thus be learned by bootstrapping
from the critics’ current estimates to learn a better approximation.
As the policy is deterministic, the expectation in Eq. 2 depends
only on the environment and the action-value function can be
learned off-policy [51] from experience collected by acting in the
environment under any policy and stored in a replay buffer. TD3
calculates the update target in this bootstrapping by taking the
minimum action-value prediction between the two critics to avoid
overestimation feeding further overestimation and leading to in-
stabilities. To further promote stability, dedicated target networks

Algorithm 2 TD3 algorithm. Adapted from [22].
1: 𝜋𝜙 ←− initialize_actor_network()
2: 𝑄\1 , 𝑄\2 ←− initialize_critic_networks()
3: 𝜋𝜙′ ← 𝜋𝜙 , 𝑄\ ′1

, 𝑄\ ′2
← 𝑄\1 , 𝑄\2 ⊲ Initialize target networks

4: B ←− initialize_replay_buffer()
5: 𝑠𝑡 ∼ 𝑝 (𝑠1) ⊲ Sample initial state
6: for 𝑡 = 1→ 𝑛_𝑖𝑡𝑒𝑟 do ⊲ Training Loop: 𝑛_𝑖𝑡𝑒𝑟 iterations
7: 𝑎𝑡 ←− 𝜋𝜙 (𝑠𝑡) + N (0, 𝜎𝑎) ⊲ Select action and add noise
8: Apply action and observe 𝑟 (𝑠𝑡 , 𝑎𝑡) and 𝑠𝑡+1
9: add_to_replay_buffer ((𝑠𝑡 , 𝑎𝑡 , 𝑟 (𝑠𝑡 , 𝑎𝑡) , 𝑠𝑡+1) ,B)
10: Sample 𝑁 transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟 (𝑠𝑡 , 𝑎𝑡) , 𝑠𝑡+1) from B
11: 𝜖 ∼ clip(N (0, 𝜎𝑝),−𝑐, 𝑐) ⊲ Sample policy smoothing noise
12: 𝑎𝑡+1 ← 𝜋𝜙′ (𝑠𝑡+1) + 𝜖 ⊲ Predict next action and add noise
13: 𝑦 = 𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾 min

𝑖=1,2
𝑄\ ′

𝑖
(𝑠𝑡+1, 𝑎𝑡+1) ⊲ Calculate targets

14: \𝑖 ← argmin\𝑖
1
𝑁

∑ (
𝑦 −𝑄\𝑖 (𝑠, 𝑎)

)2
⊲ Update critics

15: if 𝑡 mod 𝑑 then
16: Update actor using gradient descent
17: ∇𝜙 𝐽 (𝜙) = 1

𝑁

∑∇𝜙𝜋𝜙 (𝑠𝑡) ∇𝑎𝑄\1 (𝑠𝑡 , 𝑎)
��
𝑎=𝜋𝜙 (𝑠𝑡)

18: \ ′
𝑖
← 𝜏\𝑖 + (1 − 𝜏)\ ′𝑖 ⊲ Update critics targets

19: 𝜙 ′ ← 𝜏𝜙 + (1 − 𝜏)𝜙 ′ ⊲ Update actor target

(𝑄\ ′
𝑖
, 𝜋𝜙′) [38, 39] are used for both the critics and the actor to keep

the update target stable between iterations. By minimizing the loss,
𝐿 (\1, \2) =

(
𝑦 −𝑄\1 (𝑠𝑡 , 𝑎𝑡)

)2 + (𝑦 −𝑄\2 (𝑠𝑡 , 𝑎𝑡)
)2 over a batch of

𝑁 transitions of experience, TD3 updates the critics by gradient
descent towards the target 𝑦,

𝑦 = 𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾 min
𝑖=1,2

𝑄\ ′
𝑖

(
𝑠𝑡+1, 𝜋𝜙′ (𝑠𝑡+1) + 𝜖

)
. (3)

The next action is predicted as 𝑎𝑡+1 = 𝜋𝜙′ (𝑠𝑡+1) + 𝜖 , where
𝜖 ∼ clip(N (0, 𝜎𝑝),−𝑐, 𝑐) is sampled Gaussian noise with variance
𝜎𝑝 clipped to a maximum magnitude 𝑐 . The additional noise en-
forces higher action-values to actions more resistant to perturba-
tions, promoting robustness in stochastic environments. Every 𝑑
iterations the policy is updated via an approximation of Eq. 1 over
a batch of 𝑁 transitions of experience and the target networks
updated by a factor 𝜏 to slowly track the main networks,

\ ′
𝑖
← 𝜏\𝑖 + (1 − 𝜏)\ ′𝑖 ,

𝜙 ′ ← 𝜏𝜙 + (1 − 𝜏)𝜙 ′. (4)

As the polices are deterministic, exploration is achieved by adding
Gaussian noise with a variance 𝜎𝑎 to the selected action as the robot
interacts with the environment, 𝑎𝑡 = 𝜋𝜙 (𝑠𝑡) + N (0, 𝜎𝑎). The TD3
algorithm is further detailed in Alg. 2.

2.5 Related Work
Several recent algorithms explore creating fruitful synergies be-
tween DRL and EC methods for single objective search [26–28,
36, 50]. Most notably, CEM-RL [42] shows that pairing TD3 with
population-based methods can improve performance in DRL bench-
marks for robotics. In QD-based search, MAP-Elites with Evolution
Strategies (MAP-Elites-ES) [7] is a recent algorithm that attempts
to scale up MAP-Elites for use with high-dimensional controllers

GECCO ’21, July 10–14, 2021, Lille, France O. Nilsson and A. Cully

represented by DNNs. By pairing MAP-Elites with the Evolution
Strategies (ES) optimization method proposed in [45], MAP-Elites-
ES create variation operators for directly optimizing a fitness objec-
tive and for directly optimizing a diversity objective based on the
behaviors found so far. These operators optimize their respective ob-
jectives by finding empirical gradient estimates from sampling and
evaluating a range of perturbations around a current solution. Us-
ing this method MAP-Elites-ES is able to find far higher-performing
behaviors than MAP-Elites with GA variation when building reper-
toires for robots controlled by large DNNs. However, calculating
gradients by sampling can require a large number of evaluations
when optimizing DNNs. MAP-Elites-ES therefore typically finds
repertoires containing far fewer behaviors than MAP-Elites with
GA variation given an equal amount of experience in the environ-
ment [7]. This means MAP-Elites-ES can become computationally
resource-demanding and impractical to use for building behavior
repertoires with large DNN controllers.

