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ABSTRACT

Cloud detection is a crucial step for automatic satellite image
analysis. Some cloud detection methods exploit specially de-
signed spectral bands, other base the detection on time series,
or on the inter-band delay in push-broom satellites. Neverthe-
less many use cases occur where these methods do not apply.
This paper describes a convolutional neural network for cloud
detection in panchromatic and single-frame images. Only a
per-image annotation is required, indicating which images
contain clouds and which are cloud-free. Our experiments
show that, in spite of using less information, the proposed
method produces competitive results.

Index Terms— Cloud detector, CNN, single-band, pan-
chromatic, satellite images.

1. INTRODUCTION

Unless observed for meteorological purposes, clouds are an
overwhelming nuisance for optical satellite imagery. Not only
they hide the ground, but their detection is also a major concern
to avoid detection and interpretation errors in automatic image
analysis. Being so numerous and large, satellite images require
an automatic and accurate analysis [1, 2].

A number of companies in the Earth observation industry
are launching constellations of dozens to hundreds of satellites
to get a short revisit time over any region. Most of these sa-
tellites only acquire a few spectral bands in the visible light
range of the electromagnetic spectrum. Thus, many lack spe-
cifically designed spectral bands for cloud detection (such as,
for example, the cirrus band B10 of Sentinel-2).

Most well known approaches to detect clouds on satel-
lite images are based on exploiting spatio-temporal informa-
tion [1, 2]. Satellite cloud detection often exploits spectral
bands specifically designed for cloud detection [3, 4, 5, 6,
1, 7, 8]. Alternatively, the inter-band delay in push-broom
satellites allows cloud detection by parallax analysis of the
color bands [9, 10, 11, 12, 13, 14]. In some cases, local des-
criptors are used to detect changes, hopefully due to clouds,
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Fig. 1: Examples of labels and images provided by the single
and temporal image datasets [18].

and, in other cases, the clouds’ relative altitude is measured
with respect to the ground through the interband parallax in-
formation [15, 16, 17]. Certainly, the case of cloud detection
in panchromatic optical images has none of aforementioned
characteristics and presents a challenge as it contains less in-
formation to work with.

Cloud-related tasks are currently being learned from data,
with the promise of a better performance. Ideally, this lear-
ning process uses a well annotated per-pixel dataset (e.g. each
pixel has a label : cloud or not-cloud). However, per-pixel
annotations of clouds are time consuming and tedious, while
per-image annotated datasets only require one click for the
whole image. In this paper, we present a cloud detector that has
learned from a per-image annotated dataset of panchromatic
satellite images, derived from the single-image dataset [18]
appearing in Figure 1. The approach is generic and can be
extended to any sort of single-band image.

2. RELATED WORK

Feature based techniques. A classical approach to detect
clouds is through features or local descriptors [19, 20, 21].
With the significant progress in the design of features for se-
veral image processing applications, the scientific community
has achieved good classification performance. The fact that
we humans can identify clouds even locally (by texture, shape,
color, etc) suggests that the right descriptors might be learned,
either implicitly or explicitly. In this paper, our purpose is to let
a network learn from scratch the proper descriptors for detec-
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Fig. 2: Proposed GAN training in [18] to obtain the cloud-
removal network. Legend : v - cloudy image ; u - cloud-free
image ; G - Generator ; u′ - Fake cloud-free image satisfying
G(v) = u′ ; D - Discriminator.

ting clouds, by submitting to it a minimally annotated dataset,
in which images are simply tagged as cloudy or non-cloudy.
Generative models for cloud removal. The task of cloud re-
moval in satellite images seems more challenging than the
one of detecting clouds. In [18], a generator CNN, that was
trained as in Figure 2, is capable of implicitly detecting clouds
in satellite images and inpaints, in a credible way, those zones
occluded by clouds. However, it is not clear how to access the
implicit per-pixel classification applied by the network before
inpainting. This generator was learned on per-image annotated
datasets (also published in [18]) for single-image inputs and
spatiotemporal inputs. These datasets consist of Sentinel-2
RGB+IR images annotated by thresholding the cloud coverage
provided by [22], a well known per-pixel cloud/clear classifi-
cation algorithm. In this paper, we will use both the generator
and the datasets (see Figure 1) presented in [18].

3. CLOUD DETECTION

The neural network described in [18] successfully gene-
rates realistic cloud-free images u′ from cloudy images v.
Some hallucinations are observed, but the main differences
between v and u′ are indeed in regions where clouds are
present ; the network is implicitly detecting clouds. In this
section we propose to use [18] to train a network to directly
generate a cloud mask.

