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Abstract

We study the problem of zeroth-order (black-box) optimization of a Lipschitz function f defined on a compact

subset X of Rd, with the additional constraint that algorithms must certify the accuracy of their recommendations.

We characterize the optimal number of evaluations of any Lipschitz function f to find and certify an approximate

maximizer of f at accuracy ε. Under a weak assumption on X , this optimal sample complexity is shown to be nearly

proportional to the integral
∫

X
dx/(max(f) − f(x) + ε)d. This result, which was only (and partially) known in

dimension d = 1, solves an open problem dating back to 1991. In terms of techniques, our upper bound relies on

a slightly improved analysis of the DOO algorithm that we adapt to the certified setting and then link to the above

integral. Our instance-dependent lower bound differs from traditional worst-case lower bounds in the Lipschitz setting

and relies on a local worst-case analysis that could likely prove useful for other learning tasks.

1 Introduction

The problem of optimizing a black-box function f with as few evaluations of f as possible arises in many scientific

and industrial fields such as computer experiments (Jones et al., 1998; Richet et al., 2013) or automatic selection of

hyperparameters in machine learning (Bergstra et al., 2011). For safety-critical applications, e.g., in aircraft or nuclear

engineering, using sample-efficient methods is not enough. Certifying the accuracy of the output of the optimization

method can be a crucial additional requirement (Vanaret et al., 2013). As a concrete example, Azzimonti et al. (2021)

describe a black-box function in nuclear engineering whose output is a k-effective multiplication factor, for which a

higher value corresponds to a higher nuclear hazard. Certifying the optimization error is a way to certify the worst-case

k-effective factor, which may be required by safety authorities.

In this paper, we formally study the problem of finding and certifying an ε-approximate maximizer of a Lipschitz

function f of d variables and characterize the optimal number of evaluations of any such function f to achieve this

goal. We start by formally defining the setting.

1.1 Setting: Zeroth-order Lipschitz Optimization with Error Certificates

Let f : X → R be a function on a compact non-empty subset X of Rd and x
⋆ ∈ X a maximizer.

Lipschitz assumption. We assume that f is Lipschitz with respect to a norm ‖·‖, that is, there exists L ≥ 0 such that∣∣f(x)− f(y)
∣∣ ≤ L ‖x− y‖ for all x,y ∈ X . Furthermore, we assume such a Lipschitz bound L to be known. Even

though the smallest Lipschitz constant Lip(f) := min{L′ ≥ 0 : f is L′-Lipschitz} is well defined mathematically,

it is rarely known exactly in practical black-box problems. As a theoretical curiosity, we will briefly discuss the case
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L = Lip(f) (i.e., when the best Lipschitz constant of the unknown black-box function f is known exactly) in Section 4,

but for most of our results, we will make the following more realistic assumption.

Assumption 1. For some known Lipschitz constant L, the function f : X → R belongs to

FL :=
{
g : X → R | g is Lipschitz and Lip(g) < L

}
. (1)

The Lipschitzness of f implies the weaker property that f(x⋆) − f(x) ≤ L ‖x⋆ − x‖ for all x ∈ X , sometimes

referred to as Lipschitzness around a maximizer x⋆ ∈ X . Although this is not the focus of our work, we will mention

when our results hold under this weaker assumption.

Online learning protocol. We study the case in which f is black-box, i.e., except for the a priori knowledge of L,

we can only access f by sequentially querying its values at a sequence x1,x2, . . . ∈ X of points of our choice. At

every round n ≥ 1, the query point xn can be chosen as a deterministic function of the values f(x1), . . . , f(xn−1)
observed so far. At the end of round n, using all the values f(x1), . . . , f(xn), the learner outputs two quantities:

• a recommendation x
⋆
n ∈ X , with the goal of minimizing the optimization error (a.k.a. simple regret): max(f)−

f(x⋆
n);

• an error certificate ξn ≥ 0, with the constraint to correctly upper bound the optimization error for anyL-Lipschitz

function f : X → R, i.e., so that max(f)− f(x⋆
n) ≤ ξn.

We call certified algorithm any algorithm for choosing such a sequence (xn,x
⋆
n, ξn)n≥1.

Our goal is to quantify the smallest number of evaluations of f that certified algorithms need in order to find

and certify an approximate maximizer of f at accuracy ε. This objective motivates the following definition. For any

accuracy ε > 0, we define the sample complexity of a certified algorithm A for an L-Lipschitz function f as

σ(A, f, ε) := inf
{
n ≥ 1 : ξn ≤ ε

}
∈ {1, 2, . . .} ∪ {+∞} . (2)

This corresponds to the first time when we can stop the algorithm while being sure to have an ε-optimal recom-

mendation x
⋆
n.

1.2 Main Contributions and Outline of the Paper

The main result of this paper is a tight characterization (up to a log factor) of the optimal sample complexity of

certified algorithms in any dimension d ≥ 1, solving a three-decade old open problem raised by Hansen et al. (1991).

More precisely, we prove the following instance-dependent upper and lower bounds, which we later state formally in

Theorem 3 of Section 4 (see also discussions therein, as well as Propositions 2 and 3 for the limit case L = Lip(f)).

Theorem (Informal statement). Under a mild geometric assumption on X , there exists a computationally tractable

algorithm A (e.g., c.DOO, Algorithm 1) such that, for some constant C > 0, any Lipschitz function f ∈ FL (see (1))

and any accuracy ε,

σ(A, f, ε) ≤ C

∫

X

dx
(
f(x⋆)− f(x) + ε

)d , (3)

while any certified algorithm A′ must satisfy, for all f ∈ FL and c ≈ (1− Lip(f)/L)d/ log(1/ε),

c

∫

X

dx
(
f(x⋆)− f(x) + ε

)d ≤ σ(A
′, f, ε) . (4)

In particular, this result extends to any dimension d ≥ 1 the upper bound proportional to
∫ 1

0
dx/(f(x⋆)−f(x)+ε)

that Hansen et al. (1991) derived in dimension d = 1 using arguments specific to the geometry of the real line.
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Detailed contributions and outline of the paper. We make the following contributions.

• As a warmup, we show in Section 2 how to add error certificates to the DOO algorithm (well-known in the more

classical zeroth-order Lipschitz optimization setting without error certificates, see Perevozchikov 1990; Munos

2011). We then upper bound its sample complexity by the quantity SC(f, ε) defined in (5) below. This bound

matches a recent bound derived by Bouttier et al. (2020) for a computationally much more expensive algorithm.

In passing, we also slightly improve the packing arguments that Munos (2011) used in the non-certified setting.

• In Section 3 we show that, under a mild geometric assumption on X , the complexity measure SC(f, ε) is actually

proportional to the compact integral
∫
X
dx/

(
f(x⋆) − f(x) + ε

)d
, which implies (3) above. This extends the

bound of Hansen et al. (1991) (d = 1) to any dimension d.

• Finally, in Section 4, we prove the instance-dependent lower bound (4), which differs from traditional worst-case

lower bounds in the Lipschitz setting. Our proof relies on a local worst-case analysis that could likely prove

useful for other learning tasks.

Some of the proofs are deferred to the Supplementary Material, where we also recall useful results on packing and

covering numbers (Section A), as well as provide a slightly improved sample complexity bound on the DOO algorithm

in the more classical non-certified setting (Section E).

Limitations and open problems. There are some interesting directions that would be worth investigating in the

future but we did not cover in this paper, such as noisy observations (see, e.g, Bubeck et al. 2011; Kleinberg et al.

2019) or adaptivity to smoothness (e.g., Munos 2011; Bartlett et al. 2019; we consider L-Lipschitz functions f with L
known, although our lower bound suggests that no adaptivity could be possible for certified algorithms). Finally, even

if the results of Section 2 could be easily extended to pseudo-metric spaces as in Munos (2014) and related works, our

other results are finite-dimensional and exploit the normed space structure.

1.3 Related Works

We detail below some connections with the global optimization and the bandit optimization literatures.

Zeroth-order Lipschitz optimization with error certificates. The problem of optimizing a function with error cer-

tificates has been studied in different settings over the past decades. For instance, in convex optimization, an example of

error certificate is given by the duality gap between primal and dual feasible points (see, e.g., Boyd and Vandenberghe

2004).

In our setting, namely, global zeroth-order Lipschitz optimization with error certificates, most of the attention

seems to have been on the very natural (yet computationally expensive) algorithm introduced by Piyavskii (1972)

and Shubert (1972).1 In dimension d = 1, Hansen et al. (1991) proved that its sample complexity σ(PS, f, ε) for

L-Lipschitz functions f : [0, 1] → R is at most proportional to the integral
∫ 1

0

(
f(x⋆) − f(x) + ε

)−1
dx, and left the

question of extending the results to arbitrary dimensions open, stating that the task of “Extending the results of this

paper to the multivariate case appears to be difficult”. Recently, writing Xε := {x ∈ X : max(f) − f(x) ≤ ε} for

the set of ε-optimal points, X(a,b] := {x ∈ X : a < max(f) − f(x) ≤ b} for the set of points in between a and b
optimal, andN (E, r) for the packing number of a set E at scale r (see Section 1.4), Bouttier et al. (2020, Theorem 2)

proved a bound valid in any dimension d ≥ 1 roughly of this form:

SC(f, ε) := N
(
Xε,

ε

L

)
+

mε∑

k=1

N
(
X(εk,εk−1],

εk
L

)
, (5)

where the number of terms in the sum is mε :=
⌈
log2(ε0/ε)

⌉
(with ε0 := L sup

x,y∈X ‖x− y‖) and the associated

scales are given by εmε
:= ε and εk := ε02

−k for all k ∈ {0, 1, . . . ,mε − 1}.