Recently, works in DRL have incorporated select ideas from QD
optimization such as using archives to collect solutions [30], using
GAs for exploration with neural networks [41] or solving several
tasks from a single learning process [24]. Although most common
is the incorporation of diversity to improve exploration [3, 6, 8, 9,
17, 18, 21]. In this last category, the recent QD-RL [6] algorithm is
of particular interest. QD-RL searches for diversity directly as a way
to overcome deceptive rewards in DRL problems by introducing
a policy gradient for diversity. This method requires defining an
additional behavior characterization at the time-step level, called
a “state-BD”, that must be a valid state description in an MDP and
simultaneously provide a meaningful space for searching for the
type of diversity sought. QD-RL pairs this search for diversity with
a standard PG method optimizing for performance, and maintains
a population from which solutions are sampled for optimization
based on the Pareto-front of the two measures. Replacing this popu-
lation with a MAP-Elites archive would allow evaluating the QD-RL
approach for the generation of behavior repertoires and could reveal
a potent QD optimization algorithm.

3 PGA-MAP-ELITES
Policy Gradient Assisted MAP-Elites (PGA-MAP-Elites) is an ex-
tension of MAP-Elites that targets evolving DNN controllers by
combining the search power and data-efficiency of Policy Gradient
methods with the exploration capabilities of Genetic Algorithms.
The main concept of PGA-MAP-Elites is illustrated in Fig. 1. While
following the usual MAP-Elites loop, PGA-MAP-Elites uses two
independent variation operators in parallel: 1) a Policy Gradient
(PG) operator. 2) a standard Genetic Algorithm (GA) operator. At
each iteration of the MAP-Elites loop, PGA-MAP-Elites collects
the experience from evaluating controllers to train a pair of critic
neural networks based on the methods of the TD3 algorithm. These
trained critics are used to derive fitness gradient approximations
for the PG variation, which updates controllers towards selecting
actions that maximize the first critic’s action-value predictions.

3.1 Training the Critics
More formally, PGA-MAP-Elites derives fitness gradients by train-
ing two critic neural networks, 𝑄\1 and 𝑄\2 , to approximate the

Algorithm 3 PGA-MAP-Elites algorithm. Uses notation from [48].

1: procedure PGA-MAP-Elites
2: (X,P) ←− create_empty_archive()
3: 𝑄\1 , 𝑄\2 , 𝜋𝜙𝑐

←− initialize_critic_networks()
4: 𝑄\ ′1

, 𝑄\ ′2
← 𝑄\1 , 𝑄\2 ⊲ Initialize target networks

5: 𝜋𝜙′𝑐 ← 𝜋𝜙𝑐
⊲ Initialize target network

6: B ←− initialize_replay_buffer()
7: 𝑖 = 0
8: while 𝑖 < 𝐼 do ⊲ Main Loop: 𝐼 evaluations, batch-size 𝑏
9: if 𝑖 < 𝐺 then ⊲ Initialization: 𝐺 random 𝜋𝜙 .
10: 𝜋

𝜙1
, . . . , 𝜋

𝜙𝑏
= random_solutions(𝑏)

11: else ⊲ Selection and variation
12: 𝜋

𝜙1
= TRAIN_CRITIC(𝑄\𝑖 , 𝑄\ ′

𝑖
, 𝜋𝜙𝑐

, 𝜋𝜙′𝑐 ,B) i=1,2
13: 𝜋

𝜙2
, . . . , 𝜋

𝜙𝑏
= VARIATION(𝑏 − 1,X, 𝑄\1 ,B)

14: ADD_TO_ARCHIVE
(
𝜋
𝜙1
, . . . , 𝜋

𝜙𝑏
,X,P,B

)
15: 𝑖 += 𝑏

16: return archive (X,P)
17: procedure ADD_TO_ARCHIVE(Controller-List,X,P,B)
18: for 𝜋𝜙 in Controller-List do
19: (𝑝, b, transitions) ←− evaluate(𝜋𝜙)
20: add_to_replay_buffer (transitions,B)
21: 𝑐 ←− get_cell_index(b)
22: if P(𝑐) = 𝑒𝑚𝑝𝑡𝑦 or P(𝑐) < 𝑝 then
23: P(𝑐) ←− 𝑝 , X(𝑐) ←− 𝜋𝜙

action-value function. A single “greedy” controller is trained to-
gether with the critics to predict the action with the maximum
action-value for calculation of the critic update target in the same
way the actor is used in TD3 (see Eq. 3). However, unlike the actor
in TD3 the greedy controller does not directly interact with the
environment. The greedy controller is denoted 𝜋𝜙𝑐

and is a neural
network with parameters 𝜙𝑐 , of the same architecture as the con-
trollers evolved in the MAP-Elites loop. For each iteration of PGA-
MAP-Elites, controllers are sampled from the archive, modified
according to the variation operator and re-evaluated for addition to
the archive. New experience from controller evaluations is collected
in a replay buffer B. The replay buffer has a limited maximum size
and old experience is overwritten on a first-in-first-out basis. Asyn-
chronous to each iteration of selection, variation and evaluation,
the critics are trained for 𝑛_𝑐𝑟𝑖𝑡 steps of gradient descent. For each
training step, the parameters of both critics are updated such that
the average action-value prediction of both critics tend towards
the target 𝑦. Each training step thus aims to minimize the loss
𝐿 (\1, \2) =

(
𝑦 −𝑄\1 (𝑠𝑡 , 𝑎𝑡)

)2 + (
𝑦 −𝑄\2 (𝑠𝑡 , 𝑎𝑡)

)2, averaged over
𝑁 transitions of experience sampled uniformly from the replay
buffer. The target is calculated in the same way as in TD3, via the
Bellman equation (Eq. 2) and taking the minimum action-value
prediction between the two critics,

𝑦 = 𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾 min
𝑖=1,2

𝑄\ ′
𝑖

(
𝑠𝑡+1, 𝜋𝜙′𝑐 (𝑠𝑡+1) + 𝜖

)
. (5)

The subsequent action is predicted by the greedy controller as
𝜋𝜙′𝑐 (𝑠𝑡+1), with the addition of sampled noise 𝜖 , carried over from

