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Abstract—Graphics Processing Units (GPUs) are currently the
dominating programmable architecture for Deep Learning (DL)
accelerators. The adoption of Field Programmable Gate Arrays
(FPGAs) in DL accelerators is however getting momentum. In
this paper, we demonstrate that Direct Hardware Mapping
(DHM) of a Convolutional Neural Network (CNN) on an em-
bedded FPGA substantially outperforms a GPU implementation
in terms of energy efficiency and execution time. However, DHM
is highly resource intensive and cannot fully substitute the GPU
when implementing a state-of-the-art CNN. We thus propose a
hybrid FPGA-GPU DL acceleration method and demonstrate
that heterogeneous acceleration outperforms GPU acceleration
even including communication overheads.

Experimental results are conducted on a heterogeneous
multi-platform setup embedding an Nvidia® Jetson TX2 CPU-
GPU board and an Intel® Cyclonel0GX FPGA board. The
SqueezeNet, MobileNetv2, and ShuffleNetv2 mobile-oriented
CNNs are experimented. We show that heterogeneous FPGA-
GPU acceleration outperforms GPU acceleration for classification
inference task over MobileNetv2 (12%-30% energy reduction,
4% to 26% latency reduction), SqueezeNet (21%-28% energy re-
duction, same latency), and ShuffleNetv2 (25% energy reduction,
21% latency reduction).

I. INTRODUCTION

Internet of Things (IoT) and the emerging adoption of hetero-
geneous architectures in edge devices are currently extending
the possibilities of Deep Learning (DL)-powered applications.
Indeed, in order to keep reasonable device energy consumption,
embedded platforms have started to adopt heterogeneous
architectures to keep up with an ever-growing computational
demand. While GPUs currently dominate programmable DL
acceleration, state-of-the art is still divided on deciding in which
cases an FPGA outperforms a GPU as an efficient DL hardware
substrate. The main motivation for heterogeneous solutions is
to increase computational efficiency through acceleration for
a subset of tasks on a full workflow. However, this gain does
not mean that the communication overheads induced by inter-
layer transfers can be compensated. In this paper, we propose
and evaluate FPGA and GPU DL module implementations
separately against a heterogeneous solution. Comparisons are
based on widely used CNN building blocks using a throughput-
optimised pipe-lined Direct Hardware Mapping (DHM) tech-
nique for FPGA CNN kernels deployment [1]. The DHM
technique incorporates several differences in comparison with
conventional GPU network execution. The first difference is the
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use of a fixed-point computation approach. This compression
technique allows us not only to reduce the memory complexity
of features and weights, but also to use specialized hardware
dedicated to fixed-point computation. In this study, we use 8-bit
fixed-point representation as suggested in [2]], to avoid affecting
heavily the resulting DL accuracy. Secondly, the number of
external memory accesses from the device must be considered.
Since DHM is based on a stream processing paradigm while
keeping parameters and features close to each other, it widely
deviates from the memory hierarchy approach of the GPU
memory model.

In the three case studies, we aim to evaluate the inference
deployment of embedded CNN models such as MobileNetV2
[3l], ShuffleNetV2 [4] and SqueezeNet [5], on an embedded
FPGA-GPU heterogeneous platform. Although both hardware
architectures have been well studied and evaluated on High Per-
formance Computing (HPC) centers, their specific capabilities
are still to be exploited on embedded design. In this work, we
compute an energy and latency estimation for multiple layers
used in these CNN models. We then propose a heterogeneous
version of grouped or depth-wise convolution partitions for
layer-fusing when allowed by the network architecture at a
module-level.

The contributions of this work consist of:

1) demonstrating that DHM on an FPGA is a viable
alternative to GPU deep learning acceleration in terms
of energy, latency and throughput. However, DHM is
currently limited to small layers, due to its extensive
usage of FPGA logic resources.

2) comparing the obtained measurements against an em-
bedded GPU implementation for specific layers and
operations at a module-level.

