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ABSTRACT

FAUST has been targeting an increasing number of embedded plat-
forms for real-time audio signal processing applications in recent
years. It can now be used to program microcontrollers, mobile
platforms, embedded Linux systems, Digital Signal Processors
(DSPs), and more. This paper gives an overview of existing tar-
gets, presents ongoing research, and gives potential avenues for
future developments in this field.

1. INTRODUCTION

The computer music and music technology communities have
been greatly impacted by the advent of the makers/DIY1 culture
[1] in recent years. In this context, embedded audio systems have
been increasingly used to create musical instruments, sound effect
processors, art installations, or even to prototype and commercial-
ize products in the music technology industry (e.g., MOD Duo,2

etc.). In parallel of that, mobile devices (e.g., smartphones, tablets,
etc.) – which in some respects can also be considered as embedded
systems – have been used for similar types of applications [2].

Embedded Linux Systems (ELS) such as the Raspberry Pi3

(RPI) or the Beagle Board,4 etc., were the only available solu-
tions accessible to the aforementioned communities for a long
time. Linux allowed them to deal with embedded audio process-
ing in the same way than on a desktop computer through the use of
high-level tools like PureData [3], ChucK [4], SuperCollider [5],
etc. Specialized Linux distributions with specific configurations
for real-time audio processing such as Satellite CCRMA [6] were
also developed in this context. However, the ease of use offered by
operating systems comes at the cost of lightness/simplicity (both
in terms of hardware and software), audio latency, efficiency, etc.
Moreover, most of these boards were often not designed with real-
time audio applications in mind and lack a proper audio input/out-
put, implying the use of an external audio interface (e.g., USB,
hat/sister board with an I2S5 audio codec, etc.).

More recently, these issues were addressed by specialized
hardware/software solutions such as the BELA [7] (first released
in 2014) and the Elk.6 In both cases, dedicated hardware (hat/sis-
ter board) is added to “standard” ELS (the RPI for the Elk and the
BeagleBone Black for the BELA) to improve their performances
for real-time audio processing applications (i.e., audio quality,

1Do It Yourself
2https://www.moddevices.com/ – All URLs in this paper

were verified on Sep. 3, 2020.
3https://www.raspberrypi.org/
4https://beagleboard.org/
5Inter-IC Sound
6https://elk.audio/

multi-channel audio, etc.). These products work in conjunction
with specialized Linux distributions where audio processing tasks
are carried out outside of the operating system, allowing for the
use of significantly smaller buffer sizes and therefore lower audio
latency. While this type of solution offers a good compromise in
terms of ease of use and performances, it remains expensive ($239
for the Elk and $200 for the BELA) and relatively heavy for the
kind of application it usually targets.

Even more recently, new generations of microcontrollers such
as the ARM Cortex-M family7 or the ESP328 have been offer-
ing extended computational power (e.g., 600MHz for the Cortex-
M7), suitable for real-time audio processing applications. Many
of these microcontrollers also host a Floating Point Unit (FPU),
greatly simplifying the implementation of DSP algorithms. Some
microcontroller-based boards such as the LilyGO TTGO TAudio9

provide a comprehensive solution for real-time audio processing
applications by hosting an audio codec and an external RAM mod-
ule. Other brands/boards like the Teensy10 distribute an “audio
shield,” which is essentially a breakout board for an audio codec
with the correct form factor to be mounted on the main board. Pro-
gramming microcontrollers for real-time audio signal processing
applications is more complex than ELS because the use of C++ is
always required at the end of the chain.

Specialized chips such as Digital Signal Processors (DSP)
also became more accessible in recent years by allowing the use
of floating-points and C++ for their programming while assem-
bly and fixed-points used to be the norm. The Analog Devices
SHARC processor family11 has been dominating the floating-point
DSP market for many years now and can be found in a wide range
of commercial synthesizers (e.g., Korg, Roland, etc.). Evaluation
boards for this type of chip such as the SHARC audio module12

now also try to target the makers/hobbyist community by making
their toolchain higher-level and more accessible.