Policy Gradient Assisted MAP-Elites GECCO ’21, July 10–14, 2021, Lille, France

Algorithm 4 PGA-MAP-Elites Critic Training

1: procedure TRAIN_CRITIC(𝑄\1 , 𝑄\2 , 𝑄\ ′1
, 𝑄\ ′2

, 𝜋𝜙𝑐
, 𝜋𝜙′𝑐 ,B)

2: for 𝑡 = 1→ 𝑛_𝑐𝑟𝑖𝑡 do ⊲ Training Loop: 𝑛_𝑐𝑟𝑖𝑡 iterations
3: Sample 𝑁 transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟 (𝑠𝑡 , 𝑎𝑡) , 𝑠𝑡+1) from B
4: 𝜖 ∼ clip(N (0, 𝜎𝑝),−𝑐, 𝑐) ⊲ Sample smoothing noise

5: 𝑦 = 𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾 min
𝑖=1,2

𝑄\ ′
𝑖

(
𝑠𝑡+1, 𝜋𝜙′𝑐 (𝑠𝑡+1) + 𝜖

)
6: \𝑖 ← argmin\𝑖

1
𝑁

∑ (
𝑦 −𝑄\𝑖 (𝑠, 𝑎)

)2
⊲ Update Critics

7: if 𝑡 mod 𝑑 then
8: Update greedy controller using gradient descent
9: ∇𝜙 𝐽 (𝜙) = 1

𝑁

∑∇𝜙𝜋𝜙𝑐
(𝑠𝑡) ∇𝑎𝑄\1 (𝑠𝑡 , 𝑎)

��
𝑎=𝜋𝜙𝑐 (𝑠𝑡)

10: \ ′
𝑖
← 𝜏\𝑖 + (1 − 𝜏)\ ′𝑖 ⊲ Update targets

11: 𝜙 ′𝑐 ← 𝜏𝜙𝑐 + (1 − 𝜏)𝜙 ′𝑐 ⊲ Update target
12: return controller 𝜋𝜙𝑐

TD3. This noise addition is critical as it implicitly favors robust
behaviors. The PG variation operator will thus be less prone to
converging to behaviors that exist on narrow peaks in the fitness
landscape which increases robustness in stochastic environments.
In Eq. 5,𝑄\ ′

𝑖
and 𝜋𝜙′𝑐 denotes separate target neural networks for the

critics and greedy controller that are used in the target calculation
to promote stability. The target networks are updated to slowly
track the main networks following Eq. 4. Every 𝑑 training steps
the greedy controller is updated towards choosing the actions that
maximize the action-value predictions of the critic𝑄\1 . This update
is calculated via the deterministic policy gradient (Eq. 1) based on 𝑁
transitions of experience sampled uniformly from the replay buffer.
Both this update and the critic update are applied using the Adam
optimizing method [29].

The critic training procedure is further detailed in Alg. 4, and is
called in Alg. 3 Line 12. This call represents the synchronization
of the critic training with the MAP-Elites loop to transfer infor-
mation between the processes. Experience from the latest batch of
controller evaluations is sent to the critic training and the current
state of the critic 𝑄\1 and replay buffer is sent to be used in the PG
variation. The current state of the greedy controller is added for
evaluation as this controller may provide a useful behavior. Delay-
ing the start of the critic training until after initialization ensures a
good initial distribution of experience in the replay buffer.

3.2 Variation Operator
After each iteration of the algorithm, the current state of the critic
𝑄\1 and replay buffer B are used to derive the PG-based variation
for the subsequent iteration. This variation applies 𝑛_𝑔𝑟𝑎𝑑 consec-
utive steps of gradient descent to a controller based on maximizing
the action-value predictions of the critic 𝑄\1 . For each step, the
deterministic policy gradient (Eq. 1) is calculated (over a batch
of 𝑁 transitions sampled uniformly from the replay buffer) and
applied using the Adam optimizing method [29]. In practice, this
gradient is calculated by maximizing 𝑄\1 (𝑠, 𝜋𝜙 (𝑠)) over the batch
of transitions by back-propagating gradients of this expression w.r.t
the controller parameters 𝜙 . This means fitness gradient estimates
are obtained effectively immediately for any controller, without

Algorithm 5 PGA-MAP-Elites Variation Operator

1: procedure VARIATION(batch_size,X, 𝑄\1 ,B)
2: for 𝑖 = 1→ batch_size do
3: if 𝑖 ≤ 𝑛_𝑒𝑣𝑜 then
4: 𝜋𝜙𝑎

, 𝜋𝜙𝑏 = selection(X) ⊲ Uniform sampling
5: 𝜋

𝜙𝑖
= VARIATION_GA(𝜋𝜙𝑎

, 𝜋𝜙𝑏)
6: else
7: 𝜋𝜙 = selection(X) ⊲ Uniform sampling
8: 𝜋

𝜙𝑖
= VARIATION_PG(𝜋𝜙 , 𝑄\1 ,B)

9: return controllers 𝜋
𝜙1
, . . . , 𝜋

𝜙batch_size

10: procedure VARIATION_GA(𝜋𝜙1 , 𝜋𝜙2)
11: 𝜙 = 𝜙1 + 𝜎1N(0, I) + 𝜎2 (𝜙2 − 𝜙1) N (0, 1) .
12: return controller 𝜋

𝜙

13: procedure VARIATION_PG(𝜋𝜙 , 𝑄\1 ,B)
14: Update 𝜙 to 𝜙 using gradient descent
15: for 𝑖 = 1→ 𝑛_𝑔𝑟𝑎𝑑 do ⊲ 𝑛_𝑔𝑟𝑎𝑑 steps of PG
16: Sample 𝑁 transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟 (𝑠𝑡 , 𝑎𝑡) , 𝑠𝑡+1) from B
17: ∇𝜙 𝐽 (𝜙) = 1

𝑁

∑∇𝜙𝜋𝜙 (𝑠𝑡) ∇𝑎𝑄\1 (𝑠𝑡 , 𝑎)
��
𝑎=𝜋𝜙 (𝑠𝑡)

18: return controller 𝜋
𝜙

requiring any environment interaction by the controller the fitness
gradient is being calculated for.