1For the interested reader who is unfamiliar with this classic algorithm, we added some details in Section D.2 of the Supplementary Material.
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The equivalence we prove in Section 3 between SC(f, ε) and
∫
X
dx/(f(x⋆)− f(x) + ε)d solves in particular the

question left open by Hansen et al. (1991). The upper bound we prove for the certified DOO algorithm in Section 2

also indicates that the bound SC(f, ε) and the equivalent integral bound can be achieved with a computationally much

more tractable algorithm. Indeed, the Piyavskii-Shubert algorithm requires at every step n to solve an inner global

Lipschitz optimization problem close to the computation of a Voronoi diagram (see discussion in Bouttier et al. 2020,

Section 1.1), hence a running time believed to grow as nΩ(d) after n function evaluations. On the contrary, as detailed

in Remark 1 (Section 2), the running time of our certified version of the DOO algorithm is only of the order of n log(n)
after n of evaluations of f .

Connections with the bandit optimization literature: upper bounds. Our work is also strongly connected to the

bandit optimization literature, in which multiple authors studied the global Lipschitz optimization problem with zeroth-

order (or bandit) feedback, either with perfect (deterministic) or noisy (stochastic) observations. In the deterministic

setting considered here, these papers show that though the number (L/ε)d of evaluations associated to a naive grid

search is optimal for worst-case Lipschitz functions (e.g., Thm 1.1.2 by Nesterov 2003), sequential algorithms can

approximately optimize more benign functions with a much smaller number of evaluations. Examples of algorithms

with such guarantees in the deterministic setting are the branch-and-bound algorithm by Perevozchikov (1990), the

DOO algorithm by Munos (2011) or the LIPO algorithm by Malherbe and Vayatis (2017). Examples of algorithms in

the stochastic setting are the HOO algorithm by Bubeck et al. (2011) or the (generic yet computationally challenging)

Zooming algorithm by Kleinberg et al. (2008, 2019). More examples and references can be found in the textbooks by

Munos (2014) and Slivkins (2019).

Note however that, except for the work of Bouttier et al. (2020) mentioned earlier, these bandit optimization papers

did not address the problem of certifying the accuracy of the recommendations x⋆
n. Indeed, all bounds are related to a

more classical notion of sample complexity, namely, the minimum number of queries made by an algorithm A before

outputting ε-optimal recommendations only:

ζ(A, f, ε) := inf{n ≥ 1 : x⋆
n ∈ Xε} ∈ {1, 2, . . .} ∪ {+∞} . (6)

Though ζ(A, f, ε) is always upper bounded by σ(A, f, ε) defined in (2), these two quantities can differ significantly,

as shown by the simple example of constant functions f , for which ζ(A, f, ε) = 1 but σ(A, f, ε) ≈ (L/ε)d since the

only way to certify that the output is ε-optimal is essentially to perform a grid-search with step-size roughly ε/L, so

as to be sure there is no hidden bump of height more than ε. At a high level, the more “constant” a function is, the

easier it is to recommend an ε-optimal point, but the harder it is to certify that such recommendation is actually a good

recommendation. See the Supplementary Material (Section E) for a comparison of bounds.

Despite this important difference, the bandit viewpoint (using packing numbers instead of more specific one-

dimensional arguments) is key to obtain our multi-dimensional integral characterization.

Comparison with existing lower bounds. Several worst-case (minimax) lower bounds were derived in the bandit

Lipschitz optimization setting. When rewritten in terms of the accuracy ε and translated into our deterministic set-

ting, the lower bounds of Horn (2006) (when d⋆ = d/2) and of Bubeck et al. (2011) (for any d⋆) are of the form

infA supf∈Gd⋆
ζ(A, f, ε) ≥ ψd⋆(ε), where Gd⋆ is the subset of L-Lipschitz functions with near-optimality dimension

at most d⋆.

On the contrary, our instance-dependent lower bound (4) quantifies the minimum number of evaluations to certify

an ε-optimal point for each function f ∈ FL. Our proof relies on a local worst-case analysis in the same spirit as for

distribution-dependent lower bounds in stochastic multi-armed bandits (see, e.g., Theorem 16.2 in Lattimore and Szepesvári

2020), yet for continuous instead of finite action sets. We believe this lower bound technique should prove useful for

other learning tasks.

1.4 Recurring Notation

This short section contains a summary of all the notation that we use in the paper and can be used by the reader for

easy referencing. We denote the set of positive integers {1, 2, . . .} by N
∗ and let N := N

∗ ∪ {0}. For all n ∈ N
∗, we

denote by [n] the set of the first n integers {1, . . . , n}. We denote the Lebesgue measure of a (Lebesgue-measurable)
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set E by vol(E) and refer to it simply as its volume. For all ρ > 0 and x ∈ R
d, we denote by Bρ(x) the closed ball

with radius ρ centered at x, with respect to the arbitrary norm ‖·‖ that is fixed throughout the paper. We also write Bρ

for the ball with radius ρ centered at the origin and denote by vρ its volume.

Lip(f) denotes the smallest Lipschitz constant of our target L-Lipschitz function f : X → R. The set of its ε-
optimal points is denoted by Xε := {x ∈ X : max(f) − f(x) ≤ ε}, its complement (i.e., the set of ε-suboptimal

points) by X c
ε , and for all 0 ≤ a < b, the (a, b]-layer (i.e., the set of points that are b-optimal but a-suboptimal) by

X(a,b] := X
c
a ∩Xb =

{
x ∈ X : a < f(x⋆)− f(x) ≤ b

}
. Since f is L-Lipschitz, every point in X is ε0-optimal, with

ε0 defined by ε0 := Lmaxx,y∈X ‖x− y‖. In other words, Xε0 = X . For this reason, without loss of generality, we

will only consider values of accuracy ε smaller than or equal to ε0.

For any bounded set E ⊂ R
d and all r > 0, the r-packing number of E is the largest cardinality of an r-packing

ofE, that is,N (E, r) := sup
{
k ∈ N

∗ : ∃x1, . . . ,xk ∈ E,mini6=j ‖xi − xj‖ > r
}

if E is nonempty, zero otherwise;

the r-covering number of E is the smallest cardinality of an r-covering of E, i.e., M(E, r) := min
{
k ∈ N

∗ :

∃x1, . . . ,xk ∈ R
d, ∀x ∈ E, ∃i ∈ [k], ‖x− xi‖ ≤ r

}
if E is nonempty, zero otherwise. Well-known and useful

properties of packing (and covering) numbers are recalled in Section A of the Supplementary Material.

2 Warmup: Certified DOO Has Sample Complexity SC(f, ε)

In this section, we start by adapting the well-known DOO algorithm (Perevozchikov, 1990; Munos, 2011) to the

certified setting. We then bound its sample complexity by the quantity SC(f, ε) defined in Eq. (5). In passing, we

slightly improve the packing arguments used by Munos (2011) in the non-certified setting (Supplementary Material,

Section E). In Section 4, we will prove that this rate is optimal (up to logarithmic factors) for certified algorithms.

The certified DOO algorithm (c.DOO, Algorithm 1) is defined for a fixed K ∈ N
⋆, by an infinite sequence of

subsets of X of the form (Xh,i)h∈N,i=0,...,Kh−1, called cells. For each h ∈ N, the cells Xh,0, . . . , Xh,Kh−1 are

non-empty, pairwise disjoint, and their union contains X . The sequence (Xh,i)h∈N,i=0,...,Kh−1 is associated with

a K-ary tree in the following way. For any h ∈ N and j ∈ {0, . . . ,Kh − 1}, there exist K distinct i1, . . . , iK ∈
{0, . . . ,Kh+1 − 1} such that Xh+1,i1 , . . . , Xh+1,iK form a partition of Xh,j . We call (h + 1, i1), . . . , (h + 1, iK)
the children of (h, j). To each cell Xh,i (h ∈ N, i ∈ {0, . . . ,Kh − 1}) is associated a representative xh,i ∈ Xh,i,

which can be thought of as the “center” of the cell. We assume that feasible cells have feasible representatives, i.e.,

that Xh,i ∩ X 6= ∅ implies xh,i ∈ X . The two following assumptions prescribe a sufficiently good behavior of the

sequences of cells and representatives.

Assumption 2. There exist two positive constants δ ∈ (0, 1) and R > 0 such that, for any cell Xh,i (h ∈ N,

i = 0, . . . ,Kh − 1) and all u,v ∈ Xh,i, it holds that ‖u− v‖ ≤ Rδh.

Assumption 3. There exists ν > 0 such that, with δ as in Assumption 2, for any h ∈ N, i = 0, . . . ,Kh − 1, h′ ∈ N,

i′ = 0, . . . ,Kh′

− 1, with (h, i) 6= (h′, i′), ‖xh,i − xh′,i′‖ ≥ νδmax(h,h′).

