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A B S T R A C T   

We present results from the Agricultural Model Intercomparison and Improvement Project (AgMIP) Global 
Gridded Crop Model Intercomparison (GGCMI) Phase I, which aligned 14 global gridded crop models (GGCMs) 
and 11 climatic forcing datasets (CFDs) in order to understand how the selection of climate data affects simulated 
historical crop productivity of maize, wheat, rice and soybean. Results show that CFDs demonstrate mean biases 
and differences in the probability of extreme events, with larger uncertainty around extreme precipitation and in 
regions where observational data for climate and crop systems are scarce. Countries where simulations correlate 
highly with reported FAO national production anomalies tend to have high correlations across most CFDs, whose 
influence we isolate using multi-GGCM ensembles for each CFD. Correlations compare favorably with the climate 
signal detected in other studies, although production in many countries is not primarily climate-limited 
(particularly for rice). Bias-adjusted CFDs most often were among the highest model-observation correlations, 
although all CFDs produced the highest correlation in at least one top-producing country. Analysis of larger 
multi-CFD-multi-GGCM ensembles (up to 91 members) shows benefits over the use of smaller subset of models in 
some regions and farming systems, although bigger is not always better. Our analysis suggests that global 
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assessments should prioritize ensembles based on multiple crop models over multiple CFDs as long as a top- 
performing CFD is utilized for the focus region.   

1. Introduction 

Global agricultural systems are vulnerable to climate hazards 
including extreme events and long-term trends that alter the growth 
environment. Cultivar and farm management practices are often 
selected to produce high and stable yields within the current expected 
climate, but this still leads to underperforming years as well as emerging 
pressures for adaptation as regional climates shift under anthropogenic 
climate change (Lobell et al., 2011; Mbow et al., 2019; Porter et al., 
2014; Rosenzweig et al., 2014). Understanding regional agricultural 
systems’ climate hazard profile is critical to major international goals for 
disaster preparedness (e.g., the Sendai Framework; UNISDR, 2015), 
greenhouse gas mitigation (e.g., the Paris Agreement, United Nations, 
2015a), and the Sustainable Development Goals (United Nations, 
2015b). Planning for current and future farming systems is therefore 
rooted in solid analysis of crop response to recent historical climate, 
which then acts as a baseline for the generation of future agroclimatic 
scenarios to allow investigation of adaptation, mitigation, and 
resilience-building interventions (Antle et al., 2015; Lange, 2019a; 
Ruane et al., 2015b,a) As many of the world’s most vulnerable agri
cultural regions are found in areas with incomplete or inconsistent 
meteorological observations, the Agricultural Model Intercomparison 
and Improvement Project (AgMIP1) has developed protocols and data
sets to fill in observational gaps in order to provide a consistent climatic 
forcing for agricultural models across AgMIP and related simulation 
projects (Rosenzweig et al., 2013; Ruane et al., 2015b; Ruane et al., 
2017). 

In this study, we investigate the hypothesis that the selection of a 
climatic forcing dataset (CFD) has strong influence on the fidelity of crop 
models simulating regional production of maize, wheat, rice, and soy. To 
do this we utilize global agricultural model simulations conducted as 
part of the AgMIP Global Gridded Crop Model Intercomparison (GGCMI, 
Elliott et al., 2015; Müller et al., 2017; see Supplementary Material S1), 
allowing us to investigate multi-model ensembles to reduce 
model-specific bias. Our final analysis of simulation skill is the corre
lation between crop model ensembles and the time series of national 
level production (Fig. 6), with the preceding figures and sections 
providing examples and analysis approaches that help interpret differ
ences across nations, crop systems, and crop model ensembles (further 
bolstered by the Supplementary Material). Influence of CFDs on pro
duction will depend on (i) the accuracy of climatic forcing datasets 
(CFDs) in capturing mean climate and resolving extreme events (Section 
3), (ii) the ability of crop model biophysical process representations to 
capture important climatic responses (Section 4), and (iii) whether CFD 
differences align with critical crop model processes and structural dif
ferences in a manner that would lead to noticeable differences in agri
cultural response (Section 5). In this way we may apply the agricultural 
impacts lens to identify important differences in climate datasets that 
would otherwise be too subtle to distinguish. The structure of the 
GGCMI intercomparison also allows us to investigate the role of CFD 
selection within the context of GGCM/CFD ensembles including up to 91 
members. 