Beside ELSs which provide a comprehensive set of standard
high-level audio programming tools, all the aforementioned plat-
forms remain relatively hard to program and inaccessible to non-
specialized communities. While some tools such as libpd [8] and
Embedded ChucK [9] address this issue, none of them provide

7https://developer.arm.com/ip-products/
processors/cortex-m

8https://www.espressif.com/en/products/
hardware/esp32/overview

9https://github.com/LilyGO/TTGO-TAudio
10https://www.pjrc.com/teensy/
11https://www.analog.com/en/products/

processors-dsp/dsp/sharc.html
12https://www.analog.com/en/design-center/

evaluation-hardware-and-software/
evaluation-boards-kits/sharc-audio-module.html
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a solution as comprehensive as FAUST [10]. Indeed, FAUST has
been active on all these fronts for the past ten years, allowing for
the programming of most of these platforms from a single stand-
point. This paper provides an overview of the work that has been
done around FAUST in the field of embedded systems for real-time
audio processing. It also presents ongoing research in this field as
well as avenues for potential future developments.

2. EMBEDDED LINUX SYSTEMS

Embedded Linux systems offer more or less the same type of fea-
tures as desktop Linux distributions. Thus, real-time audio signal
processing tasks can be carried out in many different ways on this
type platform. For instance, standalone applications can be made
and connected directly to various audio engines such as Alsa, Jack,
etc. Open-source computer music environments like PureData [3],
ChucK [4], SuperCollider [5], etc. are also available. Various au-
dio plugin hosts (e.g., Ardour, Audacity, etc.) can be used to exe-
cute audio plugins, etc. Finally, while not necessarily the best/most
effective option in that context, web apps can potentially be used
as well.

FAUST is extremely well supported on Linux and can
target most of the existing standards and environments
available on this platform through a wide range of archi-
tectures13 (see Table 1). While most Linux-compatible
faust2... compilation scripts can be used on ELS (with
some adjustments in the C++ compilation flags), platform-
specific scripts such as faust2rpialsaconsole or
faust2rpinetjackconsole which target the Raspberry Pi
(see Figure 1) were implemented.

Even though FAUST can generate applications with a user in-
terface (e.g., Qt, GTK, etc.), these don’t necessarily make sense
in the context of embedded systems where screens are not al-
ways used/available. Hence, functionalities are usually accessed
through SSH, making command line applications more appropri-
ate in that context.

Designing musical instruments around ELS also implies the
use of an external microcontroller (either connected through USB
or I2C14) since the CPUs used on these platforms don’t have built-
in ADCs.15 External controllers (i.e., MIDI controllers) or com-
munication protocols such as OSC16 can be used as well with
FAUST, but it defeats the purpose in this context by externalizing
some parts of the instrument.

3. EMBEDDED LINUX SYSTEMS WITH SPECIAL
HARDWARE

A series of projects/commercial products such as the BELA and
the Elk (see §1) have been trying to provide dedicated Linux-
based platforms for musical instrument design/real-time audio sig-
nal processing applications. Both are based on existing ELS (the
BeagleBone Black and the RPI, respectively) and involve the use
of a sister board/hat and of a specialized Linux distribution in order
to provide the following features:

13Architectures in the FAUST vocabulary refer to wrappers allowing to
turn a FAUST program into a specific object such as a standalone desktop
program, an audio plugin, a smartphone app, an audio engine for a specific
platform, etc.

14Inter-Integrated Circuit
15Analog to Digital Converter
16Open Sound Control

Figure 1: The Raspberry Pi 3B equipped with an I2S audio hat
providing a stereo PCM audio output.

• high priority to audio processing bypassing the operating
system through the use of Xenomai17 [11] for reduced audio
latency,

• multichannel (more than stereo) audio codec,

• built-in microcontroller for analog sensor inputs,

• etc.

3.1. Using FAUST on the BELA

FAUST can be used for audio programming on the BELA (see
Figure 2) with faust2bela.18 This command line tool takes a
FAUST program as its main argument and executes it on this board
by running:

faust2bela -tobela faustProgram.dsp

MIDI and polyphony support can be enabled by using the -
midi and -nvoices options, respectively. The parameters of
the FAUST program can also be accessed through a web interface
running on a dedicated built-in web server by using the -gui op-
tion.