The classic Assumption 2 is simply stating that diameters of cells decrease geometrically with the depth of the

tree. Assumption 3, which is key for our improved analysis, is slightly stronger than the corresponding one in Munos

(2011), yet very easy to satisfy. Indeed, one can prove that for any compact X , it is always possible to find a sequence

of cells and representatives satisfying Assumptions 2 and 3. For instance, if X is the unit hypercube [0, 1]d and ‖·‖ is

the supremum norm ‖·‖∞, we can define cells by bisection, letting K = 2d, Xh,i be a hypercube of edge-length 2−h,

and xh,i be its center (for h ∈ N and i = 0, . . . , 2dh − 1). In this case, Assumptions 2 and 3 are satisfied with R = 1
and δ = ν = 1/2.

Our certified version of the DOO algorithm (c.DOO, Algorithm 1) maintains a set of indices of active cells Ln
throughout rounds n. During each iteration k, it selects the index of the most promising active cell (h⋆, i⋆) (Line 5)

and splits it into its K children L+ (Line 6). Then, it sequentially picks the representatives of the cells corresponding

to each of these children (Line 10), observes the value of the target function f at these points (Line 11), recommends

the point with the highest observed value of f (Line 12), and outputs a certificate ξn =
(
f(xh⋆,i⋆)+LRδh

⋆)
− f(x⋆

n)
(Line 13) that is the difference between an upper bound on f and the currently recommended value f(x⋆

n). In the

meantime, all children in L+ are added to the set of active indices Ln (Line 9), and the current iteration is concluded

by removing (h⋆, i⋆) from Ln (Line 14), now that it has been replaced by its refinement L+.
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Algorithm 1: Certified DOO (c.DOO)

input: X , L, K , δ, R, cells (Xh,i)h∈N,i=0,...,Kh−1, representatives (xh,i)h∈N,i=0,...,Kh−1

initialization: let n← 1 and L1 ← {(0, 0)}
1 pick the first query point x1 ← x0,0

2 observe the value f(x1)
3 output recommendation x

⋆
1 ← x1 and error certificate ξ1 ← LR

4 for iteration k = 1, 2, . . . do

5 let (h⋆, i⋆) ∈ argmax(h,i)∈Ln

{
f(xh,i) + LRδh

}
// ties broken arbitrarily

6 let L+ be the set of the K children of (h⋆, i⋆)
7 for each child (h⋆ + 1, j) ∈ L+ of (h⋆, i⋆) do

8 if Xh⋆+1,j ∩ X 6= ∅ then

9 let n← n+ 1 and Ln ← Ln−1 ∪ {(h⋆ + 1, j)}
10 pick the next query point xn ← xh⋆+1,j

11 observe the value f(xn)
12 output a recommendation x

⋆
n ∈ argmax

x∈{x1,...,xn}f(x)

13 output the error certificate ξn ← f(xh⋆,i⋆) + LRδh
⋆

− f(x⋆
n)

14 remove (h⋆, i⋆) from Ln

Remark 1. The running-time of c.DOO (ignoring the cost of calling the function f ) is driven by the computation of

the recommendationx⋆
n ∈ argmax

x∈{x1,...,xn}f(x) (Line 12) and the search of the index of the most promising active

cell (h⋆, i⋆) ∈ argmax(h,i)∈Ln
{f(xh,i)+LRδh} (Line 5). The recommendation x

⋆
n can be computed sequentially in

constant time (by comparing the new value f(xn) with the current maximum). In Line 5, the leaf (h⋆, i⋆) to be split

at iteration k can be computed sequentially in logarithmic time (using a max-heap structure). Therefore, the running

time of c.DOO is of order n log(n) in the number n of evaluations of the function f .

The next proposition shows that the sample complexity of the certified DOO algorithm is upper bounded (up to

constants) by the instance-dependent quantity SC(f, ε) introduced in Eq. (5).

Proposition 1. If Assumptions 2 and 3 hold, then Algorithm 1 is a certified algorithm and letting a := 1+K
(
1ν/R≥1+

1ν/R<1(4R/ν)
d
)
, its sample complexity satisfies, for all Lipschitz functions f ∈ FL and any accuracy ε ∈ (0, ε0],

σ(c.DOO, f, ε) ≤ aSC(f, ε) .

The proof is postponed to Section B of the Supplementary Material and shares some arguments with those of

Perevozchikov (1990) and Munos (2011), originally written for the non-certified setting. The key change is to partition

the values of f , instead of its domainX at any depth h of the tree (see Munos 2011), when counting the representatives

selected at all levels. The idea of using layers X(εi, εi−1] was already present in Kleinberg et al. (2008, 2019) and

Bouttier et al. (2020) for more computationally challenging algorithms (see discussion in Section 1.3).

3 Characterization of SC(f, ε)

Earlier, we mentioned that the quantity SC(f, ε) introduced in Eq. (5) upper bounds the sample complexity of several

certified algorithms, such as c.DOO or Piyavskii-Shubert. In this section, we provide a characterization of this quantity

in terms of a much cleaner and compact integral expression.

This result is inspired by Hansen et al. (1991), that in dimension d = 1, derive an elegant bound on the sample

complexity σ(PS, f, ε) of the certified Piyavskii-Shubert algorithm for any Lipschitz function f and accuracy ε. They

proved that σ(PS, f, ε) is upper bounded by
∫ 1

0
dx/(f(x⋆) − f(x) + ε) up to constants. However, the authors rely

heavily on the one-dimensional assumption and the specific form of the Piyavskii-Shubert algorithm in this setting,

stating that the task of “Extending the results of this paper to the multivariate case appears to be difficult”. In this

section, we show an equivalence between SC(f, ε) and this type of integral bound in any dimension d. Putting this
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together with a recent result of Bouttier et al. (2020) (which proves that up to constants, σ(PS, f, ε) ≤ SC(f, ε))
solves the long-standing problem raised by Hansen et al. (1991) three decades ago.

To tame the wild spectrum of shapes that compact subsets may have, we will assume that X satisfies the following

mild geometric assumption. At a high level, it says that a constant fraction of each (sufficiently small) ball centered

at a point in X is included in X . This removes sets containing isolated points or cuspidal corners and includes most

domains that are typically used, such as non-degenerate polytopes, ellipsoids, finite unions of them, etc. This natural

assumption is weaker than the classic rolling ball assumption from the statistics literature (Cuevas et al., 2012; Walther,

1997) and has already been proved useful in the past (Hu et al., 2020).

Assumption 4. There exist two constants r0 > 0, γ ∈ (0, 1] such that, for any x ∈ X and all r ∈ (0, r0), vol
(
Br(x)∩

X
)
≥ γvr.

We can now state the main result of this section. Its proof relies on some additional technical results that are

deferred to the Supplementary Material.

Theorem 1. For any Lipschitz function f ∈ FL, if Assumption 4 holds with r0 > ε0/2L, γ ∈ (0, 1],2 then there exist

c, C > 0 (e.g., c := 1/v1/L and C := 1/(γv1/128L)) such that, for all ε ∈ (0, ε0],

c

∫

X

dx
(
f(x⋆)− f(x) + ε

)d ≤ SC(f, ε) ≤ C

∫

X

dx
(
f(x⋆)− f(x) + ε

)d .

Proof. Fix any ε ∈ (0, ε0] and recall that mε :=
⌈
log2(ε0/ε)

⌉
, εmε

:= ε, and for all k ≤ mε − 1, εk := ε02
−k.

Partition the domain of integration X into the followingmε + 1 sets: the set of ε-optimal points Xε and the mε layers

X(εk, εk−1], for k ∈ [mε]. We begin by proving the first inequality:

∫

X

dx
(
f(x⋆)− f(x) + ε

)d ≤
vol(Xε)

εd
+

mε∑

k=1

vol
(
X(εk, εk−1]

)

(εk + ε)d

≤
M
(
Xε,

ε
L

)
· v1
(
ε
L

)d

εd
+

mε∑

k=1

M
(
X(εk, εk−1],

εk
L

)
· v1
(
εk
L

)d

εdk

≤
v1
Ld

(
N
(
Xε,

ε

L

)
+

mε∑

k=1

N
(
X(εk, εk−1],

εk
L

))
,

where the first inequality follows by lower bounding f(x⋆) − f with its infimum on the partition, the second one by

dropping ε > 0 from the second denominator and upper bounding the volume of a set with the volume of the balls of

a smallest εk/L-cover, and the last one by the fact that covering numbers are always smaller than packing numbers (we

recall this known result in the Supplementary Material, Lemma 1, Eq. (8)). This proves the first part of the theorem.

For the second one, we have

∫

X

dx
(
f(x⋆)− f(x) + ε

)d ≥
vol(Xε)

(ε+ ε)d
+

mε∑

k=1

vol
(
X(εk, εk−1]

)

(εk−1 + ε)d

≥
1

2d
vol(Xε)

εd
+

1

4d

mε∑

k=1

vol
(
X(εk, εk−1]

)

εdk
≥

1

32d


vol(X2ε)

εd
+

mε∑

k=1

vol
(
X( 1

2
εk, 2εk−1]

)

εdk−1




≥
N
(
Xε,

ε
L

)
vol
(

ε
2LB1

)

(32 ε)d/γ
+

mε∑

k=1

N
(
X(εk, εk−1],

εk
L

)
vol
(
εk
2LB1

)

(32 εk−1)d/γ

≥ γv1/64LN
(
Xε,

ε

L

)
+ γv1/128L

mε∑

k=1

N
(
X(εk, εk−1],

εk
L

)
,

2We actually prove a stronger result. The first inequality holds more generally for any f that is L-Lipschitz around a maximizer and Lebesgue-

measurable, and does not require X to satisfy Assumption 4.
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where the first inequality follows by upper bounding f(x⋆) − f with its supremum on the partition, the second one

by ε ≤ εk−1 (for all k ∈ [mε + 1]) and εk−1 ≤ 2εk (for all k ∈ [mε]), the third one by lower bounding the sum

of disjoint layers with that of overlapping ones (proved in the Supplementary Material, Lemma 3), and the fourth

one by the elementary inclusions X2ε ⊇ X 3
2
ε and X( 1

2
εk, 2εk−1] ⊇ X( 1

2
εk,

3
2
εk−1] (for all k ∈ [mε]) followed by a

relationship between packing numbers and volumes (proved in the Supplementary Material, Proposition 4) that holds

under Assumption 4.