2. Material and methods 

2.1. Climatic forcing datasets 

Crop models typically require daily meteorological inputs including 
maximum and minimum temperature (Tmax and Tmin), precipitation (P), 
and solar radiation (Srad). Many crop models also require information 
about humidity (relative humidity, vapor pressure deficit, or dew point 
temperature), longwave radiation, and wind speed in order to more 
accurately estimate potential evapotranspiration. Some models utilize 
hourly information to better understand processes related to the diurnal 
cycle. High-quality in situ measurements remain the gold standard for 
model simulations, with remote sensing and retrospective analyses 
(‘reanalyses’) filling in gaps in space and time (Gelaro et al., 2017; 
Schollaert Uz et al., 2019). Agricultural applications benefit from the 
combination of best performing products (Toreti et al., 2019), although 
care must be taken to ensure that CFDs utilize bias adjustment tech
niques that maintain the statistics most relevant to crop models (Famien 
et al., 2018; Galmarini et al., 2019; Parkes et al., 2019). CFDs created for 
application across multiple scales, regions or sectors (e.g., Lange, 2019c) 
may face additional constraints in terms of variable and water/energy 
budget consistency than would be required of only a single scale and 
sector. 

Reanalyses are numerical weather prediction models reinitialized 
multiple times each day using assimilation of observational data . These 
do not assimilate the specific variables needed for crop models, how
ever, so variables like maximum and minimum temperature, precipita
tion rate, incident solar radiation, and near-surface humidity are the 
products of internal model processes and parameterizations. Observa
tional datasets also have uncertainties and biases, particularly in regions 
where local observations are sparse, of poor quality, or difficult to access 
(Iizumi et al., 2014, 2017; Ruane et al., 2015b). Historical CFDs are 
typically generated by combining the universal coverage and physical 
consistency of reanalysis outputs with observational data from gridded 
in situ measurements and satellite remote sensing in order to create a 
uniform, coherent, and bias-adjusted dataset to drive impact models. 
The resulting CFD is a globally-coherent dataset with day-to-day se
quences and variable relations from the reanalysis that have been 
adjusted to ensure that monthly statistics match observational products. 

Table 1 provides an overview of the 11 climatic forcing datasets 
(CFDs) used in the GGCMI Phase 1 simulations evaluated in this study, 
including their underlying reanalyses, key bias-adjustment targets (in 
situ station and remote sensing products), and special notes on key as
pects of the bias adjustment. Many of these datasets were compared 
against global station data by Ruane et al., 2015ba), which also includes 
additional distinction between bias-adjustment methods in the various 
products. The GRASP dataset is particularly unique in that it does not 
adjust biases on a monthly basis according to target observational 
datasets; rather, the 1961-1990 period was used to determine 
time-constant adjustment factors that are then applied to reanalysis data 
over the entire 1980-2010 period (Iizumi et al., 2014). 

Several CFDs share common characteristics that allow us to isolate 
the ramifications of particular options in the CFD-generation process. 
AgMERRA and AgCFSR utilize the same bias-adjustment methods and 
target observational datasets but differentiate in their selection of un
derlying reanalysis (same monthly values but different daily sequences). 
AgCFSR and CFSR are driven by the same reanalysis, but CFSR does not 
undergo any bias adjustment (same daily sequence but different 
monthly values). Likewise, both WFDEIcru, and WFDEIgpcc are based 
on the ERA-INTERIM reanalysis, which is also included without bias- 
adjustment (ERAI, same daily sequence but different monthly values). 