3.2. Using FAUST on the Elk

While Elk (see Figure 3) is not officially supported by FAUST
through an architecture file, FAUST objects can be compiled as
VST plugins compatible with the Elk. faust2faustvst19 can
be used for that purpose. Elk also provides a Cmake file to carry
out this task.20

4. MOBILE PLATFORMS

Mobile devices can be considered as embedded systems as well.
In particular, musical instruments can be easily constructed around

17https://gitlab.denx.de/Xenomai/xenomai/-/
wikis/home

18https://github.com/BelaPlatform/Bela/wiki/
Compiling-Faust-code-for-Bela

19https://bitbucket.org/agraef/faust-vst/src/
master/

20https://github.com/elk-audio/
faust-vst-template

IFC-2

https://gitlab.denx.de/Xenomai/xenomai/-/wikis/home
https://gitlab.denx.de/Xenomai/xenomai/-/wikis/home
https://github.com/BelaPlatform/Bela/wiki/Compiling-Faust-code-for-Bela
https://github.com/BelaPlatform/Bela/wiki/Compiling-Faust-code-for-Bela
https://bitbucket.org/agraef/faust-vst/src/master/
https://bitbucket.org/agraef/faust-vst/src/master/
https://github.com/elk-audio/faust-vst-template
https://github.com/elk-audio/faust-vst-template


Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

Architecture Description
Standalone With User Interface

faust2alqt Standalone application with an Alsa audio engine and a Qt UI
faust2alsa Standalone application with an Alsa audio engine and a GTK UI
faust2jack Standalone application with a Jack audio engine and a GTK UI
faust2jaqt Standalone application with a Jack audio engine and a Qt UI

faust2netjackqt Standalone application with a NetJack audio engine and a Qt UI
Standalone Without User Interface

faust2alsaconsole Command line application with an Alsa audio engine
faust2jackconsole Command line application with a Jack audio engine

faust2netjackconsole Command line application with NetJack audio engine
Computer Music Environment External

faust2ck ChucK Chugin
faust2csound CSound Opcode

faust2puredata PureData External
faust2sc SuperCollider External

Audio Plug-In
faust2juce Can be used to generate VST plugins

faust2ladspa LADSPA audio plugin
faust2lv2 LV2 audio plugin

Web
faust2wasm WebAudio wasm module

faust2webaudiowasm WebAudio wasm HTML pages
RPI-Specific

faust2rpialsaconsole Command line application with an Alsa audio engine
faust2rpinetjackconsole Command line application with a NetJack audio engine

Table 1: Linux-compatible FAUST architectures.

Figure 2: The BELA.

these platforms through the use of microcontrollers connected to
them via MIDI (USB or Bluetooth) [12]. FAUST played a pio-
neering role in the field of mobile music [13] by allowing for the
programming of iOS and Android devices for real-time audio sig-
nal processing applications.

4.1. faust2ios

faust2ios is a tool to convert FAUST programs into ready-to-
use iOS applications whose user interface is based on the UI de-
scription provided in the FAUST code (just like most FAUST archi-

Figure 3: The Elk.

tectures). UIs are therefore typically made out of sliders, knobs,
buttons, groups, etc.

Figure 4 presents a screenshot of sfCapture21 which is an app
made with faust2ios as part of the SmartFaust project [13].

faust2ios works as a command line tool taking a FAUST
program as its main argument and producing either a ready-to-
install iOS app or the Xcode project corresponding to this app in
return. For example, running the following command in a termi-

21https://itunes.apple.com/us/app/sfcapture/
id799532659?mt=8
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Figure 4: Screen-shot of sfCapture, an app made with
faust2ios.

nal:

faust2ios faustProgram.dsp

will produce an iOS app corresponding to the FAUST program im-
plemented in faustProgram.dsp.

Various features can be added to the generated app such as
MIDI, OSC, and polyphony support simply by using specific flags
(options) when running faust2ios. Regular FAUST options are
also available to generate parallelized DSP22 code, change sam-
ple resolution, etc. Any parameter of a FAUST program can be
assigned to a specific axis of a built-in motion sensor (i.e., ac-
celerometer, gyroscope, etc.) of the smartphone simply by using
metadata. Complex non-linear mappings can be implemented us-
ing this mechanism.23

4.2. faust2android

faust2android [14] is the equivalent of faust2ios for the
Android platform and can also be used as a command line tool:

faust2android faustProgram.dsp

will generate a read-to-use Android application from
faustProgram.dsp (see Figure 5).

Unlike faust2ios, standard FAUST user interfaces can
be replaced by advanced interfaces more usable in a musical
context such as piano keyboards, X/Y controllers, etc. with
faust2android [15].