4 Optimality of SC(f, ε)

We begin this section by proving an f -dependent lower bound on the sample complexity of certified algorithms that

matches the upper bound SC(f, ε) on the sample complexity of the c.DOO algorithm (Proposition 1), up to a log(1/ε)
term.

The proof of this result differs from those of traditional worst-case lower bounds. The idea is to build a local worst-

case analysis, introducing a weaker notion of sample complexity τ that is smaller than σ(A, f, ε). Then we further

lower bound this quantity by finding adversarial perturbations of the target function f with the following opposing

properties. First, these perturbations have to be similar enough to f so that runningA on them would return the same

recommendations for sufficiently many rounds. Second, they have to be different enough from f so that enough rounds

have to pass before being able to certify sub-ε accuracy. We recall that mε :=
⌈
log2(ε0/ε)

⌉
.

Theorem 2. The sample complexity of any certified algorithm A satisfies

σ(A, f, ε) >
c

1 +mε
SC(f, ε)

for any Lipschitz function f ∈ FL and all ε ∈ (0, ε0], where c := 2−2
(
2−7
(
1− Lip(f)/L

))d
.

Proof. Fix any f ∈ FL and an accuracy ε ∈ (0, ε0]. We begin by defining the tightest error certificate that a certified

algorithm A could return based on its first n observations of f . Formally,

errn(A) := sup
{
max(g)− g(x⋆

n) : g is L-Lipschitz and f(x) = g(x) for all x ∈ {x1, . . . ,xn}
}

where xi = xi(A, f) and x
⋆
i = x

⋆
i (A, f) are the query and recommendation points chosen by A at time i when run

on f (to lighten the notation, we omit the explicit dependencies on A and f of xi and x
⋆
i ). In particular, max(f) −

f(x⋆
n) ≤ errn(A). Based on this quantity, we define a corresponding notion of optimal sample complexity τ as

the smallest number of rounds n that the best certified algorithm A′ needs in order to guarantee that errn(A
′) ≤ ε.

Formally,

τ := min
{
n ∈ N

∗ : infA′

(
errn(A

′)
)
≤ ε
}
, (7)

where the infimum is over all certified algorithms A′. It is immediate to prove that τ is finite, by considering an

algorithm that queries a dense sequence of points (independently of the observed function values) and outputs a

recommendation that maximizes the observed values.

Crucially, τ lower bounds the sample complexity σ(A, f, ε) of any certified algorithm A. At a high level, this

makes intuitive sense because τ guarantees a weaker property: that the best certificate of the best algorithm is small,

while σ(A, f, ε) controls the certificate of the specific algorithm A. We defer a formal proof of this statement to the

Supplementary Material, Section D.1. Since σ(A, f, ε) ≥ τ , to prove the theorem it is sufficient to show that

τ >
c

1 +mε
SC(f, ε) .

Let K := 16L/
(
L− Lip(f)

)
. If SC(f, ε)/(1 +mε) < 3(8K)d, then τ ≥ 1 > 3/4 > cSC(f, ε)/(1 +mε). Assume

from now on that SC(f, ε)/(1 +mε) ≥ 3(8K)d.

The idea now is to upper bound the sum of 1+mε packing numbers that define SC(f, ε) in (5) with the largest one

multiplied by 1+mε. This way, SC(f, ε)/(1 +mε) can be controlled by (an upper bound of) the largest summand in
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SC(f, ε). Let ε̃ be the scale achieving the maximum in (5), that is

ε̃ =

{
ε , ifN

(
Xε,

ε
L

)
≥ maxi∈{1,...,mε}N

(
X(εi, εi−1],

εi
L

)
,

εi⋆−1 , otherwise, where i⋆ ∈ argmaxi∈{1,...,mε}N
(
X(εi, εi−1],

εi
L

)
.

Since N (Xε, ε/L) ≤ N (Xε, ε/2L) and N
(
X(εi, εi−1], εi/L

)
≤ N

(
X εi−1

, εi−1/2L
)
, we then have SC(f, ε) ≤

(mε + 1)N (Xε̃, ε̃/2L). Let now n ≤ cSC(f, ε)/(1 + mε). We then have n ≤ cN (Xε̃, ε̃/2L). From a known

property of packing numbers (Supplementary Material, Lemma 2),

N
(
Xε̃,

Kε̃
L

)
≥
(

1
8K

)d
N
(
Xε̃,

ε̃
2L

)
≥
(

1
8K

)d SC(f,ε)
mε+1 ≥ 3 ,

by our initial assumption. Then we have n ≤ c(8K)dN (Xε̃, Kε̃/L). Since c(8K)d = 1/4, we thus obtain n ≤
N (Xε̃, Kε̃/L)− 2.

Consider a certified algorithm A for L-Lipschitz functions. Fix a (Kε̃/L)-packing x̃1, . . . , x̃N of Xε̃ with cardi-

nality N = N (Xε̃, Kε̃/L). Then the open balls of centers x̃1, . . . , x̃N and radius Kε̃/2L are disjoint and two of

them, with centers, say, x̃1 and x̃2, do not contain any of the points x1, . . . ,xn queried by A when it is run on f . Let,

for x ∈ X ,

gε̃(x) :=
(
8ε̃− 16L

K ‖x− x̃1‖
)
I
{
x ∈ X ∩BKε̃/2L(x̃1)

}
.

Then gε̃(x) is 16L/K = L − Lip(f) Lipschitz. Hence f + gε̃ and f − gε̃ are L-Lipschitz. Note that f , f + gε̃ and

f − gε̃ coincide on the points x1, . . . ,xn that A queries when it is run on f . As a consequence, A queries the same

points and returns the same recommendation x
⋆
n when it is run on any of the three functions f , f + gε̃, and f − gε̃.

Consider first the case x
⋆
n ∈ B(x̃1,Kε̃/4L). Then, we have, by definition of gε̃ and the fact that x̃2 ∈ Xε̃,

f(x̃2)− gε̃(x̃2)− f(x⋆
n) + gε̃(x

⋆
n) ≥ −ε̃+ 8ε̃− 16L

K
Kε̃
4L = 3ε̃.

Now consider the case x
⋆
n /∈ B(x̃1,Kε̃/4L). Then, we have, by definition of gε̃ and the fact that x̃1 ∈ Xε̃,

f(x̃1) + gε̃(x̃1)− f(x⋆
n)− gε̃(x

⋆
n) ≥ −ε̃+ 8ε̃− 8ε̃+ 16L

K
Kε̃
4L = 3ε̃.

Therefore, in both cases errn(A) ≥ 3ε̃ > ε. Repeating the same construction from any other certified algorithm

A′, we obtain that infA′

(
errn(A

′)
)
> ε. Since this has been shown for any n ≤ cSC(f, ε)/(1 +mε), by definition of

τ we can conclude that τ > cSC(f, ε)/(1 +mε).

Putting together Proposition 1 and Theorem 2 shows that the sample complexity of c.DOO applied to any Lipschitz

function f ∈ FL is of order SC(f, ε) and no certified algorithm A can do better, not even if A knows f exactly. This

is a striking difference with the classical non-certified setting in which the best algorithm for each fixed function f has

trivially sample complexity 1. In particular, for non-pathological sets X , combining Proposition 1 and Theorem 2 with

Theorem 1 gives the following compact characterization of the optimal sample complexity of certified algorithms.

Theorem 3. LetL > 0 and suppose that Assumption 4 holds with r0 > ε0/2L. Then, there exist two constants c′, C > 0
such that, for all Lipschitz functions f ∈ FL and any accuracy ε ∈ (0, ε0], letting c := c′(1 − Lip(f)/L)d/(1 +
log(ε0/ε)), the optimal sample complexity of any certified algorithm A satisfies

c

∫

X

dx
(
f(x⋆)− f(x) + ε

)d ≤ inf
A
σ(A, f, ε) ≤ σ(c.DOO, f, ε) ≤ C

∫

X

dx
(
f(x⋆)− f(x) + ε

)d .

For the sake of completeness, we conclude the section by briefly discussing the boundary case in which L =
Lip(f), i.e., when the best Lipschitz constant of the target function is known exactly by the algorithm. As we men-

tioned earlier, this case is not of great relevance in practice, as one can hardly think of a scenario in which f is

unknown but the learner has somehow perfect knowledge of its smallest Lipschitz constant Lip(f). It could, however,

be of some theoretical interest.