1 Abbreviations: AgMIP: The Agricultural Model Intercomparison and 
Improvement Project; CFD: Climatic Forcing Dagaset; GGCM: Global Gridded 
Crop Model; GGCMI: Global Gridded Crop Model Intercomparison 
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Table 1 
Overview of Climatic forcing Datasets (adapted from Elliott et al., 2015). Ac
ronyms are explained in table footnotes. All GGCMs utilize these CFDs’ daily 
maximum and minimum temperatures, precipitation, and solar radiation, with 
some models additionally using wind speed, humidity, vapor pressure, and 
dewpoint temperature.  

Dataset Underlying 
reanalysis 
(resolution) 
[reference] 

Years CFD 
native 
resolution 

Bias-adjustment 
notes (and key 
reference) 

AgCFSR  CFSR 
(≈0.3◦) 
[Saha et al., 2010] 

1980- 
2010 

0.5◦/0.25◦ Monthly 
temperature and 
precipitation values 
match ensemble of 
CRUTS3.10 (Harris 
et al., 2014), 
GPCCv6 (Fuchs, 
2009; Rudolf et al., 
2010), and WM ( 
Willmott and 
Matsuura, 1995), 
with adjustment to 
CRUTS3.00 wet day 
frequency and SRB 
solar radiation ( 
Stackhouse, Jr et al., 
2011). Diurnal 
temperature range 
matches CRU (on 
average). Monthly 
precipitation 
climatology from 
high-resolution 
satellite products, 
although that 
information is lost at 
0.5◦ resolution used 
in this study. 
Includes vapor 
pressure, dew point 
temperature, and 
relative humidity at 
time of maximum 
temperature (Ruane 
et al., 2015b) 

AgMERRA MERRA 
(0.5◦x0.66◦) 
[(Rienecker et al., 
2011)] 

1980- 
2010 

0.5◦/0.25◦ Same bias- 
adjustment targets 
and methods as 
AgCFSR, but diurnal 
temperature range is 
adjusted be ¾ of the 
distance between 
MERRA and CRU (on 
average) and 
incorporates 
precipitation 
sequence from 
MERRA-Land ( 
Reichle et al., 2011) 
dataset that utilizes 
GPCP observations ( 
Ruane et al., 2015b) 

CFSR CFSR 
(≈0.3◦) 
[Saha et al., 2010] 

1979- 
2011 

0.3◦ No bias-adjustment 
from original 
reanalysis (Saha 
et al., 2010) 

ERAI ERA-Interim 
(0.75◦) 
[(European Centre 
for Medium-Range 
Weather Forecasts 
2009)] 

1979- 
2019 

0.75◦ No bias-adjustment 
from original 
reanalysis (( 
European Centre for 
Medium-Range 
Weather Forecasts 
2009)) 

GRASP JRA-25 (1.125◦) 
[Onogi et al., 
2007] 
& ERA-40 

1961- 
2010 

1.125◦ Adjusts to CRU- 
TS3.10 for 
temperature and 
precipitation,  

Table 1 (continued ) 

Dataset Underlying 
reanalysis 
(resolution) 
[reference] 

Years CFD 
native 
resolution 

Bias-adjustment 
notes (and key 
reference) 

(2.5◦ version) 
[Uppala et al., 
2005] 

CRUTS3.0 wet-day 
frequency, CRU- 
CL1.0 winds, and 
SRB solar radiation. 
Time-constant 
correction factors 
derived from 1961- 
1990 period (Iizumi 
et al., 2014) 

GSWP3 20CR (2◦) [Compo 
et al., 2011] 

1901- 
2010 

0.5◦ Adjusts to GPCC 
precipitation, SRB 
solar radiation, and 
CRU temperature ( 
Dirmeyer et al., 
2006) 

PGFv2 NCAR Reanalysis 1 
(2.8◦) [Kalnay 
et al., 1996] 

1901- 
2012 

0.5◦ Adjusts to CRU, 
GPCP, SRB, and 
utilizes the TRMM 
Multi-satellite 
Precipitation 
Analysis (Sheffield 
et al., 2006) 

Princeton NCAR Reanalysis 1 
(2.8◦) [Kalnay 
et al., 1996] 

1948- 
2008 

0.5◦ Adjusts to CRU 
TS2.0, GPCP, SRB, 
and utilizes the 
TRMM Multi- 
satellite 
Precipitation 
Analysis (Sheffield 
et al., 2006) 

WATCH ERA-40 (2.5◦)  
[Uppala et al., 
2005] 

1958- 
2001 

0.5◦ Adjusts to CRUTS2.1 
temperature and 
GPCCv4 
precipitation. Also 
known as WATCH 
Forcing Data (WFD) 
(Weedon et al., 
2011); listed as 
element of GGCMI 
Phase 1, but not 
included in further 
analysis given year 
2001 end date. 