4.3. faust2smartkeyb

faust2smartkeyb [15] is a command line tool that can be used
to generate iOS or Android apps where the standard FAUST UI is
replaced by a more advanced interface, better adapted to a use in

22Digital Signal Processing
23https://faust.grame.fr/doc/manual#

sensors-control-metadatas

Figure 5: Example of interface generated by faust2android
containing groups, sliders, knobs, and checkboxes.

a live music performance context and to touch-screens (see Fig-
ure 6). This type of interface uses the SMARTKEYBOARD system
which is a highly configurable keyboards matrix where keys can
be seen both as discrete buttons and continuous X/Y controllers.
For example, a keyboard matrix of size 1x1 (a single keyboard
with a single key) will fill up the screen which can then be used
as a multi-touch X/Y controller. The interface can be configured
directly from the FAUST code using a metadata.24

Figure 6: Simple SMARTKEYBOARD interface.

5. MICROCONTROLLERS

5.1. The OWL

The OWL (see Figure 7) is a series of programmable hardware
(i.e., guitar effect pedals and modular synth modules) developed
by Rebel Technology25 for real-time audio signal processing. The
OWL is based on an ARM Cortex M4 (STM32F4)26 which is a mi-
crocontroller (168MHz 32bit) providing a FPU. It also hosts addi-
tional RAM (1Mb 10nS SRAM) – which is usually limited on this
kind of chip – as well as a high quality stereo audio codec (24 bits,
up to 96 kHz).

24https://ccrma.stanford.edu/~rmichon/
smartKeyboard/

25https://www.rebeltech.org
26http://www.arm.com/Arm-Cortex/CPU
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Figure 7: The OWL pedal.

The OWL is the first microcontroller-based platform that was
programmable with FAUST. FAUST support is relatively basic on
this platform and running faust2owl will generate C++ code
usable directly within the OWL toolchain.

Rebel Technology developed other Cortex M4-based products
programmable with FAUST since the OWL such as Alchemist, Ma-
gus, and Wizard.27

5.2. The Teensy

Teensy is a family of microcontroller-based prototyping boards de-
veloped and distributed by PJRC28 and targeting the makers com-
munity. Just like the OWL (see §5.1), Teensys are based on ARM
Cortex M microcontrollers which in some cases (i.e., Teensy 3.6
and 4.0) host an FPU, ensuring compatibility with FAUST. PJRC
also distributes an “audio shield” which is essentially a breakout
board for an audio codec (SGTL500029) compatible with most
Teensy boards. This allows us to add a proper stereo input and
output to the Teensy.

FAUST has been supporting the Teensy for over a year now
[16] through faust2teensy.30 This command-line tool can be
used to generate DSP objects compatible with the Teensy Audio
Library.31 E.g.:

faust2teensy -lib faustProgram.dsp

will turn faustProgram.dsp into a ready-to-use DSP object
for the Teensy Audio Library.

Various optimizations are carried out to take advantage of the
Cortex-M architecture. Because of the limited amount of RAM on
the Teensy, FAUST only provides basic features on this platform
(e.g., polyphonic objects cannot be created, etc.).

The Teensy 3.6,32 which has been available for a couple of
years now, is built around a 180MHz ARM Cortex-M4 offering
plenty of computational power (up to 60 wave-table-based FAUST

27https://www.rebeltech.org/products/
28https://www.pjrc.com/teensy/
29https://www.pjrc.com/teensy/SGTL5000.pdf
30https://faust.grame.fr/doc/tutorials/index.

html#dsp-on-the-teensy-with-faust
31https://www.pjrc.com/teensy/td_libs_Audio.html
32https://www.pjrc.com/store/teensy36.html

sine waves can be run in parallel at 48KHz with a block size of
8 samples). However, its limited RAM (256 kBytes) disqualifies
it for applications with large memory footprints (e.g., long echos,
advanced reverbs, etc.).

The Teensy 4.0 on the other hand is based on a 600 MHz
Cortex-M7 with 1024 kBytes of RAM. Up to 650 wave-table-
based FAUST sine waves can be run on it in parallel in similar
conditions than in the previous example, providing enough com-
putational power to run most standard DSP algorithms.

The Teensy offers plethora of advantages over other
microcontroller-based boards. Indeed, it is relatively cheap (i.e.,
$35 for the 3.6, $19 for the 4.0, $13 for the audio shield) and it
is designed and made in the USA, guarantying a certain level of
quality.