The dependence of the sample complexity on 1 − L/Lip(f) in Theorem 2 suggests that the problem becomes

easier the closer L gets to Lip(f), and, when L = Lip(f), constant sample complexity could be achieved. The next

result gives some formal evidence for this intuition in dimension d ≥ 2.

Proposition 2. Let d ≥ 2, X := B1, and ‖·‖ be a norm. The certified Piyavskii-Shubert algorithm PS with initial

guess x1 := 0 is a certified algorithm satisfying, for the L-Lipschitz function f := L ‖·‖ and any ε ∈ (0, ε0),
σ(PS, f, ε) = 2≪ c/εd−1 ≤ SC(f, ε), for some constant c > 0.
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For a full proof and a refresher on the PS algorithm, see Section D.2 of the Supplementary Material. The next

result shows that, surprisingly, the sample complexity in dimension d = 1 behaves differently. In this case, SC(f, ε)
remains a lower bound even when L = Lip(f). More precisely, the following proposition holds. Its proof is deferred

to Section D.3 of the Supplementary Material.

Proposition 3. If d = 1, let c = 2−8/3. Then, the sample complexity of any certified algorithm A satisfies, for any

L-Lipschitz function f and all ε ∈ (0, ε0], σ(A, f, ε) > cSC(f, ε)/(1 +mε).

5 Conclusions

In this paper, we studied the sample complexity of certified zeroth-order Lipschitz optimization. We first showed

that the sample complexity of the computationally tractable c.DOO algorithm scales with the quantity SC(f, ε) in-

troduced in Eq. (5) (Proposition 1). We then characterized this quantity in terms of the compact integral expression∫
X
dx/(max(f) − f(x) + ε)d (Theorem 1), solving as a corollary a long-standing open problem in Hansen et al.

(1991). Finally we proved an instance-dependent lower bound (Theorem 2) showing that this integral characterizes

(up to log factors) the optimal sample complexity of certified zeroth-order Lipschitz optimization in any dimensions

d ≥ 1 whenever the smallest Lipschitz constant of f is not known exactly by the algorithm (Theorem 3).
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Instance-Dependent Bounds for Zeroth-order Lipschitz

Optimization with Error Certificates

Supplementary Material

A Useful Results on Packing and Covering

For the sake of completeness, we recall the definitions of packing and covering numbers, as well as some known useful

results.

Definition 1. Fix any norm ‖·‖. For any non-empty and bounded subset E of Rd and all r > 0,

• the r-packing number of E is the largest cardinality of an r-packing of E, i.e.,

N (E, r) := sup
{
k ∈ N

∗ : ∃x1, . . . ,xk ∈ E,mini6=j ‖xi − xj‖ > r
}
;

• the r-covering number of E is the smallest cardinality of an r-covering of E, i.e.,

M(E, r) := min
{
k ∈ N

∗ : ∃x1, . . . ,xk ∈ R
d, ∀x ∈ E, ∃i ∈ [k], ‖x− xi‖ ≤ r

}
.

We also defineN (∅, r) =M(∅, r) = 0 for all r > 0.

Covering numbers and packing numbers are closely related. In particular, the following well-known inequalities

hold—see, e.g., (Wainwright, 2019, Lemmas 5.5 and 5.7, with permuted notation ofM and N ).4

Lemma 1. Fix any norm ‖·‖. For any bounded set E ⊂ R
d and all r > 0,

N (E, 2r) ≤M(E, r) ≤ N (E, r) . (8)

Furthermore, for any δ > 0 and all r > 0,

M (Bδ, r) ≤

(
1 + 2

δ

r
Ir<δ

)d

. (9)

We now state a known lemma about packing numbers at different scales. This is the go-to result for rescaling

packing numbers.

Lemma 2. Fix any norm ‖·‖. For any boundedE ⊂ R
d and all 0 < r1 < r2 <∞, we have

N (E, r1) ≤

(
4
r2
r1

)d

N (E, r2) .

Proof. Fix any bounded E ⊂ R
d and 0 < r1 < r2 < ∞. Consider an r1-packing F = {x1, . . . ,xN1

} of E with

cardinalityN1 = N (E, r1). Consider then the following iterative procedure. Let F0 = F and initialize k = 1. While

Fk−1 is non-empty, let yk be any point in Fk−1, let Fk be obtained from Fk−1 by removing the points at ‖·‖-distance

less or equal to r2 from yk (including yk itself), and increase k by one. Then this procedure yields an r2-packing of

E with cardinality equal to the number of steps (the final value kfin of k). At each step k, the balls with radius r1/2
centered at points that are removed at this step are included in the ball with radius 2r2 centered at yk. By a volume

argument, then, the number of removed points at each step is smaller than or equal to v2r2/vr1/2 = (4r2/r1)
d. Hence

the total number of steps kfin is greater than or equal toN (E, r1) (r1/4r2)
d. This concludes the proof sinceN (E, r2)

is greater than or equal to the total number of steps kfin.

4The definition of r-covering number of a subset E of Rd implied by (Wainwright, 2019, Definition 5.1) is slightly stronger than the one used

in our paper, because elements x1, . . . , xN of r-covers belong to E rather than just Rd. Even if we do not need it for our analysis, Inequality (9)

holds also in this stronger sense.
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B Missing Proofs of Section 2

In Section 2, we introduced a certified version of the DOO algorithm. To prove Proposition 1, we adapt and slightly

improve (see Remark 2) some of the arguments in Munos (2011), showing that the sample complexity of c.DOO is

upper bounded (up to constants) by SC(f, ε), defined in Eq. (5).

Proof of Proposition 1. Recall that f is an L-Lipschitz function with a global maximizer x⋆.

Let us first show that Algorithm 1 is indeed a certified algorithm, that is, f(x⋆)− f(xn) ≤ ξn for all n ≥ 1. Note

that f(x⋆)− f(x1) ≤ LR = ξ1, since f is L-Lipschitz and R bounds the diameter of X0,0 ⊃ X . So, take any n ≥ 2.

Consider the state of the algorithm after exactly n evaluations of f . Let (h⋆, i⋆) correspond to the last time that Line 5

was reached and let m be the total number of evaluations of f made up to that time (m ≤ n). Then the error certificate

is ξn = f(xh⋆,i⋆) + LRδh
⋆

− f(x⋆
n). By induction, it is straightforward to show that the union of the cells in Lj

contains X at all steps j ∈ N
⋆. Therefore, the global maximizer x⋆ belongs to a cell Xh̄,̄i with (h̄, ī) ∈ Lm. We have,

using first Line 5 and then Assumption 2 and that f is L-Lipschitz,

f(xh⋆,i⋆) + LRδh
⋆

≥ f(xh̄,̄i) + LRδh̄

≥ f(x⋆)− LRδh̄ + LRδh̄

= f(x⋆) . (10)

This shows ξn ≥ f(x⋆)− f(x⋆
n). Hence Algorithm 1 is a certified algorithm.

We now show the upper bound on σ(c.DOO, f, ε). Consider the infinite sequence ((h⋆ℓ , i
⋆
ℓ ))ℓ∈N∗ of the leaves that

are successively selected at Line 5 of Algorithm 1. For any leaf (h, i) ∈ ((h⋆ℓ , i
⋆
ℓ))ℓ∈N∗ , let Nh,i be the number of

evaluations of f made by Algorithm 1 until the leaf (h, i) is selected at Line 5. Define then the stopping time

Iε = inf

{
ℓ ∈ N

∗; f(xh⋆
ℓ
,i⋆

ℓ
) + LRδh

⋆
ℓ ≤ max

i∈[Nh⋆
ℓ
,i⋆
ℓ
]
f(xi) + ε

}

which corresponds to the first iteration when the event

f(xh⋆,i⋆) + LRδh
⋆

≤ max
i∈[Nh⋆,i⋆ ]

f(xi) + ε (11)

holds at Line 5. Consider the N -th evaluation of f with N = Nh⋆
Iε

,i⋆
Iε

+ 1, that is, the first evaluation of f after the

event (11) holds for the first time. Then we have, from (11) with (h⋆, i⋆) = (h⋆Iε , i
⋆
Iε
),

f(xh⋆,i⋆) + LRδh
⋆

≤ max
i∈[Nh⋆,i⋆ ]

f(xi) + ε ≤ max
i∈[N ]

f(xi) + ε,

and thus ξN ≤ ε. Since by definition σ(c.DOO, f, ε) = min{n ∈ N
∗ : ξn ≤ ε}, we have

σ(c.DOO, f, ε) ≤ N = Nh⋆
Iε

,i⋆
Iε

+ 1 ≤ 2 +K(Iε − 1) . (12)

We now bound Iε − 1 from above. Assume without loss of generality that Iε − 1 ≥ 1 and consider the sequence

(h⋆1, i
⋆
1), . . . , (h

⋆
Iε−1, i

⋆
Iε−1) corresponding to the first Iε − 1 times the DOO algorithm went through Line 5. Let Eε

be the corresponding finite set {xh⋆
1 ,i

⋆
1
, . . . ,xh⋆

Iε−1
,i⋆

Iε−1
}. Recall that εmε

:= ε and εi := ε02
−i for i < mε, with

ε0 := Lmaxx,y∈X ‖x− y‖. Recall also that Xε := {x ∈ X : max(f) − f(x) ≤ ε} and for all 0 ≤ a < b,
X(a,b] :=

{
x ∈ X : a < f(x⋆) − f(x) ≤ b

}
. Since any x ∈ X is ε0-optimal, then it either belongs to Xε or one of

the layers X(εi,εi−1]. Thus we have Eε ⊂ Xε

⋃(⋃mε

i=1 X(εi, εi−1]

)
, so that

Iε − 1 = card(Eε) ≤ card (Eε ∩ Xε) +

mε∑

i=1

card
(
Eε ∩ X(εi, εi−1]

)
. (13)

Let Nε,mε+1 be the cardinality of Eε ∩ Xε. For i = 1, . . . ,mε, let Nε,i be the cardinality of Eε ∩ X(εi, εi−1].
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Note that the arguments leading to (10) imply that for xh,j ∈ Eε,

xh,j ∈ XLRδh . (14)

Consider two distinct xh,j ,xh′,j′ ∈ Eε ∩ X(εi, εi−1]. Then, from Assumption 3 and (14), we obtain

||xh,j − xh′,j′ || ≥ νδ
max(h,h′) >

νεi
LR

.