WFDEIcru ERA-Interim 
(0.75◦) [Dee et al., 
2011] 

1979- 
2012 

0.5◦ Monthly corrections 
to CRU TS3.1/ 
CRUTS3.101/ 
CRUTS3.21; includes 
longwave radiation ( 
Weedon et al., 2018) 

WFDEIgpcc ERA-Interim 
(0.75◦) [Dee et al., 
2011] 

1979- 
2010 

0.5◦ Same as WFDEIcru 
but precipitation 
adjusted to GPCCv5/ 
v6 (Weedon et al., 
2018) 

* All CFDs were applied on a common 0.5◦ x 0.5◦ grid for crop model simulations 
and analyses in this study; Native resolution shows highest level of distinction 
for CFD (AgMERRA and AgCFSR shown separately for all variables / precipi
tation only) 
NCAR = National Center for Atmospheric Research (USA) 
CFSR = NCAR Climate Forecast System Reanalysis (USA) 
MERRA = Modern Era Retrospective-analysis for Research and Applications 
(USA) 
JRA-25 = 25-year Japanese Reanalysis (Japan) 
ERA-40 = European Centre for Medium-range Weather Forecasting 40 year 
reanalysis (UK) 
ERAI = European Centre for Medium-range Weather Forecasting Interim rean
alysis (UK) 
WM = Willmott and Matsuura, 1995 
SRB = NASA/GEWEX Solar Radiation Budget (USA) 
GPCP = Global Precipitation Climatology Project (USA) 
GPCC = Global Precipitation Climatology Centre (Germany) 
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Additionally, WFDEIcru and WFDEIgpcc use the same bias-adjustment 
methods and target datasets with the exception of different monthly 
precipitation dataset targets (CRU or GPCC) (same daily sequences and 
monthly values except for monthly precipitation). WFDEIcru and 
WFDEIgpcc also represent an updated application of the WATCH 
methodology, while PFGv2 is an update to the Princeton CFD. 

This study analyzes agroclimatic aspects of CFDs using methods 
established in (Ruane et al., 2018a) to target agricultural productivity. 
Seasonal climate factors are calculated according to the local major 
growing seasons for maize, wheat, rice, and soybean determined by 
GGCMI protocols for planting and average harvest dates (Elliott et al., 
2015). In many cases this information is documented on a country-level, 
missing differences within a country that can be important to regional 
production. 

We evaluate CFDs for the 1980-2010 period, offering a ‘current’ 
climatology containing the 30 complete growing seasons that led to 
harvests from 1981-2010. This includes data from 1980 to account for 
regions where the growing season overlaps January 1st such that 
planting in 1980 led to a harvest in 1981. Simulations were run with CO2 
concentration data from Mauna Loa (Thoning et al., 1989). This period 
also included substantial climatic trends in many regions owing to 
large-scale modes of climate variability, as well as anthropogenic 
climate change, which required us to detrend GGCMI outputs when 
comparing against detrended FAO production anomalies (which were 
also detrended, as described in Section 2.4 below). The WATCH forcing 
dataset is not included in further analyses for this study given that it does 
not extend beyond 2001, but we do include analysis of simulations 
driven by the Princeton dataset up to 2008. 

2.2. Global gridded crop models 

Crop models track daily water, carbon, and nitrogen balances in the 
plant and field environment progressing through developmental stages 
as determined by genotype parameters, field management, and climate 
drivers. These models have been developed using extensive observations 
and field and chamber trials, with many AgMIP-facilitated in
tercomparisons helping to elucidate strengths and weaknesses associ
ated with various modeling approaches (Martre et al., 2015; McDermid 
et al., 2015; Ruane et al., 2017; Zhao et al., 2017). 