3) demonstrating that a combination of GPU and FPGA ef-
fectively outperforms homogeneous solutions, even when
inter-systems communication overheads are considered.

II. RELATED WORK

Heterogeneous computing has been increasingly adopted in
the last few decades as a result of the power and memory walls
of computing. These programmable computing nodes have a
diversity of hardware capabilities, different ways to execute
instructions, or multiple operation management methods [6].



In cases where there is enough (data or task) parallelism that
can be exploited by scheduling, combining FPGAs and GPUs
can offer a significant performance [/]. Recent studies feed
the discussion in the context of embedded vision applications,
comparing for instance an ARMS57 CPU, a TX2 GPU and
a ZCU102 FPGA [8]. They prove that FPGAs are a better
solution than GPUs for more complex pipelines like image
filtering, feature extraction or geometric extraction, which is
the case in our study. [9] and [10] are the closest works to
this study in terms of hardware architecture and partitioning
between GPUs and FPGAs in embedded image processing
terms. However, the granularity of the partitions are either too
fine to affect the communication bottleneck, or too coarse to
fully exploit resource allocation. In this paper, we propose
heterogeneous partitioning at a module level on state-of-the-
art CNNs and compare quantitative results to [9] and [L0] in
Table [

In [[1L1]], closer to the current study from a communication
perspective, a heterogeneous platform consisting of two pro-
grammable logic devices. Both are interconnected to be tested
on image processing techniques such as histogram of oriented
gradients. While some speed-ups are achieved, the inter-
subsystems communication through a Peripheral Component
Interconnect Express (PCle) link tends to reduce speed-ups,
resulting in a bottleneck. Adopting a host-guest computing
structure, more recent works [[12], [[13]] alleviate this bottleneck
by bypassing or skipping data allocation at host memory,
keeping data in the guest device for a longer time. Shaping
memory transfers is critical in a DL context in order to increase
the number of layers or parameters to be mapped on the most
efficient accelerator and be sent back to a host, as presented
in these papers.

III. PROBLEM DEFINITION

In this section we describe the performance of individual
architectures, i.e. of a full implementation on an FPGA with
DHM and on a GPU for Section [Vl models. Two metrics were
considered on each device for this work; processing latency
(LAT) and energy (F). We further develop both solutions in
a heterogeneous manner showing the results comparison in

A. DHM for FPGA synthesis definition

In this work, we use a data-driven approach that fully exploits
the resources in an FPGA to concurrently map and execute
multiple CNN layers on the device as a pipeline. DHM was
first introduced in [1] as a technique to map processing nodes
to logical elements or Digital Signal Processors (DSPs). The
synthesized accelerators using this technique take advantage
of the fused layers, further explained in section since
the intermediate feature maps are stored internally in the
device, as well as the kernel weights. This storage avoids
the bottleneck communication of intermediate data external
memory accesses, increasing energy, latency and throughput
efficiency. Additionally, all weights are stored closer to the logic
elements, so no external memory accesses are needed for weight
retrieval, which in DL applications introduces a considerable

overhead. Although this method offers an indisputable high
performance efficiency gain, this comes at the cost of an
enormous resource requirement. As a consequence of this
constrain, only small designs can be mapped using DHM.

Considering the opportunities and limitations of DHM, its
usage for CNN acceleration must be handled carefully. The
combination of DHM on a heterogeneous platform with the
objective to reduce memory accesses on the GPU proves to
be an efficient solution, as it is discussed in We show, that
in fact, while the FPGA is more efficient than the GPU in
all evaluation metrics on small kernels, combining such local
FPGA acceleration with global GPU processing leads towards
the optimal performance.

B. High-level CUDA code generation for GPU CNN deploy-
ment

The hardware architecture and memory model of Nvidia
GPUs are highly specialized for batch processing based on
Single-Instruction Multiple-Data (SIMD) parallel execution.
This execution method requires a specific coding paradigm
that handles memory accesses and scheduling to the mem-
ory hierarchy. GPUs embed memories with different access
latencies, accessed from computing elements called Compute
Unified Device Architecture (CUDA) cores. Therefore, both
the latency and energy performances are highly dependant of
how the kernels threads are executed and how they use this
hierarchy.