Hence, by definition of packing numbers, we have

Nε,i ≤ N
(
X(εi, εi−1],

νεi
LR

)
.

Using now Lemma 2 (Section A), we obtain

Nε,i ≤

(
1ν/R≥1 + 1ν/R<1

(
4R

ν

)d
)
N
(
X(εi, εi−1],

εi
L

)
. (15)

Let now xh⋆
ℓ
,i⋆

ℓ
∈ Eε ∩ Xε, with ℓ ∈ {1, . . . , Iε − 1}. The leaf (h⋆ℓ , i

⋆
ℓ) was selected when the algorithm went

through Line 5 for the ℓ-th time. By definition of Iε, the event (11) does not hold when (h⋆, i⋆) = (h⋆ℓ , i
⋆
ℓ ) and thus

f(xh⋆
ℓ
,i⋆

ℓ
) + LRδh

⋆
ℓ > max

i∈[Nh⋆
ℓ
,i⋆
ℓ
]
f(xi) + ε ≥ f(xh⋆

ℓ
,i⋆

ℓ
) + ε .

This implies that LRδh
⋆
ℓ > ε and thus

δh
⋆
ℓ >

ε

LR
.

Now consider two distinct xh,j,xh′,j′ ∈ Eε ∩ Xε. Then, from Assumption 3, we obtain

||xh,j − xh′,j′ || ≥ νδ
max(h,h′) >

νε

LR
.

Hence, we have

Nε,mε+1 ≤ N
(
Xε,

νε

LR

)
.

Using now Lemma 2 (Section A), we obtain

Nε,mε+1 ≤

(
1ν/R≥1 + 1ν/R<1

(
4R

ν

)d
)
N
(
Xε,

ε

L

)
.

Combining (12) and (13) with (15) and the last inequality concludes the proof.

Remark 2. The analysis of the DOO algorithm in Munos (2011, Theorem 1) does not address the certified setting.

The previous proof adapts this analysis to the certified setting and, in passing, slightly improves some of the arguments.

Indeed, when counting the cell representatives that are selected, Munos (2011, Theorem 1) partitions the domain X
at any depth h of the tree, yielding bounds involving packing numbers of the form N

(
Xεk−1

, εk
L

)
, k = 1, . . . ,mε.

In contrast we partition the values of f , yielding bounds involving the smaller packing numbers N
(
X(εk,εk−1],

εk
L

)
,

k = 1, . . . ,mε (and N
(
Xε,

ε
L

)
that is specific to the certified setting). This improvement also enables us to slightly

refine the bound of Munos (2011, Theorem 1) in the non-certified setting, see Remark 4 in Section E. We also refer to

this remark for more details on the two partitions just discussed.

Remark 3. The bound of Proposition 1, based on Eq. (5), is built by partitioning [0, ε0] into the mε + 1 sets

[0, ε], (ε, εmε−1], (εmε−1, εmε−2], . . . , (ε1, ε0] whose lengths are sequentially doubled (except from [0, ε] to (ε, εmε−1]
and from (ε, εmε−1] to (εmε−1, εmε−2]). As can be seen from the proof of Proposition 1, more general bounds could

be obtained, based on more general partitions of [0, ε0]. The benefits of the present partition are the following. First,

except for [0, ε], it considers sets whose upper values are no more than twice the lower values, which controls the

magnitude of their corresponding packing numbers in Eq. (5), at scale the lower values. Second, the number of sets

in the partition is logarithmic in 1/ε which controls the sum in Eq. (5). Finally, the upper bound is then tight up to

a logarithmic factor for functions f ∈ FL, as proved in Section 4. Note also that the same generalization could be

applied in the non-certified setting, see Section E.
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C Missing Proofs of Section 3

We now prove a result on the sum of volumes of overlapping layers that is used in the proof of Theorem 1.

Lemma 3. If f is L-Lipschitz, fix ε > 0 and recall that mε :=
⌈
log2(ε0/ε)

⌉
, εmε

:= ε, and for all k ≤ mε − 1,

εk =: ε02
−k. Then, there exist c, C > 0 (e.g., c = 1/5 and C := 2 · 16d) such that, for all ε ∈ (0, ε0],

vol
(
X2ε

)

εd
+

m∑

k=1

vol
(
X( 1

2
εk, 2εk−1]

)

εdk−1

≤ 8d

(
vol(Xε)

εd
+

m∑

i=1

vol
(
X(εk, εk−1]

)

εdk−1

)
.

Proof. To avoid clutter, we denote mε simply by m. The left hand side can be upper bounded by

vol
(
Xε

)
+ vol

(
X(εm, εm−1]

)
+ vol

(
X(εm−1, εm−2]

)

εd

+

m−2∑

k=1

vol
(
X(εk+1, εk]

)
+ vol

(
X(εk, εk−1]

)
vol
(
X(εk−1, εk−2]

)

εdk−1

+
vol (Xε) + vol

(
X(εm, εm−1]

)
+ vol

(
X(εm−1, εm−2]

)
+ vol

(
X(εm−2, εm−3]

)

εdm−2

+
vol (Xε) + vol

(
X(εm, εm−1]

)
+ vol

(
X(εm−1, εm−2]

)

εdm−1

≤ 3
vol
(
Xε

)

εd
+ (2d + 2)

vol
(
X(εm, εm−1]

)

εdm−1

+ (4d + 2d + 1)
vol
(
X(εm−1, εm−2]

)

εdm−2

+
1

2d

m−1∑

k=2

vol
(
X(εk, εk−1]

)

εdk−1

+

m−2∑

k=1

vol
(
X(εk, εk−1]

)

εdk−1

+ 2d
m−3∑

k=1

vol
(
X(εk, εk−1]

)

εdk−1

= 3
vol
(
Xε

)

εd
+

vol
(
X(εm, εm−1]

)

εdm−1

+ 4d
vol
(
X(εm−1, εm−2]

)

εdm−2

+
1

2d

m−1∑

k=2

vol
(
X(εk, εk−1]

)

εdk−1

+

m∑

k=1

vol
(
X(εk, εk−1]

)

εdk−1

+ 2d
m∑

k=1

vol
(
X(εk, εk−1]

)

εdk−1

where we applied several times the definition of the εk’s, the inequality follows by 1/εd + 1/εdm−1 + 1/εdm−2 ≤
min

{
3(1/εd), (2d+2)(1/εdm−1), (4

d+2d+1)(1/εdm−2)
}

, and the proof is concluded observing that max(3, 1, 4d) = 4d

and 4d + 1/2d + 1+ 2d ≤ 8d.

We denote by A + B the Minkowski sum of two sets A,B and for any set A and all λ ∈ R, we let λA := {λa :
a ∈ A}.

Proposition 4. If f is L-Lipschitz and X satisfies Assumption 4 with r0 > 0, γ ∈ (0, 1], then, for all 0 < w < u <
2Lr0,

N
(
Xu,

u

L

)
≤

1

γ

vol
(
X(3/2)u

)

vol
(

u
2LB1

) and N
(
X(w,u],

w

L

)
≤

1

γ

vol
(
X(w/2,3u/2]

)

vol
(

w
2LB1

) .

Proof. Fix any u > w > 0. Let η1 := u
L , η2 := w

L , E1 := X , E2 := X c
w, and i ∈ [2]. Note that for any η > 0 and

A,E ⊂ R
d, the balls of radius η/2 centered at the elements of an η-packing of A intersected with E are all disjoint

and included in (A + Bη/2) ∩ E. Thus, N (Xu ∩ Ei, ηi) ≤ vol
(
(Xu ∩ Ei + Bηi/2) ∩ X

)
/vol(Bηi/2 ∩ X ). To lower

bound the denominator, simply apply Assumption 4 to obtain vol
(
Bηi/2(x) ∩ X

)
≥ γ vol(Bηi/2). To upper bound

the numerator, take an arbitrary point xi ∈ (Xu ∩ Ei + Bηi/2) ∩ X . By definition of Minkowski sum, there exists

x
′
i ∈ Xu∩Ei such that ‖xi − x

′
i‖ ≤ ηi/2. Hence f(x⋆)−f(xi) ≤ f(x⋆)−f(x′

i)+
∣∣f(x′

i)−f(xi)
∣∣ ≤ u+L(ηi/2) ≤

(3/2)u. This implies that xi ∈ X(3/2)u, which proves the first inequality. For the second one, note that x2 satisfies

f(x⋆)− f(x2) ≥ f(x⋆)− f(x′
2)−

∣∣f(x′
2)− f(x2)

∣∣ ≥ w − L(η2/2) = (1/2)w.
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D Missing Proofs of Section 4

In this section we provide all missing details and proofs from Section 4.