The process-based crop models utilized in this study (Elliott et al., 
2015; Müller et al., 2017) are configured using information about the 
cultivar genotype (e.g., temperature-based phenology, heat and drought 
resistance), soils (e.g., 1 to 2 meters of layered texture and water holding 
properties), farm management (e.g., tillage methods, planting and har
vest dates, fertilizer and irrigation applications), and climate (as noted 
in previous section). Müller et al. (2019) and Supplementary Material S2 
provide a more complete description of the 14 GGCMI models and 3 
configuration types utilized, including 2 configurations in which 
growing season and fertilizer levels are harmonized for consistency. 
Irrigation is assumed to be unconstrained by water availability and any 
soil water deficit is balanced the next day without application or 
conveyance losses. Calibration of any model parameters was performed 
at the global scale, although modelers configured soils, cultivars, and 
management practices regionally (e.g., to match GGCMI growing season 
harmonization protocols). Observational production data were used by 
some models to calibrate mean yields, but no models incorporated in
formation about the observed interannual anomalies in focus for this 
study. 

The goal of this current study is to isolate the role of climatic forcing 
dataset and ensemble selection in GGCM historical performance, and we 
refer readers to (Müller et al., 2017) for a more detailed evaluation of 
GGCM-based differences in capturing historical national yield variation. 
The group of models include several with common origins, as described 
by Rosenzweig et al. (2014; Supplementary Information); however, 
large variations in included model processes, configuration settings and 
calibration datasets mean that each of the models in the ensemble are 
substantially distinct from one another (see Müller et al., 2019, and 
Supplementary Information S2). Folberth et al. (2019) further evaluated 
differences in the 5 different modeling group simulations stemming from 
the EPIC model, finding that yield estimates were distinguished by dif
ferences in model versions, parameterization, management assumptions 
(beyond those harmonized within GGCMI), soil attributes, and cultivar 
distributions. 

2.3. Simulation subsets and ensembles for analysis 

Table 2 shows the complete set of GGCM Phase 1 simulations, which 
were run for both rainfed and irrigated conditions. Gaps in the table 
reflect that resource and structural constraints limited the ability of 
many modeling teams to run every requested combination of CFD, 
configuration and crop species. In order to achieve complete multi- 
model coverage for at least two WFDs, each GGCM was specifically 
requested to run the AgMERRA and WFDEIgpcc CFDs and then as many 
additional CFDs as resources allowed. There are relatively fewer simu
lation outputs submitted for the GSWP3 and PGFv2 CFDs as these were 
added to the GGCMI protocol later in the project timeline. As our interest 
is in determining the response of GGCMs to the CFDs’ growing season 
climate, we prioritize the simulations with consistent planting and 
harvest dates ([H and N] > D) and selected configurations that included 
nitrogen limitations where available (H>N), resulting in a final priori
tization of H>N>D (see Supplementary S2 for further model and 
configuration information). Analysis here focuses on the relative sea
sonal anomalies for each GGCM simulation, which are a better reflection 
of climatic response than the raw anomalies influenced by mean bias 
and further questions of model configuration such as soil nitrogen and 
cultivar characteristics (Müller et al., 2017). 

To isolate the implications of the CFD selection in the full ensemble, 
we identify two types of GGCM-CFD groupings that sample across the 
crop model dimension: 

‘+’ subset [per CFD]: A consistent subset of GGCMs across CFDs, 
representing the 7 GGCMs (5 for rice) that ran most CFDs (underlined 
in Table 2): EPIC-BOKU, EPIC-TAMU, LPJ-GUESS, LPJmL, pAPSIM, 
pDSSAT and PEGASUS, using the bolded and underlined configura
tion in Table 2. The ‘AgMERRA+’ subset, for example, is the 
ensemble average of these 7 GGCMs simulating the AgMERRA CFD 
using the specified configuration. 