For CNN applications, multiple levels of data parallelism and
data reuse can be achieved by techniques like loop unrolling,
tiling or batching; which directly affect hardware performance.
Fortunately, because of the wide adoption of high level
compiling tools and open source projects, optimized software
such as Pytorch [14] alleviate this task for the developer. In
this work, we deploy inference for CNNs using the generated
CUDA code on different sizes of convolutional layers. Figure
[I] shows an example of obtained measurements metrics for
latency (Figure [Ta) and energy (Figure [Ib). The figures are
obtained by measuring the execution of a convolutional layer
with an input tensor of dimensions 224x224, 3 input channels,
from 2 to 64 kernel filters and different kernel sizes. It can be
observed that the FPGA implementation outperforms the GPU
solution both in terms of energy and of latency. However, the
FPGA with DHM deployment is quickly limited by the number
of available resources, constraining the depth of convolution
filters that can be directly mapped; 64 filters of size 5 X 5 in
this case.

IV. STATE-OF-THE-ART CNN MODULES AND GPU-FPGA
PARTITIONING

The main motivation for the deployment of heterogeneous
platforms for CNN networks is the presence of parallelism and
heterogeneity in both CNN computation and communication.
The main and more time-consuming operation of the presented
building blocks is the convolution operation. Therefore, in
order to be able to accelerate execution, it is essential to
fully understand its computing model and relevant parameters.
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Fig. 1: Latency (a) and Energy (b) comparison between multiple convolution function sizes on Cyclonel0GX FPGA (blue) and
Jetson TX2 GPU (green) for different CNN layers on an input image of 224x224x3. Blue bars represent the layers implemented
on the FPGA and the green bars represent the energy consumption on the GPU. The performance factor in this measure is
increased result of multiplication on both power and latency metrics.

A convolutional layer (Conv) takes as an input a multidi-
mensional tensor, called Input Feature Map (IFM), I of size
H; x Wi x Cy from a previous layer [ — 1 and it is multiplied
and accumulated with a sliding window of a kernel tensor K
of size kp X ky, x C7 x N. Typically in most applications
kpn, = k. The resulting Output Feature Map (OFM) O on the
current layer [ is obtained from Multiply-and-ACcumulate
(MAC) operations and inter-layer communication. Recent
CNN algorithmic optimizations are constantly introducing non-
regular patterns into the networks in the form of different
layer types with a variety of operations. In this subsection,
we describe the main building blocks or modules and their
partitioning from the current mobile CNN models:

o Depth-Wise separable Convolution (DWConv): This
technique was first described in [15]] and fully utilized in
[3]]. The main concept relies upon a sort of factorization of
a traditional convolutional layer. The first of the resulting
operations is a k X k convolution over every single input
channel. The second operation over this tensor is a 1x 1
convolution, i.e. a scaling with a depth of C} resulting
in the first channel of the output tensor. Figure 2a] shows
a layer d; as a DWConv. We propose a partitioning
delegating all the 1x 1 convolution on the FPGA for all
layers. This allows us to reduce the number of weights
directly mapped on the device, saving valuable resources
using DHM.

e Grouped Convolution (GConv): This partitioning
method divides the computational load into workflows that
can be executed in parallel and concatenated afterwards.
In Figure [2b] two contiguous partitions of different sizes
are created for each device. The GPU partition takes the
subset of the [IFMs H; x W; x (C; — ¢;) and the filter
tensor of size k x kx (Cr—g;) x N, while the FPGA takes
H; x Wi x g; and the filter tensor of size k X k X g; X N.

o Fused-Layer: It was first introduced in [16] as a method
to store intermediate weights and neuron activity in cache

from adjacent layers in depth. This approach handles one
of the most common challenges in CNN models, the data
transfer burden. In Figure [2¢|the f; number of parameters
of layer | € L is internally stored on the FPGA to be
executed in a pipe-lined fashion [[17]. The OFM of the
last layer in the partition is then transferred to the GPU.