To maintain the divergent search methodology of standard MAP-
Elites the PG variation operator is paired with a GA variation opera-
tor. We specifically use the directional variation introduced in [49],

𝜙 = 𝜙1 + 𝜎1N(0, I) + 𝜎2 (𝜙2 − 𝜙1) N (0, 1) . (6)

The offspring controller parameters 𝜙 are created by adding
Gaussian noise with a scalar covariance matrix 𝜎1N(0, I) to the
first parent controller’s parameters𝜙1, and displacing the parameter
vector along the line from 𝜙1 towards the second parent controller’s
parameter vector𝜙2. Displacement is decided by sampling a number
from a Gaussian distribution with zero mean and variance 𝜎2.

The PG variation operator and the GA variation operator are
combined in the function VARIATION, detailed in Alg. 5, and called
in Alg. 3 Line 13. This function generates at each iteration the next
batch of controllers to be evaluated. The number of controllers to
sample is calculated as 𝑏 − 1, where 𝑏 is the total size of the batch,
to make room for evaluation of the current state of the greedy con-
troller. This VARIATION function returns a list of new controllers
modified by either PG-based or GA-based variation, where the dis-
tribution between the two is determined by the parameter 𝑛_𝑒𝑣𝑜 ,
typically set to create an equal proportion.

3.3 Implementation
The source code of PGA-MAP-Elites is available at (https://github.
com/ollenilsson19/PGA-MAP-Elites) including containerized envi-
ronments in which the experiments from the next section can be
replicated. The implementation is based on source code from the
authors of CVT-MAP-Elites [48] and authors of TD3 [22].

https://github.com/ollenilsson19/PGA-MAP-Elites
https://github.com/ollenilsson19/PGA-MAP-Elites

GECCO ’21, July 10–14, 2021, Lille, France O. Nilsson and A. Cully

QDWalker QDHalfCheetah QDAnt QDHopper

Figure 2: The evaluation tasks which extend the original Py-
Bullet environments for generating behavioral repertoires.

4 EXPERIMENTAL EVALUATION
4.1 Evaluation Tasks
We evaluate PGA-MAP-Elites on four tasks for building behav-
ior repertoires derived from standard PyBullet [10] DRL bench-
marks for robotic locomotion. We call these tasks “QDWalker”,
“QDHalfCheetah”, “QDAnt” and “QDHopper” (see Fig. 2). In each
task, a simulated robot aims to discover all possible ways it can
walk while maximizing a trade-off between speed and energy con-
sumption. Fitness is defined as in the original PyBullet tasks by the
accumulated forward progress made over the lifespan of the simu-
lation (1000 steps) with an energy usage penalty and a reward for
surviving each time-step of the simulation (see [10]). The progress
made by a certain action in a certain state is attributed to that
transition for training the critics. States are defined as the current
center of gravity height, x, y and z velocity, roll, pitch and yaw
angles and the relative position of the robot’s joints. States thus
have 22, 26, 28 and 15-dimensions for respective tasks. Actions are
continuous-valued torques to apply to the robot’s joints to control
it. 6, 6, 8 and 3-dimensions for respective tasks. The BD used is the
time proportion each foot of the robot is in contact with the ground
in a behavior. This is a common definition also used in [7, 13, 48]
for similar tasks. The BD thus has 2, 2, 4 and 1-dimension(s) for
respective tasks. The tasks are stochastic in the sense that the initial
joint-positions are sampled from a Gaussian distribution.

4.2 Comparisons
For comparison, we consider four algorithms: standard (CVT)-
MAP-Elites [48] with directional variation (equivalent to setting
𝑛_𝑒𝑣𝑜 = 𝑏 in Alg. 5), MAP-Elites-ES [7], QD-RL [6] with a MAP-
Elites archive and a version of TD3 [22] where a MAP-Elites archive
is used to passively collect behaviors for comparison purposes. We
also include a version of PGA-MAP-Elites using only PG variation
by setting 𝑛_𝑒𝑣𝑜 = 0 in Alg. 5. We use implementations provided by
the original authors of MAP-Elites-ES [7] and QD-RL1 for the com-
parisons of these algorithms. Each task is repeated for 20 random
seeds, over one-million controller evaluations.

4.3 Hyper-parameters
Hyper-parameters values used for PGA-MAP-Elites are given in
Table 1. Common hyper-parameters are identical between standard
MAP-Elites, TD3 and PGA-MAP-Elites and based on what worked
1We use the source code of an improved work-in-progress version of QD-RL that trails
a MAP-Elites archive for population management and was provided by its authors.

Table 1: Hyper-parameter values.

Parameter Value

Neurons controller networks [128, 128, action dim.]
Neurons critic networks [256, 256, 1]
Nr. of evaluations (𝐼) 106
Nr. of random init. (𝐺) 500
Evaluation batch size (𝑏) 100
Critic training steps (𝑛_𝑐𝑟𝑖𝑡) 300
Critic training learning rates 3 × 10−4
Networks training batch size (𝑁) 256
Replay buffer max. size 106
Discount factor (𝛾) 0.99
Target networks update rate (𝜏) 0.005
Smoothing noise variance (𝜎𝑝) 0.2
Smoothing noise clip value (𝑐) 0.5
Target networks update freq. (𝑑) 2
Variation operators split (𝑛_𝑒𝑣𝑜) 𝑏 * 0.5 = 50
PG variation steps (𝑛_𝑔𝑟𝑎𝑑) 10
PG variation learning rate 0.001
GA variation param. 1 (𝜎1) 0.005
GA variation param. 2 (𝜎2) 0.05

best for MAP-Elites and TD3. We use neural network controllers
with three layers. The first two layers have 128 neurons each and
the number of neurons in the last layer equals the action dimension.
This leads to the behavior being encoded by 20230 parameters in
the QDWalker task, 20742 in QDHalfCheetah, 21256 in QDAnt and
18947 in QDHopper. We use this controller architecture to have the
fewest parameters possible, but still enough to solve the tasks well.
This was determined by running TD3 on the original PyBullet tasks
with progressively smaller networks until a performance loss was
observed. This choice gives standard MAP-Elites the best chance of
finding high-performing behaviors. As these controllers have 3-4
times fewer parameters than used in the original MAP-Elites-ES
paper [7], we reduce the sample-size in the gradient estimates from
10000 to 1000, allowing MAP-Elites-ES to make more additions to
the archive to find the best repertoires possible within the compu-
tational resources available to us. Otherwise, hyper-parameters are
those reported in the original papers for the damage adaptation
task in MAP-Elites-ES and the Ant-Maze in QD-RL. The behavior
space is discretized into 1024 niches (32 bins per dimension) in
QDWalker and QDHalfCheetah, 1296 niches (6 bins per dimension)
in QDAnt and 1000 niches in QDHopper.