5.3. The ESP32

The ESP32 is a microcontroller designed and produced in China
by Espressif.33 Its dual core architecture based on an Xtensa 32bits
LX6 microprocessor operating at 240 MHz and with 512 kBytes
of RAM also provides built-in WiFi and Bluetooth support for an
unparalleled price ($3). The ESP32 has been used at the heart of
a series of prototyping boards targeting real-time audio processing
applications (i.e., audio codec, SRAM module, etc.) such as the
LilyGO TTGO TAudio, etc. (see Figure 8), which can all be pro-
grammed with FAUST through the use of faust2esp32.34 This
command line tool can be used to generate a C++ DSP engine tak-
ing care of the entire audio processing chain from a FAUST pro-
gram (unlike the Teensy where an external audio library has to be
used – see §5.2). E.g.:

faust2esp32 -lib faustProgram.dsp

Drivers for various audio codecs are supported by
faust2esp32 and can be targeted through the use of op-
tions (i.e., -wm8978 for the Cirrus Logic WM8978, -ac101 for
the AC101, etc.). Generated DSP engines are compatible both
with the C++ (i.e., Python/makefile toolchain) and the Arduino
programming environment of the ESP32.

Figure 8: ESP32-based audio Processing boards (the TTGO TAu-
dio on the left and the ESP32 Audio Dev Kit on the right).

Recent developments involve MIDI and polyphony support.
Using the onboard WiFi, OSC over UDP can be implemented.

33https://www.espressif.com/en/products/
hardware/esp32/overview

34https://faust.grame.fr/doc/tutorials/index.
html#dsp-on-the-esp32-with-faust
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Additionally, the LilyGO TTGO TAudio can now be fully pro-
grammed with FAUST without writing a single line of C++ or Ar-
duino code. In that case, metadata can be used to access the various
analog inputs and GPIOs35 of the board. These developments are
being carried out in the context of the Amstramgrame project.36

The ESP32 offers a wide range of advantages over similar
types of board. The principal one is its cost. For example, the
LilyGO TTGO TAudio provides a comprehensive programmable
platform fo real-time audio processing for less than $15! Another
advantage of the ESP32 is its exhaustivity (e.g., WiFi, Bluetooth,
etc.). They all come to the cost of quality of production and of tiny
bugs that tend to pop up from time to time.

6. DIGITAL SIGNAL PROCESSORS: THE SHARC
AUDIO MODULE

The SHARC audio module (see Figure 9) can be targeted with
FAUST using the faust2sam command line tool which converts
a FAUST program into a C++ package which can be inserted into
a project on the Cross Core Embedded Studio (CCES) bare-metal
framework.37 Despite some efforts in that direction, this platform
doesn’t necessarily target the hobbyist/maker or computer music
communities and its toolchain remains relatively cumbersome. For
example, a USB JTAG emulator such as the Analog Devices ICE-
100038 must be used for its programming. Moreover, FAUST ob-
jects running on the SHARC audio module can only be controlled
using MIDI (through a physical MIDI connector) which can be
very limiting.

Figure 9: The Analog Devices SHARC Audio Module.

We’d like to support other types of Digital Signal Processors
in the future. In particular, being able to target fixed-point chips
would be a huge step forward towards making this type of platform
more accessible (see §7.2).

7. FUTURE DIRECTIONS

While microcontrollers existed for decades before Arduinos, it’s
only when this platform appeared about fifteen years ago that they

35General Purpose Inputs/Outputs
36https://www.amstramgrame.fr
37https://wiki.analog.com/resources/

tools-software/sharc-audio-module
38https://www.analog.com/en/design-center/

evaluation-hardware-and-software/
evaluation-boards-kits/emulators.html#eb-overview

became fully accessible. The Arduino IDE39/programming envi-
ronment played a huge role in that context by offering a high-level
way to program these low-level platforms. Our conviction is that
Domain Specific Languages (DSLs) such as FAUST can make low-
level platforms with potential applications for audio processing
(e.g., FPGAs, GPUs, bare-metal CPU-based embedded systems,
etc.) more accessible to the makers, audio DSP, music technology,
etc. communities. Such systems can target ultra-low latency ap-
plications and provide extended computational power for specific
DSP algorithms. Our future efforts will focus on this topic.