D.1 Missing details in the Proof of Theorem 2

We claimed that the quantity τ introduced in Eq. (7) lower bounds the sample complexity σ(A, f, ε) of any certified

algorithm A. To prove this formally, fix an arbitrary certified algorithm A, let N = σ(A, f, ε), and assume by

contradiction that N < τ . Then we have errN (A) ≥ infA′

(
errN (A′)

)
> ε by definition of τ . This means that

there exists an L-Lipschitz function g, coinciding with f on x1, . . . ,xN and such that max(g) − x
⋆
N > ε. Now,

since xi, x
⋆
i , and ξi are deterministic functions of the previous observations f(x1) = g(x1), . . . , f(xi−1) = g(xi−1)

(for all i = 1, . . . , N ), running A on either f or g returns the same xi, x
⋆
i , and ξi (for all i = 1, . . . , N ). Thus

we have that σ(A, g, ε) = σ(A, f, ε) = N . This, together with the fact that A is a certified algorithm, implies that

ε < max(g)− x
⋆
N ≤ ξN ≤ ε, which yields a contradiction.

D.2 The Piyavskii-Shubert Algorithm and Proof of Proposition 2

The Piyavskii-Shubert Algorithm. In this section, we recall the definition of the certified Piyavskii-Shubert algo-

rithm (Algorithm 2, Piyavskii 1972; Shubert 1972) and we show that if Lip(f) = L (i.e., if the best Lipschitz constant

of f is known exactly by the algorithm) the sample complexity can be constant in dimension d ≥ 2 (Proposition 2).

Algorithm 2: Certified Piyavskii-Shubert algorithm (PS)

input: Lipschitz constant L > 0, norm ‖·‖, initial guess x1 ∈ X
for i = 1, 2, . . . do

pick the next query point xi

observe the value f(xi)
output the recommendation x

⋆
i ← argmax

x∈{x1,...,xi} f(x)

output the error certificate ξi = f̂⋆
i − f

⋆
i , where f̂i(·)← minj∈[i]

{
f(xj) + L ‖xj − (·)‖

}
,

f̂⋆
i ← maxx∈X f̂i(x), f

⋆
i ← maxj∈[i] f(xj), and let xi+1 ∈ argmax

x∈X f̂i(x)

Proof of Proposition 2. Fix any ε ∈ (0, ε0) and anyL-Lipschitz function f . Since f isL-Lipschitz, thenmaxx∈X f̂i(x) ≥

maxx∈X f(x) for all i ∈ N
∗. Hence maxx∈X f(x)−f(x⋆

i ) ≤ maxx∈X f̂i(x)−f⋆
i = ξi. This shows that the certified

Piyavskii-Shubert algorithm is indeed a certified algorithm. Then, if f := L ‖·‖ and x1 := 0, we have that f̂1 = f ,

ξ1 = L, and x2 belongs to the the unit sphere, i.e., x2 is a maximizer of f . Since f̂2 = f , we have that ξ2 = 0, hence

σ(PS, f, ε) = 2. Finally, by definition (5), we have SC(f, ε) ≥ N (argmaxX f, ε/L). Since argmaxX f is the unit

sphere, there exists a constant c, only depending on d, ‖·‖ and L, such that SC(f, ε) ≥ c/εd−1.

We give some intuition on Proposition 2. Consider a function f that has Lipschitz constant exactly L, and a pair

of points in X whose respective values of f are maximally distant, that is the difference of values of f is exactly

L times the norm of the input difference. This configuration provides strong information on the value of the global

maximum of f , as is illustrated in the proof of Proposition 2. Another interpretation is that when f has Lipschitz

constant exactly L, there is less flexibility for the L-Lipschitz function g that yields the maximal optimization error in

errn(A) (introduced in the proof of Theorem 2).

D.3 Proof of Proposition 3

Let f be an arbitrary L-Lipschitz function. Let K = 8. As for the proof of Theorem 2, it is sufficient to show that

τ > cSC(f, ε)/(1+mε), with τ defined in (7). If cSC(f, ε)/(1+mε) < 1, then the result follows by τ ≥ 1. Consider

then from now on that cSC(f, ε)/(1 +mε) ≥ 1.
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Defining ε̃ as in the proof of Theorem 2, one can prove similarly that cSC(f, ε)/(1 + mε) ≤ cN (Xε̃, ε̃/2L).
From Lemma 2,

N

(
Xε̃,

Kε̃

L

)
≥

1

8K
N

(
Xε̃,

ε̃

2L

)
≥

1

8K

SC(f, ε)

mε + 1
≥ 12 ,

because c = 1/96K and cSC(f, ε)/(1 + mε) ≥ 1. Let now n ≤ cSC(f, ε)/(1 + mε). Then we have n ≤
c(8K)N (Xε̃, Kε̃/L). Thus, by c(8K) = 1/12, n ≤ N (Xε̃, Kε̃/L) /12, and N (Xε̃, Kε̃/L) ≥ 12, we have

n ≤

⌊
N
(
Xε̃,

Kε̃
L

)

2

⌋
− 4 . (16)

Consider a certified algorithmA for L-Lipschitz functions. Let us consider a Kε̃/L packing x̃1 < x̃2 < · · · < x̃N
of Xε̃ with N = N

(
Xε̃, Kε̃/L

)
. Consider the ⌊N/2⌋ − 1 disjoint open segments (x̃1, x̃3), (x̃3, x̃5), . . ., (x̃2⌊N/2⌋−3,

x̃2⌊N/2⌋−1). Then from (16) there exists i ∈
{
1, 3, . . . , 2 ⌊N/2⌋ − 3

}
such that the segment (x̃i, x̃i+2) does not

contain any of the points x1 = x1(A, f), . . . , xn = xn(A, f) that A queries when run on f . Assume that x̃i+1 − x̃i ≤
x̃i+2 − x̃i+1 (the case x̃i+1 − x̃i > x̃i+2 − x̃i+1 can be treated analogously; we omit these straightforward details for
the sake of conciseness). Consider the function h+,ε̃ : X → R defined by

h+,ε̃(x) =











f(x) if x ∈ X\[x̃i, x̃i+2]

f(x̃i) + L(x− x̃i) if x ∈ X ∩ [x̃i, x̃i+1]

f(x̃i) + L(x̃i+1 − x̃i) + (x− x̃i+1)
f(x̃i+2)−f(x̃i)−L(x̃i+1−x̃i)

x̃i+2−x̃i+1
if x ∈ X ∩ (x̃i+1, x̃i+2] .

We see that h+,ε̃ is L-Lipschitz (since x̃i+1 − x̃i ≤ x̃i+2 − x̃i+1). Furthermore, h+,ε̃ coincides with f at all query
points x1, . . . , xn. Similarly, consider the function h−,ε̃ : X → R defined by

h−,ε̃(x) =











f(x) if x ∈ X\[x̃i, x̃i+2]

f(x̃i)− L(x− x̃i) if x ∈ X ∩ [x̃i, x̃i+1]

f(x̃i)− L(x̃i+1 − x̃i) + (x− x̃i+1)
f(x̃i+2)−f(x̃i)+L(x̃i+1−x̃i)

x̃i+2−x̃i+1
if x ∈ X ∩ (x̃i+1, x̃i+2] .

As before, h−,ε̃ is L-Lipschitz and coincides with f on x1, . . . , xn.

Let x⋆n = x⋆n(A, f) be the recommendation of A at round n when run on f .

Case 1: x⋆n ∈ X\[x̃i, x̃i+2]. Then, since x̃i ∈ Xε̃ and x̃i+1 − x̃i ≥ Kε̃/L, we have

h+,ε̃(x̃i+1)− h+,ε̃(x
⋆
n) = f(x̃i) + L(x̃i+1 − x̃i)− f(x

⋆
n) ≥ −ε̃+ L

Kε̃

L
= 7ε̃ .

Case 2: x⋆n ∈ X ∩
[
x̃i, (x̃i + x̃i+1)/2

]
. Then, since x̃i+1 − x̃i ≥ Kε̃/L, we have

h+,ε̃(x̃i+1)− h+,ε̃(x
⋆
n) = f(x̃i) + L(x̃i+1 − x̃i)− f(x̃i)− L(x

⋆
n − x̃i) ≥ L

x̃i+1 − x̃i
2

≥ 4ε̃ .

Case 3: x⋆n ∈ X ∩
[
(x̃i + x̃i+1)/2, x̃i+1

]
. Then, since x̃i+1 − x̃i ≥ Kε̃/L, we have

h−,ε̃(x̃i)− h−,ε̃(x
⋆
n) = f(x̃i)− f(x̃i) + L(x⋆n − x̃i) ≥ L

x̃i+1 − x̃i
2

≥ 4ε̃ .