4.4 Evaluation Metrics
We consider four main metrics for evaluation and report p-values
based on the Wilcoxon rank-sum test.

• QD-score [43]: The total sum of fitness across all solutions in
the archive. As fitness can be negative, the fitness of all behaviors
is offset by the lowest fitness behavior found across all compared
algorithms for a given task when calculating the QD-score. This
avoids penalizing algorithms for discovering additional solutions.

Policy Gradient Assisted MAP-Elites GECCO ’21, July 10–14, 2021, Lille, France

Figure 3: Results for the compared algorithms in each evaluation task. Each task is repeated for 20 runs with different random
seeds, over one-million controller evaluations for each run. Each evaluation metrics is displayed with the median over the 20
seeds as a solid line with a shaded area around it bounded by the first and third quartiles.

• Coverage: The total number of solutions in the archive. Full
coverage is achieved when a solution is found for each cell in the
archive.
• Max Fitness: The overall fittest solution in the archive.
• Fitness Difference: To evaluate the robustness of each algo-
rithm in stochastic environments, the fitness difference between
a single evaluation and the fitness averaged over 10 evaluations
for the current max fitness solution is considered. Each algorithm
is only allowed a single evaluation for adding solutions to the
archive which needs to be robust for the algorithm to be efficient
in stochastic environments. We use the solution with max fitness
for assessing robustness as it is likely the most sensitive to noise.

4.5 Experimental Results
Figure 3 shows the main evaluation metrics for each algorithm in
each task. PGA-MAP-Elites achieves the best overall repertoire in
all tasks as seen by the significantly higher QD-Scores compared to
other algorithms (p < 10−5). The coverage metric shows that PGA-
MAP-Elites retains the divergent search capability of MAP-Elites
and achieves similar or better (p < 0.03 for QDAnt and QDHopper)
coverage in each task. Compared to other algorithms PGA-MAP-
Elites has better coverage in all tasks (p < 10−5). Although standard
MAP-Elites achieves a good coverage in all tasks, the generated
archives (Fig. 4) show that most behaviors found are of low fit-
ness. PGA-MAP-Elites on the other hand is able to combine this

good coverage with finding high-performing solutions across the
behavior space (Fig. 4).

In the max fitness metric, PGA-MAP-Elites outperforms all other
algorithms in the QDWalker and QDHopper tasks (p < 0.01). In
QDHalfCheetah the max fitness difference is not statistically signifi-
cant between PGA-MAP-Elites and TD3 but in QDAnt TD3 achieves
a higher max fitness (p < 10−6). It is not surprising that TD3 is
able to find a few higher-performing behaviors in certain tasks as
the critics in TD3 only have to estimate the action-value function
well around the current policy for TD3 to continuously improve. In
PGA-MAP-Elites, the critics need to estimate the action-value func-
tion over the entire behavior space which likely is more difficult.
The archive plots (Fig. 4) confirm that TD3 can find best solution
with a similar fitness to those found by PGA-MAP-Elites. However,
PGA-MAP-Elites finds many more solutions in the medium to high
fitness range leading to much better archives overall.

The fitness difference metric shows that PGA-MAP-Elites learns
very robust behaviors in all tasks, except in QDHopper where the
fitness difference (loss in this case) is large. The fitness difference
for the PG only variant shows that the PG variation operator helps
to improve sensitivity also in this task. This indicates that the
sensitivity to noise exhibited by PGA-MAP-Elites in the QDHopper
task is related to the GA variation operator. A solution to this could
thus be to apply a step of PG variation to each solution after the
GA variation has been applied.

GECCO ’21, July 10–14, 2021, Lille, France O. Nilsson and A. Cully
QD

W
al

ke
r

PGA-MAP-Elites MAP-Elites MAP-Elites-ES QD-RL PGA-MAP-Elites PG only TD3 w. archive

QD
Ha

lfC
he

et
ah

500

1000

1500

2000

2500

Fi
tn

es
s

−1000

0

1000

2000

3000

Fi
tn

es
s

Figure 4: Typical archives found by each algorithm in the QDWalker and QDHalfCheetah tasks. In these tasks the archives
form square grids as the BDs are 2-dimensional. Increasing feet contact time from left to right and from bottom to top.

MAP-Elites-ES finds good behaviors in the QDAnt and QD-
HalfCheetah tasks where it looks like it would eventually catch
up with PGA-MAP-Elites given additional evaluations. However,
despite finding a few good behaviors the overall repertoires found
by MAP-Elites-ES have far fewer behaviors than other algorithms.
MAP-Elites-ES therefore also lacks in the QD-Score metric. Figure 4
shows that the final archive for QDHalfCheetah is typically scat-
tered butMAP-Elites-ES is able to find a number of high-performing
behaviors in one local region of the behavior space. Given enough
evaluations, MAP-Elites-ES would likely build strong repertoires in
these two tasks. In the QDWalker and QDHopper tasks MAP-Elites-
ES seemingly fails to find high-performing behaviors which may
be related to the behavior space being relatively easy to cover and
doing so does not correlate strongly with finding high-performing
behaviors. The learning process of MAP-Elites-ES could thus be
halted by its directed optimization for diversity, as finding behav-
iors that cover new regions of the behavior space is not necessarily
meaningful for advancing the learning process.

QD-RL seemingly fails in all tasks which is likely related to the
method used to directly optimize for diversity. Like in MAP-Elites-
ES, the directed optimization for diversity may not be meaningful
given that diversity in the BD and performance are not aligned.
Moreover, as QD-RL optimizes for diversity based on an MDP, it
assumes that the sum of the novelty of each state (based on the
state-BD) provides a meaningful characterization for the novelty
of the entire behavior. We define the state-BD at each time-step as
the feet contact time up to that time-step as this is the space where
we seek diversity. This is likely not appropriate for QD-RL. The
ability to define a state-BD compatible with the commonly used
BD considered in this paper remains an open question. QD-RL per-
forms slightly better in QDHalfCheetah . In this task QD-RL finds
behaviors able to survive the entire 1000 simulation steps without
falling over, creating an increased resource demand for QD-RL in
this task compared to other tasks. The use of only four agents in
parallel (following the source code provided by the QD-RL authors)
compared to 100 in PGA-MAP-Elites means our resources can not
run QD-RL for more than 2 × 105 evaluations in QDHalfCheetah.