LetM be a network that receives as input a cloudy image
and from it computes a cloud mask m :=M(v). The archi-
tecture of M is based on a ResNet with 9 residual blocks.
Each residual block consists of two convolutional layers and
a skip connection. While training, M will be coupled with
a degraded version of the G network (only 2 ResNet blocks
instead of 6 used in [18]) in order to help us reconstruct u
from v. The idea, shown in Figure 3, is that the mask m must
identify the parts of u′ obscured by clouds, which are to be
completed by information in v :

m ∗ v + (1−m) ∗ u′ ≈ u. (1)

Mathematically, we encourage such a mask with a loss func-

tion like

fu(x) = ‖M(x) ∗ x+ (1−M(x)) ∗ G(x)− u‖L1 , (2)

where G(x) generates images that look similar to x, but not
exactly equal, even for clear areas. This last behavior makes
the training easier for the mask to be close to 1 in visible areas.
Indeed, if the generator G was such that x = G(x) for cloud-
free areas, then the mask could be any value between [0, 1]
without affecting the minimization in Equation 2.

Of course, if M is trained to detect clouds only among
cloudy images, there is a risk of failure in generalizing due to
biased training data. Indeed, a network trained like this often
detects clouds even in cloud-free images. This fact was confir-
med in our experiments. At the end of the day, we propose to
train the networkM with the following loss function :

Loss(M) := fu(v) + fu(u). (3)

This forces the network to correctly handle cloud-free images.
Notice that the loss function of Equation 3 is not used to train
G, and only affects the weights of the networkM.

The single-image dataset was split randomly in three :
training, validation and test. All RGB images were used to
produce a panchromatic dataset. We trained the networks at
the same time, but both G andM were detached from each
other, i.e., not trained against the other. After training for 10
epochs over the whole training dataset and with a learning rate
of 0.0002, results were already satisfactory, see Figure 4.

The output ofM is a float matrix. However, binary masks
are the final result we want to provide. We cannot train directly
for binary masks because most weights would remain unchan-
ged due to zero-gradients. We define a simple procedure in
order to binarize these float masks. This adds a new hyperpa-
rameter to our model, that will be set in validation. For each
threshold t, we define the binarized mask at pixel p as

bt(p) :=

{
1, m(p) > t
0, m(p) ≤ t

. (4)

The final binary mask, b, is selected as the bt minimizing the
loss function of Equation 3. In practice, we do a grid search
between 0 and 1 with a step of 0.01. t = 0.14 is selected as
the optimal threshold. Two visual examples of this passage
from float masks m to binary masks b are shown in Figure 4.

4. RESULTS

Clouds (Ours) No-clouds (Ours)
Clouds (SIFT) 0.883 (15981177) 0.116 (2109476)

No-clouds (SIFT) 0.408 (641462) 0.591 (928685)

Table 1: Normalized confusion matrix over the test dataset
(300 random pairs from the single-image dataset [18]).
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Fig. 3: Interpretation of Equation 1 : Clouds are detected in v as zones that are not as similar to u as those zones in u′.
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Fig. 4: Float masks m provided by the networkM. t = 0.14
was used as threshold to pass from m to binary masks b.

Clouds (Ours) No-clouds (Ours)
Clouds (SIFT) 0.760 (12922400) 0.239 (4071420)

No-clouds (SIFT) 0.236 (631970) 0.763 (2035010)

Table 2: Normalized confusion matrix over 300 random tuples
of images from the temporal dataset [18].

In this section we test the resulting mask fromM against
the SIFT cloud detector [15, 16]. The two datasets (single and
temporal) from [18] are used. The SIFT cloud detector receives
as input all the information available : the two images v and u
in the case of the single-image dataset ; and the four images
v,v2,v3 and u, from the temporal-image dataset. Whereas
our network (M) only receives the cloudy image v. Both
cloud detectors are to output a mask for each cloudy image v.

The precision ofM in predicting the clouds of the SIFT
cloud detector is of 0.96 for the single-image dataset ; similarly,
95 percent of whatM predicts as clouds is indeed predicted
as clouds by the SIFT cloud detector in the temporal dataset.
The recalls are of 0.883 and 0.76 respectively. Table 1 and
Table 2 provide the normalized confusion matrices of our
cloud detectorM against the SIFT cloud-detector for the two
datasets : single and temporal. Rows represent SIFT labels
(and sum to one), while columns representM predicted labels.
The reader will notice the recall ofM appearing in the top left
corner of Tables 1-2.

The main difference (in number) in classification bet-
weenM and the SIFT cloud detector are for clouds. Indeed,
2109476 and 4071420 cloud labels (from the single and tem-
poral datasets) of the SIFT detector are classified as visible

by the proposed cloud detector. This already points out that
the SIFT cloud detector is being conservative, i.e. it prefers to
classify as cloud rather than to be mistaken. On the other hand,
there is also a difference (the biggest in percentage for the
single dataset) in classification of visible zones. This behavior
is reflected in Figure 5.

5. CONCLUSION

A convolutional neural network was proposed for panchro-
matic and single-frame cloud detection. The method produces
a per-pixel classification into cloud or not cloud, even if only
a per-image annotation was required for training, indicating
which images contain clouds and which are cloud-free. Our
experiments compare the proposed method to a state-of-the-art
method, obtaining robust results, comparable or better, even
if less rich information was used. Future work will focus on
extending the method to any kind of input channels.
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