V. EXPERIMENTAL METHODOLOGY, EVALUATION AND
RESULTS

In this section we describe the experimental methodology
deployed to obtain the proposed metrics. In section we
discuss the experimental setup and how individual performance
metrics for each device are obtained. In section [V-Bl we
present the results of the heterogeneous platform measurements
for different operations with the layer-wise partitioning from
section [[V1

Figure [3] shows the selected embedded computing nodes as
case study on a custom prototyping board, linking both devices
by a communication node or interface. Additionally, this section
describes more in the detail the experimental setup as case of
study and baseline for measurement metrics comparison.

A. Measurement-based energy and latency performance com-
parison

On the Jetson TX2 Module-on-Chip (MoC), a Tegra TX2
System-on-Chip (SoC) is incorporated, which at the same
time, includes an integrated multi-channel power monitor. The
ImageNet pre-trained mobile CNN models were obtained from
Pytorch [14] and the torchvision model zoo. On the FPGA
side, we use the Power Estimation tool® from Intel Quartus
Pro Edition® targeting multiple convolutional task operations
on the Intel® Cyclonel0GX FPGA. The function synthesis
is based on the DHM technique described in [Tl DHM maps
directly the function on hardware. Therefore, its power varies
rapidly with the number of processing elements and registers
mapped on the device. In Figure [T| an example of energy
efficiency comparison between both devices is shown. It can
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Fig. 3: Heterogeneous prototype board consisting of (a) an
embedded CPU-GPU Nvidia® Jetson TX2 System-on-Module
(SoM) at the top board and (b) an Intel® Cyclone 10GX
FPGA at the bottom board interconnected by a 4-lane PCle
gen?2 interface.

be observed that the FPGA has a better energy efficiency that
outperforms the GPU with orders of magnitude. This effect

increases with the number of kernel filters on a fixed IFM.

Nonetheless, this is only true as long as the design fits on an
embedded FPGA device, like the Cyclone 10 GX FPGA.
B. Evaluation and results

Given the metric measurements on individual devices and
the data-flow graphs for the heterogeneous platform from

the proposed partitioning, we validate and evaluate their
efficiency on the hardware configurations described from
the architecture model in Figure [3] For a fairer comparison
between the monolithic homogeneous GPU-only setup and the
heterogeneous FPGA-GPU evaluation, both setups were tested
with the same configuration parameters and task workloads.
The selected CNN models were pre-trained with the ImageNet
dataset. Layers hyper-parameters, i.e. IFM and OFM, were
obtained from the original papers.

To keep up with a better model precision the first two IFMs
dimensions of the layers, H; and W, are sampled following
the typical architecture tensor sizes of 224x224, 112x112
and so on down to 4x4. This allows us to fully exploit the
dimension reduction of the IFM result of the GConv. Because
our hardware setup is highly bounded by the PCle throughput
of 2.5GBytes/s, these observations are crucial to keep up with
a good performance.

From Figure )it can be observed a comparison between the
energy in mJ and latency in ms of the layers from SqueezeNet.
The heterogeneous solution has a significant energy efficiency
gain up to 28% with no significant impact on the latency. This
is mostly because the energy efficiency of the C'onv3z3 task
on the FPGA is higher than that on the GPU. In the case of
the latency, because both the time spent in communicating
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between devices and the processing time on the FPGA are still
shorter than the execution of the C'onvlxl task on the GPU,
it is possible to hide its latency during the execution time of
the GPU. This means that if the latency of the FPGA and the
communication is less than the GPU latency, then the max
function as consequence of the heterogeneous model’s parallel
execution, will be dominated by the GPU-side latency. This is
highly beneficial because, this sub-task is small enough, thanks
to the GConv, to be fully mapped on the FPGA for every layer
on the CNN.