7.1. Bare-Metal on the Raspberry Pi

CPU-based embedded Linux systems such as the RPI provide ex-
tended computational power and memory (e.g., the PI 3 A+40 is
based on a Broadcom BCM2837B0 Cortex-A53 with 4 1.4GHz
cores and 512MB of RAM) compared to simpler architectures
such as microcontrollers (see §5). Running real-time DSP algo-
rithms in a bare-metal environment (without an OS) on these plat-
forms should allow for further optimizations (e.g., by taking ad-
vantage of the Neon technology41 on Cortex A processors, etc.)
and reduced audio latency.

Some work has already been done in that direction by imple-
menting the prototype of a FAUST architecture for Circle42 which
is a C++ bare metal programming environment for the RPI. Gen-
erated objects consist of kernels that can be placed on the PI’s SD
card. MIDI and polyphony support has been implemented as well.

The current toolchain remains relatively cumbersome though
and the SD card has to be taken off of the RPI every time a new
program is created: the system is completely static. Furthermore,
the RPI doesn’t give access to proper audio inputs and outputs (i.e.,
audio codec) and to sensor inputs (i.e., microcontroller), making it
unusable in the context of embedded musical instrument design.

Our plan is to develop a bare metal kernel turning the RPI
into a WiFi hotspot running a small web server. FAUST programs
will be sent on the Pi remotely using this system and will then be
compiled using the on-the-fly embedded FAUST compiler [17]. In
parallel of that, an RPI hat/sister board adding a microcontroller
and an audio codec could be developed.

7.2. FPGAs

We’ve been exploring for the past few months the idea of program-
ming FPGA boards with FAUST in the framework of the SyFaLa
project43 which associates INSA Lyon’s Citi Lab (Lyon, France)
and Xilinx’s expertise around FPGAs to FAUST (Grame’s research
team). While we’re still in the preliminary stage of this project,
we managed to run FAUST DSP objects on a Digilent Zybo Z744

which is a development board hosting a Xilinx Zynq-7000 FPGA
(see Figure 10). This is currently done through High-Level Syn-
thesis (HLS) by compiling FAUST programs to C++ and then to
an IP core (Intellectual Property Core). A specific FAUST C++

39Integrated Development Environment
40https://www.raspberrypi.org/products/

raspberry-pi-3-model-a-plus/
41https://developer.arm.com/technologies/neon
42https://github.com/rsta2/circle
43https://faust.grame.fr/syfala
44https://store.digilentinc.com/

zybo-z7-zynq-7000-arm-fpga-soc-development-board/
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backend had to be developed to make this possible. While our sys-
tem works, it is currently hard to control audio processing parame-
ters in real-time. Moreover, generated IPs are relatively inefficient,
probably due to the use of floating points.

Next steps consist in generating fixed-point DSP objects to fur-
ther optimize produced IPs and improving the control of process-
ing parameters. The ability to produce fixed-point DSP objects
could also be exploited in the context of Digital Signal Proces-
sors (see §6). In a more distant future, we’d also like to be able
to generate VHDL code directly from FAUST. The results of this
preliminary work are presented in a companion paper [18].

Figure 10: The Digilent Zybo Z7.

7.3. GPUs

Graphics Processing Units (GPUs) have been increasingly used
in recent years for real-time audio processing applications, taking
advantage of their high degree of parallelization to run DSP al-
gorithms that can be easily divided into multiple processing units
such as modal reverbs [19], etc.

We believe that FAUST has a role to play in that context by fa-
cilitating the programming of this type of platform. We did some
experiment in 2010 by developing OpenCL and CUDA backends.
At that time, results were not really convincing. Now that GPUs
are becoming much more powerful, and with a better understand-
ing of the class of DSP algorithms that can take benefit of their
massive data parallelism capabilities, we plan to work again on
this subject in the future.

8. CONCLUSIONS

For a long time, FAUST had been mostly targeting desktop applica-
tions such as standalones, plugins, externals, etc., but it took a huge
step towards embedded hardware platforms in recent years. In
many cases, programming these systems require specialist skills,
making them out of reach to the audio programming community.
We believe that Domain Specific Languages such as FAUST have
a huge role to play in that context by making these platforms more
accessible. This involves complex research challenges, especially
in the case of ultra-low-level systems such as FPGAs. We plan to
dedicate a lot of time in the future at tackling these problems.
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