5 CONCLUSIONS
This paper present the PGA-MAP-Elites algorithm as an approach
to building high-quality behavior repertoires for simulated robots
where large DNN controllers are required. PGA-MAP-Elites in-
troduces a PG-based variation to MAP-Elites for increased search
power and data-efficiency and pairs it with the exploration capa-
bilities of GA-based variation. The evaluation on four different
repertoire-building tasks shows that PGA-MAP-Elites is able to
efficiently build high-quality repertoires that significantly outper-
form those found by existing methods and successfully scales the
use of MAP-Elites to evolving controllers with more than 20000
parameters.

PGA-MAP-Elites was developed to specifically target the gener-
ation of behavior repertoires for locomotion, but for future work
we will investigate our approach for manipulation-based tasks and
tasks where the BDs are aligned with performance to a high de-
gree. Task with highly deceptive fitness structures are of particular
interest as the MAP-Elites-ES and QD-RL approaches are likely to
be more competitive in comparison in such tasks because of their
ability to directly optimize for diversity.

This paper has shown clear benefits for using a PG variation
with MAP-Elites. The benefits of using a PG variation come with
the costs of the limitations of PG methods. In particular, the type
of controllers that can be used with PGA-MAP-Elites are limited
to differentiable function approximators such as neural networks.
The setup of the PG variation is also limited to problems with
full observability, satisfying the theoretical constraints of an MDP.
These are two restrictions that do not apply to standard MAP-Elites
variants.

ACKNOWLEDGMENTS
This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) grant EP/V006673/1 project REcoVER.
We also want to thank the members of the Adaptive and Intelligent
Robotics Lab at Imperial College London for their useful comments.

Policy Gradient Assisted MAP-Elites GECCO ’21, July 10–14, 2021, Lille, France

REFERENCES
[1] Alberto Alvarez, Steve Dahlskog, Jose Font, and Julian Togelius. 2020. Interactive

Constrained MAP-Elites Analysis and Evaluation of the Expressiveness of the
Feature Dimensions. arXiv:2003.03377 [cs.AI]

[2] Alberto Alvarez, Steve Dahlskog, José M. Font, and Julian Togelius. 2019. Em-
powering Quality Diversity in Dungeon Design with Interactive Constrained
MAP-Elites. In CoG. IEEE, 1–8. http://dblp.uni-trier.de/db/conf/cig/cog2019.
html#AlvarezDFT19

[3] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba.
2017. Hindsight experience replay. In Advances in Neural Information Processing
Systems, Vol. 2017-Decem. Neural information processing systems foundation,
5049–5059. arXiv:1707.01495

[4] Richard Bellman. 1954. The theory of dynamic programming. Bull. Amer.
Math. Soc. 60, 6 (11 1954), 503–515. https://projecteuclid.org:443/euclid.bams/
1183519147

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. CoRR abs/1606.01540
(2016). arXiv:1606.01540 http://arxiv.org/abs/1606.01540

[6] Geoffrey Cideron, Thomas Pierrot, Nicolas Perrin, Karim Beguir, and Olivier
Sigaud. 2020. QD-RL: Efficient Mixing of Quality and Diversity in Reinforcement
Learning. arXiv:2006.08505 [cs.AI]

[7] Cédric Colas, Vashisht Madhavan, Joost Huizinga, and Jeff Clune. 2020. Scaling
MAP-Elites to Deep Neuroevolution. In Proceedings of the 2020 Genetic and Evo-
lutionary Computation Conference (Cancún, Mexico) (GECCO ’20). Association
for Computing Machinery, New York, NY, USA, 67–75. https://doi.org/10.1145/
3377930.3390217 Implementation: https://github.com/uber-research/Map-Elites-
Evolutionary.

[8] Cedric Colas, Olivier Sigau, and Pierre Yves Oudeyer. 2018. GEP-PG: Decoupling
exploration and exploitation in deep reinforcement learning algorithms. In 35th
International Conference on Machine Learning, ICML 2018, Vol. 3. International
Machine Learning Society (IMLS), 1682–1691. arXiv:1802.05054

[9] Edoardo Conti, VashishtMadhavan, Felipe Petroski Such, Joel Lehman, Kenneth O.
Stanley, and Jeff Clune. 2018. Improving Exploration in Evolution Strategies for
Deep Reinforcement Learning via a Population of Novelty-Seeking Agents. In
Proceedings of the 32nd International Conference on Neural Information Processing
Systems (Montréal, Canada) (NIPS’18). Curran Associates Inc., Red Hook, NY,
USA, 5032–5043.

[10] Erwin Coumans and Yunfei Bai. 2016–2019. PyBullet, a Python module for
physics simulation for games, robotics and machine learning. http://pybullet.org.
Implementation: https://github.com/bulletphysics/bullet3/blob/master/examples/
pybullet/gym/pybullet_envs/gym_locomotion_envs.py.

[11] Antoine Cully. 2019. Autonomous skill discovery with quality-diversity and
unsupervised descriptors. In GECCO 2019 - Proceedings of the 2019 Genetic and
Evolutionary Computation Conference. Association for Computing Machinery,
Inc, 81–89. https://doi.org/10.1145/3321707.3321804 arXiv:1905.11874

[12] Antoine Cully. 2020. Multi-Emitter MAP-Elites: Improving quality, diversity and
convergence speed with heterogeneous sets of emitters. arXiv:2007.05352 [cs.NE]

[13] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean Baptiste Mouret. 2015.
Robots that can adapt like animals. Nature (2015), 503–507. https://doi.org/10.
1038/nature14422 arXiv:1407.3501

[14] Antoine Cully and Yiannis Demiris. 2018. Hierarchical Behavioral Repertoires
with Unsupervised Descriptors. In Proceedings of the Genetic and Evolutionary
Computation Conference (Kyoto, Japan) (GECCO ’18). Association for Computing
Machinery, New York, NY, USA, 69–76. https://doi.org/10.1145/3205455.3205571