For MobileNetv2 (with 0.5x parameters), although our
partition only considers a sequential execution of the diverse
tasks in the layers, in this case, there are both an increase in
energy and latency performances. This speed-up and energy
efficiency factor increases with the size of the IFM, as seen in
Figure [@b] up to 23% and 30%, respectively.

Combining the strategies from both previous partitioning
and scheduling, ShuffleNetv2 (with 0.5x parameters) benefits
from a speed-up factor on both model types, with and without
spatial reduction. The first section of the layer incorporates
a spatial reduction block that benefits from a similar gain of

parallel execution. Therefore, the gain follows the same concept
as the layer from SqueezeNet, but with a DWConv3x3
instead of a traditional Conv3x3. The second section of the
layer repeats a sequential execution with no spatial reduction.
As a consequence, the result is similar to the layers from
MobileNetv2. Because of this connection, it has the highest
speed-up factor of 25% and energy efficiency of 21% compared
to its homogeneous GPU counterpart as seen in Figure

Table |I] shows the speed-up factor and energy performance
comparison with some works from Section[[l] This work demon-
strates a similar performance, showing clear heterogeneity-
related gains. Notice that the evaluated algorithms are more
complex than compared state-of-the-art, achieving similar
results. Therefore, because of the high parallel deployment
for inference tasks, the use of FPGA-GPU heterogeneous
embedded platforms also for mobile DL. CNN topologies is
justified, and shall result in very high gains if GPU and FPGA
substrates are put closer to each other than in the tested multi-
board setup.



Work Heterogeneous Partitioning Evaluated Energy Latency
platform granularity algorithms Gain Speedup
Nvidia Background substraction 1.74x -
Qasaimeh, M. GPU+CPU Jetson TX2 Fine Color segmentation 1.86x -
et al. [8] FPGA Xilinx (Element-wise) Harris corners tracking 3.94x -
ZCU102 Stereo block matching 8.83x -
Nvidia .
Hosscinabady, M. GPU+CPU Jetson TXI Fine Histogram 1.45x-2.29x | 1.18x-1.79x
et al. [9] . (Element-wise) Dense Matrix-Vector
FPGA+CPU V{rFex—7 and multiplication 0.96x-1.19x | 1.22x-1.48x
Xilinx Zynq Sparse Matrix-Vector
Ultrascale+ MPSoC e 1.1x-1.23x 1.15x-1.25x
multiplication
Nvidia
Yuexuan Tu, CPU+GPU Jetson TX2 (Fcatuf:z;;sgaction CNN (N=16) 2.11x 1.3x
et al. [10] Xilinx Nexys DY CNN (N=32) 1.94x 1.19x
FPGA Artix 7 +Classification) CNN (N=64) Tox T17x
Nvidia N
This work CPU+GPU Jetson TX2 Mild SqueezeNet’s Fire 1.34x 1.01x
15 W FPGA Tntel (Layer-wise) MobileNet's v2 Bottleneck 1.55x T.26x
Cylone 10 GX ShuffleNet’s v2 Stage 1.39x 1.35x

TABLE I: Energy and latency comparison with state-of-the-art partitioning techniques on heterogeneous FPGA-GPU

implementations.

VI. CONCLUSIONS

In this work, we have proposed, experimented and evalu-
ated partitioning and scheduling of pre-trained mobile CNN
architectures on an FPGA-GPU embedded heterogeneous
platform. We have demonstrated that an FPGA exploiting
Direct Hardware Mapping (DHM) outperforms a GPU im-
plementation on a small piece of network at the cost of
high resource requirements. We have also shown that the
considered DL workloads benefit from a heterogeneous FPGA-
GPU infrastructure when partitioned at a layer-level granularity.
Indeed, the designed heterogeneous systems all outperform a
homogeneous GPU-only solution either in energy, latency or
both on inference for classification tasks. These results call for
new fully programmable architectural solutions for embedded
deep learning combining reconfigurable logic and streaming
multiprocessor architectures.
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