Case 4: x⋆n ∈ X ∩
[
x̃i+1, (x̃i+1 + x̃i+2)/2

]
. Then, since x̃i+1 − x̃i ≥ Kε̃/L, since x̃i, x̃i+2 ∈ Xε̃, and since h−,ε̃

is linear increasing on [x̃i+1, x̃i+2] with left value f(x̃i)− L(x̃i+1 − x̃i) and right value f(x̃i+2), we have

h−,ε̃(x̃i)− h−,ε̃(x
⋆
n) ≥ f(x̃i)−

f(x̃i)− L(x̃i+1 − x̃i) + f(x̃i+2)

2

=
f(x̃i)− f(x̃i+2)

2
+ L

x̃i+1 − x̃i
2

≥ −
ε̃

2
+
K

2
ε̃ ≥ 3ε̃ .
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Case 5: x⋆n ∈ X ∩
[
(x̃i+1 + x̃i+2)/2, x̃i+2

]
. Then, since x̃i+1 − x̃i ≥ Kε̃/L, since x̃i, x̃i+2 ∈ Xε̃ and since h+,ε̃

is linear decreasing on [x̃i+1, x̃i+2] with left value f(x̃i) + L(x̃i+1 − x̃i) and right value f(x̃i+2), we have

h+,ε̃(x̃i+1)− h+,ε̃(x
⋆
n) ≥ f(x̃i) + L(x̃i+1 − x̃i)−

f(x̃i) + L(x̃i+1 − x̃i) + f(x̃i+2)

2

=
f(x̃i)− f(x̃i+2)

2
+ L

x̃i+1 − x̃i
2

≥ −
ε̃

2
+
K

2
ε̃ ≥ 3ε̃ .

Putting all cases together and recalling the definition of errn(A) in the proof of Theorem 2, we then obtain

errn(A) ≥ 3ε̃ > ε. Being A arbitrary, this implies infA′ errn(A
′) > ε. Since this has been shown for any

n ≤ cSC(f, ε)/(1 +mε) we thus have τ > cSC(f, ε)/(1 +mε).

E Comparison with the classical non-certified setting

For the interested reader who is not familiar with DOO, in this section, we recall and analyze the classical non-certified

version of this algorithm. As mentioned in Remark 2, our analysis is slightly tighter than that of Munos (2011), and

serves as a better comparison for highlighting the differences between the certified and the non-certified settings (see

Remark 5 below).

The difference between our certified version c.DOO and the classical non-certified DOO algorithm (denoted by

nc.DOO below) is that the latter does not output any certificates ξ1, ξ2, . . .. In other words, nc.DOO coincides with

Algorithm 1 except for Lines 3 and 13. In particular, it outputs the same query points x1,x2, . . . and recommendations

x
⋆
1,x

⋆
2, . . . as c.DOO. The performance of this non-certified algorithm is classically measured by the non-certified

sample complexity (6), i.e., the smallest number of queries needed before outputting an ε-optimal recommendation.

Proposition 5. If Assumptions 2 and 3 hold, the non-certified sample complexity of the non-certified DOO algorithm

nc.DOO satisfies, for all Lipschitz functions f ∈ FL
5 and any accuracy ε ∈ (0, ε0],

ζ(nc.DOO, f, ε) ≤ 1 + C

mε∑

k=1

N
(
X(εk,εk−1],

εk
L

)
,

where C = K
(
1ν/R≥1 + 1ν/R<1(4R/ν)

d
)
.

Proof. The proof of Proposition 1 (Section B), from the beginning to (10), implies that, for any (h⋆, i⋆) in Line 5 of

Algorithm 1,

f(xh⋆,i⋆) ∈ XLRδh⋆ . (17)

The guarantee (17) is classical (e.g., Munos 2011).

We now proceed in a direction that is slightly different from the proof of Munos (2011, Theorem 1). Consider the

first time at which the DOO algorithm reaches Line 5 with f(xh⋆,i⋆) ≥ f(x⋆)− ε. Then let Iε be the number of times

the DOO algorithm went through Line 5 strictly before that time, and denote by nε the total number of evaluations of

f strictly before that same time. We have

nε ≤ 1 +KIε .

Furthermore, after nε evaluations of f , we have, by definitions of the recommendation x
⋆
nε

and nε,

f(x⋆
nε
) = max

x∈{x1,...,xnε}
f(x) ≥ f(xh⋆,i⋆) ≥ f(x

⋆)− ε .

This inequality entails that the non-certified sample complexity of nc.DOO is bounded by nε and thus

ζ(nc.DOO, f, ε) ≤ 1 +KIε. (18)

We now bound Iε from above, and assume without loss of generality that Iε ≥ 1. Consider now the sequence

(h⋆1, i
⋆
1), . . . , (h

⋆
Iε
, i⋆Iε) corresponding to the first Iε times the DOO algorithm nc.DOO went through Line 5. Let Eε be

5Our proof can be easily adapted to the weaker assumption that f is only L-Lipschitz around a maximizer.
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the corresponding finite set {xh⋆
1,i

⋆
1
, . . . ,xh⋆

Iε
,i⋆

Iε
} (a leaf can never be selected twice). By definition of Iε, we have

Eε ⊆ X(ε,ε0]. Since ε = εmε
≤ εmε−1 ≤ . . . ≤ ε0, we have Eε ⊆

⋃mε

i=1 X(εi, εi−1], so that the cardinality Iε of Eε
satisfies

Iε = card(Eε) ≤
mε∑

i=1

card
(
Eε ∩ X(εi, εi−1]

)
. (19)

Let Nε,i be the cardinality of Eε ∩ X(εi, εi−1]. The same arguments as from (13) to (15) in the proof of Proposition 1

yield

Nε,i ≤

(
1ν/R≥1 + 1ν/R<1

(
4R

ν

)d
)
N
(
X(εi, εi−1],

εi
L

)
. (20)

Combining the last inequality with (18) and (19) concludes the proof.

Remark 4. The analysis of the DOO algorithm in Munos (2011, Theorem 1) (non-certified version) yields a bound

on the non-certified sample complexity (6) than can be expressed in the form 1 + C
∑mε

k=1N
(
Xεk−1

, εk
L

)
, with a

constant C. The corresponding proof relies on two main arguments. First, when a cell of the form (h⋆, i⋆), i⋆ ∈
{0, . . . ,Kh⋆

− 1}, is selected in Line 5 of Algorithm 1, then the corresponding cell representative xi⋆,h⋆ is LRδh
⋆

-

optimal (we also use this argument). Second, as a consequence, for a given fixed value of h⋆, for the sequence of

values of i⋆ that are selected in Line 5 of Algorithm 1, the corresponding cell representatives xh⋆,i⋆ form a packing of

XLRδh⋆ .

Our slight refinement in the proof of Proposition 5 stems from the observation that using a packing of XLRδh⋆

yields a suboptimal analysis, since the cell representatives xh⋆,i⋆ can be much better than LRδh
⋆

-optimal. Hence,

we proceed differently from Munos (2011), by first partitioning all the selected cell representatives (in Line 5 of

Algorithm 1) according to their level of optimality as in (19) and then by exhibiting packings of the different layers of

input points X(ε,εmε−1],X(εmε−1,εmε−2], . . . ,X(ε1,ε0]. In a word, we partition the values of f instead of partitioning

the input space when counting the representatives selected at all levels.

Remark 5. In the Introduction, below Eq. (6), we mentioned the inherent difference between the sample complexity

σ(A, f, ε) in the certified setting and the more classical sample complexity ζ(A, f, ε) in the non-certified setting. We

can now make our statements more formal.

Our paper shows that in the certified setting, the sample complexity σ(A, f, ε) of an optimal algorithm A (e.g.,

A = c.DOO) is characterized by the quantity

SC(f, ε) := N
(
Xε,

ε

L

)
+

mε∑

k=1

N
(
X(εk,εk−1],

εk
L

)
.

In contrast, the previous proposition shows that in the non-certified setting the sample complexity ζ(nc.DOO, f, ε) of

the nc.DOO algorithm is upper bounded (up to constants) by

SNC(f, ε) :=

mε∑

k=1

N
(
X(εk,εk−1],

εk
L

)
.

The two expressions look remarkably alike but are subtly very different. In fact, the latter depends only on the “size”

(i.e., the packing numbers) of suboptimal points. The former has an additional term measuring the size of near-

optimal points. Now, note that the flatter a function is, the fewer suboptimal points there are. This implies that the

sum
∑mε

k=1N
(
X(εk,εk−1],

εk
L

)
becomes very small (hence, so does SNC(f, ε)), but in turn, the set of near-optimal

points Xε becomes large (hence, so does SC(f, ε)). For instance, in the extreme case of constant functions f , we

have SNC(f, ε) = 0 but SC(f, ε) ≈ (L/ε)d. This fleshes out the fundamental difference between certified and

non-certified optimization, giving formal evidence to the intuition that the more “constant” a function is, the easier

it is to recommend an ε-optimal point, but the harder it is to certify that such recommendation is actually a good

recommendation.

19


	Introduction
	Setting: Zeroth-order Lipschitz Optimization with Error Certificates
	Main Contributions and Outline of the Paper
	Related Works
	Recurring Notation

	Warmup: Certified DOO Has Sample Complexity SC
	Characterization of SC(f,epsilon)
	Optimality of SC(f,epsilon)
	Conclusions
	Acknowledgements
	Useful Results on Packing and Covering
	Missing Proofs of Section 2
	Missing Proofs of Section 3
	Missing Proofs of Section 4
	Missing details in the Proof of Theorem 2
	The Piyavskii-Shubert Algorithm and Proof of Proposition 2
	Proof of Proposition 3

	Comparison with the classical non-certified setting