[15] Antoine Cully and Yiannis Demiris. 2018. Quality and Diversity Optimization: A
Unifying Modular Framework. IEEE Transactions on Evolutionary Computation
(2018). https://doi.org/10.1109/TEVC.2017.2704781 arXiv:1708.09251

[16] Antoine Cully and Jean Baptiste Mouret. 2013. Behavioral repertoire learning
in robotics. In GECCO 2013 - Proceedings of the 2013 Genetic and Evolutionary
Computation Conference. https://doi.org/10.1145/2463372.2463399

[17] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune.
2020. First return then explore. (apr 2020). arXiv:2004.12919 http://arxiv.org/
abs/2004.12919

[18] Benjamin Eysenbach, Julian Ibarz, Abhishek Gupta, and Sergey Levine. 2019.
Diversity is all you need: Learning skills without a reward function. In 7th
International Conference on Learning Representations, ICLR 2019. International
Conference on Learning Representations, ICLR. arXiv:1802.06070

[19] Manon Flageat and Antoine Cully. 2020. Fast and stable MAP-Elites in noisy
domains using deep grids. The 2020 Conference on Artificial Life (2020). https:
//doi.org/10.1162/isal_a_00316

[20] Matthew C. Fontaine, Julian Togelius, Stefanos Nikolaidis, and Amy K. Hoover.
2020. Covariance Matrix Adaptation for the Rapid Illumination of Behavior
Space. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference
(Cancún, Mexico) (GECCO ’20). Association for Computing Machinery, New York,
NY, USA, 94–102. https://doi.org/10.1145/3377930.3390232

[21] Sébastien Forestier, Yoan Mollard, and Pierre-Yves Oudeyer. 2017. Intrinsically
Motivated Goal Exploration Processes with Automatic Curriculum Learning.
(aug 2017). arXiv:1708.02190 http://arxiv.org/abs/1708.02190

[22] Scott Fujimoto, Herke van Hoof, and David Meger. 2018. Addressing Function
Approximation Error in Actor-Critic Methods. In Proceedings of the 35th Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, Stockholmsmässan, Stock-
holm Sweden, 1587–1596. http://proceedings.mlr.press/v80/fujimoto18a.html
Implementation: https://github.com/sfujim/TD3.

[23] Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. 2017. Aerodynamic
design exploration through surrogate-assisted illumination. In 18th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference. 3330.

[24] Tanmay Gangwani, Jian Peng, and Yuan Zhou. 2020. Harnessing Distri-
bution Ratio Estimators for Learning Agents with Quality and Diversity.
arXiv:2011.02614 [cs.LG]

[25] Jorge Gomes, Sancho Moura Oliveira, and Anders Lyhne Christensen. 2018. An
approach to evolve and exploit repertoires of general robot behaviours. Swarm
and Evolutionary Computation (2018).

[26] Abhishek Gupta, Russell Mendonca, Yu Xuan Liu, Pieter Abbeel, and Sergey
Levine. 2018. Meta-reinforcement learning of structured exploration strategies.
In Advances in Neural Information Processing Systems, Vol. 2018-Decem. Neural
information processing systems foundation, 5302–5311. arXiv:1802.07245

[27] Rein Houthooft, Richard Y. Chen, Phillip Isola, Bradly C. Stadie, Filip Wolski,
Jonathan Ho, and Pieter Abbeel. 2018. Evolved policy gradients. In Advances
in Neural Information Processing Systems, Vol. 2018-Decem. Neural information
processing systems foundation, 5400–5409. arXiv:1802.04821

[28] Shauharda Khadka and Kagan Tumer. 2018. Evolution-guided policy gradient in
reinforcement learning. In Advances in Neural Information Processing Systems,
Vol. 2018-Decem. Neural information processing systems foundation, 1188–1200.
arXiv:1805.07917

[29] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 [cs.LG]

[30] Ayaka Kume, Eiichi Matsumoto, Kuniyuki Takahashi, Wilson Ko, and Jethro Tan.
2017. Map-based Multi-Policy Reinforcement Learning: Enhancing Adaptability
of Robots by Deep Reinforcement Learning. (oct 2017). arXiv:1710.06117 http:
//arxiv.org/abs/1710.06117

[31] Joel Lehman and Kenneth O. Stanley. 2011. Abandoning objectives: Evolution
through the search for novelty alone. Evolutionary Computation 19, 2 (2011),
189–222. https://doi.org/10.1162/EVCO_a_00025

[32] Joel Lehman and Kenneth O. Stanley. 2011. Evolving a diversity of creatures
through novelty search and local competition. InGenetic and Evolutionary Compu-
tation Conference, GECCO’11. 211–218. https://doi.org/10.1145/2001576.2001606

[33] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control
with deep reinforcement learning. In 4th International Conference on Learning Rep-
resentations, ICLR 2016 - Conference Track Proceedings. International Conference
on Learning Representations, ICLR. arXiv:1509.02971

[34] Long-Ji Lin. 1992. Self-Improving Reactive Agents Based on Reinforcement
Learning, Planning and Teaching. Mach. Learn. 8, 3–4 (May 1992), 293–321.
https://doi.org/10.1007/BF00992699

[35] Seppo Linnainmaa. [n.d.]. Taylor Expansion of the Accumulated Rounding Error.
16, 2 ([n. d.]), 146–160. https://doi.org/10.1007/BF01931367

[36] Niru Maheswaranathan, Luke Metz, George Tucker, and Jascha Sohl-Dickstein.
2018. Guided evolutionary strategies: escaping the curse of dimensionality
in random search. arXiv (2018), 1–16. https://doi.org/arXiv:1806.10230v2
arXiv:1806.10230

[37] Volodymyr Mnih, Adria Puigdomenech Badia, Lehdi Mirza, Alex Graves, Tim
Harley, Timothy P. Lillicrap, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning. In 33rd International Con-
ference on Machine Learning, ICML 2016, Vol. 4. International Machine Learning
Society (IMLS), 2850–2869. arXiv:1602.01783

[38] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. (dec 2013). arXiv:1312.5602 http://arxiv.org/abs/
1312.5602

[39] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540 (feb
2015), 529–533. https://doi.org/10.1038/nature14236

[40] Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating search spaces by mapping
elites. (apr 2015). arXiv:1504.04909 http://arxiv.org/abs/1504.04909

[41] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y.
Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. 2018.
Parameter space noise for exploration. In 6th International Conference on Learning
Representations, ICLR 2018 - Conference Track Proceedings. International Confer-
ence on Learning Representations, ICLR. arXiv:1706.01905

https://arxiv.org/abs/2003.03377
http://dblp.uni-trier.de/db/conf/cig/cog2019.html#AlvarezDFT19
http://dblp.uni-trier.de/db/conf/cig/cog2019.html#AlvarezDFT19
https://arxiv.org/abs/1707.01495
https://projecteuclid.org:443/euclid.bams/1183519147
https://projecteuclid.org:443/euclid.bams/1183519147
https://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://arxiv.org/abs/2006.08505
https://doi.org/10.1145/3377930.3390217
https://doi.org/10.1145/3377930.3390217
https://github.com/uber-research/Map-Elites-Evolutionary
https://github.com/uber-research/Map-Elites-Evolutionary
https://arxiv.org/abs/1802.05054
http://pybullet.org
https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/gym/pybullet_envs/gym_locomotion_envs.py
https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/gym/pybullet_envs/gym_locomotion_envs.py
https://doi.org/10.1145/3321707.3321804
https://arxiv.org/abs/1905.11874
https://arxiv.org/abs/2007.05352
https://doi.org/10.1038/nature14422
https://doi.org/10.1038/nature14422
https://arxiv.org/abs/1407.3501
https://doi.org/10.1145/3205455.3205571
https://doi.org/10.1109/TEVC.2017.2704781
https://arxiv.org/abs/1708.09251
https://doi.org/10.1145/2463372.2463399
https://arxiv.org/abs/2004.12919
http://arxiv.org/abs/2004.12919
http://arxiv.org/abs/2004.12919
https://arxiv.org/abs/1802.06070
https://doi.org/10.1162/isal_a_00316
https://doi.org/10.1162/isal_a_00316
https://doi.org/10.1145/3377930.3390232
https://arxiv.org/abs/1708.02190
http://arxiv.org/abs/1708.02190
http://proceedings.mlr.press/v80/fujimoto18a.html
https://github.com/sfujim/TD3
https://arxiv.org/abs/2011.02614
https://arxiv.org/abs/1802.07245
https://arxiv.org/abs/1802.04821
https://arxiv.org/abs/1805.07917
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1710.06117
http://arxiv.org/abs/1710.06117
http://arxiv.org/abs/1710.06117
https://doi.org/10.1162/EVCO_a_00025
https://doi.org/10.1145/2001576.2001606
https://arxiv.org/abs/1509.02971
https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/BF01931367
https://doi.org/arXiv:1806.10230v2
https://arxiv.org/abs/1806.10230
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1504.04909
http://arxiv.org/abs/1504.04909
https://arxiv.org/abs/1706.01905

GECCO ’21, July 10–14, 2021, Lille, France O. Nilsson and A. Cully

[42] Aloïs Pourchot and Olivier Sigaud. 2019. CEM-RL: Combining evolutionary
and gradient-based methods for policy search. In 7th International Conference
on Learning Representations, ICLR 2019. International Conference on Learning
Representations, ICLR. arXiv:1810.01222

[43] Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. 2016. Quality diversity:
A new frontier for evolutionary computation. Frontiers Robotics AI 3, JUL (jul
2016). https://doi.org/10.3389/frobt.2016.00040

[44] Justin K. Pugh, L. B. Soros, Paul A. Szerlip, and Kenneth O. Stanley. 2015. Con-
fronting the challenge of quality diversity. InGECCO 2015 - Proceedings of the 2015
Genetic and Evolutionary Computation Conference. Association for Computing
Machinery, Inc, 967–974. https://doi.org/10.1145/2739480.2754664

[45] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. 2017.
Evolution Strategies as a Scalable Alternative to Reinforcement Learning. (mar
2017). arXiv:1703.03864 http://arxiv.org/abs/1703.03864

[46] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. 2014. Deterministic policy gradient algorithms. In 31st Inter-
national Conference on Machine Learning, ICML 2014.

[47] Danesh Tarapore, Jeff Clune, Antoine Cully, and Jean-Baptiste Mouret. 2016. How
Do Different Encodings Influence the Performance of the MAP-Elites Algorithm?.
In Genetic and Evolutionary Computation Conference.

[48] Vassilis Vassiliades, Konstantinos Chatzilygeroudis, and Jean-Baptiste Mouret.
2017. Using Centroidal Voronoi Tessellations to Scale Up the Multi-dimensional
Archive of Phenotypic Elites Algorithm. IEEE Transactions on Evolutionary Com-
putation (2017), 9. https://doi.org/10.1109/TEVC.2017.2735550 Implementation:
https://github.com/resibots/pymap_elites.

[49] Vassilis Vassiliades and Jean-Baptiste Mouret. 2018. Discovering the Elite Hyper-
volume by Leveraging Interspecies Correlation. Proceedings of the Genetic and
Evolutionary Computation Conference (2018).

[50] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo,
Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick. 2016.
Learning to reinforcement learn. (nov 2016). arXiv:1611.05763 http://arxiv.org/
abs/1611.05763

[51] Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Machine
Learning (1992). https://doi.org/10.1007/bf00992698

https://arxiv.org/abs/1810.01222
https://doi.org/10.3389/frobt.2016.00040
https://doi.org/10.1145/2739480.2754664
https://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1703.03864
https://doi.org/10.1109/TEVC.2017.2735550
https://github.com/resibots/pymap_elites
https://arxiv.org/abs/1611.05763
http://arxiv.org/abs/1611.05763
http://arxiv.org/abs/1611.05763
https://doi.org/10.1007/bf00992698

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Quality-Diversity Optimization
	2.2 MAP-Elites Algorithm
	2.3 Deep Reinforcement Learning
	2.4 TD3 Algorithm
	2.5 Related Work

	3 PGA-MAP-Elites
	3.1 Training the Critics
	3.2 Variation Operator
	3.3 Implementation

	4 Experimental Evaluation
	4.1 Evaluation Tasks
	4.2 Comparisons
	4.3 Hyper-parameters
	4.4 Evaluation Metrics
	4.5 Experimental Results

	5 Conclusions
	Acknowledgments
	References