‘All’ subset [per CFD]: All GGCMs that ran a given CFD, using the 
bolded configuration. The ‘AgMERRA_all’ subset, for example, in
cludes all GGCMs that ran the AgMERRA CFD using the specified 
configuration. 

We also form ensembles across both the climate and crop model 
dimensions of GGCMI in order to look at overall GGCMI performance: 

‘Ensemble+’ subset: All GGCMs that were included in the + ensembles 
across all CFDs (bolded and underlined in Table 2). This represents 
the aggregate performance of the core set of GGCMs that ran most 
CFDs. 

‘Ensemble-all’ subset: All GGCM/CFD combinations marked as bold in 
Table 2 (e.g., 91 model simulations in total for maize). To our 
knowledge this is the largest GGCM/CFD ensemble to have been 
constructed, and we examine it here to quantify the potential added 

CRU = Climatic Research Unit (University of East Anglia, UK) 
CMORPH = Climate Prediction Center Morphing Product (USA) 
PERSIANN = Precipitation Estimation using Remote-Sensing and Artificial 
Neural Networks (USA) 
TRMM = National Aeronautics and Space Administration Tropical Rainfall 
Measurement Mission (USA) 
TMPA = TRMM Multi-satellite Precipitation Analysis (USA) 
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benefit given that the resources required for such large community 
efforts typically preclude their use for individual applications. 

Each of these subsets is designed to build on AgMIP findings that the 
statistics of an ensemble of models performs better than any single 
model when evaluated across a broad spectrum of environments and 
systems (Bassu et al., 2014; Fleisher et al., 2017; Jägermeyr et al., 2020; 
Martre et al., 2015; Müller et al., 2017; Nelson et al., 2014; Wallach 
et al., 2015; Zhao et al., 2017). Consequently, no model is given more 
weight within any particular ensemble when calculating ensemble sta
tistics (Wallach et al., 2016). Müller et al. (2017) provide analysis of 
individual GGCM performance, which is not our focus here, 

Analysis of the ‘+’ subsets for each CFD therefore provides unprec
edented insight into these CFDs’ effects on agricultural simulations with 
a consistent crop model ensemble rather than being dependent on a 
single crop model. Note that the ‘+’ ensemble contains 7 models for 
maize, wheat, and soybean, but only 5 models for rice given that pAP
SIM and PEGASUS did not provide data for rice. The ‘+’ ensemble in
cludes two EPIC GGCMs but these employ different core EPIC model 
versions and a number of differences in configuration for soils and 
management (Folberth et al., 2019). The ‘All’ subsets indicate whether 
the inclusion of additional GGCMs would have altered the ensemble’s 
response to the CFD response. These contrast with the ‘Ensemble-all’ 
subset that provides the overall GGCMI Phase 1 ensemble performance, 
which benefits from both an ensemble of CFDs and GGCMs although the 
relative weight of each depends on the outputs provided (Table 2). An 
example of GGCM/CFD ensemble construction is provided for Romanian 
maize production anomalies in Figure S.2. 

2.4. Production datasets and processing 

GGCMs simulate crop yields (t/ha) that must be converted to pro
duction (total kg) using harvested area masks in order to compare 
against observational production datasets. We calculate national-level 
production from the 0.5◦ x 0.5◦ grid using harvested crop areas from 
the Spatial Production Allocation Model v2.0 (SPAM), which approxi
mates the year 2005 and does not change from year to year (You et al., 
2014). We aggregate rainfed and irrigated production values separately 

using the corresponding GGCMI simulations and SPAM areas, then use 
the sum of rainfed and irrigated production for national or global totals 
(following Ruane et al., 2018bb; Porwollik et al., 2017). 

Reference national production data are drawn from the United Na
tions Food and Agricultural Organization (http://www.fao. 
org/faostat/en/#data). These data are reported by governments and 
include heterogeneous cultivars, planting dates, fertilizer applications, 
irrigation methods, farm management, and soils that cannot be fully 
represented by GGCMI’s relatively coarse resolution configurations. 
FAOstat data also reflect agricultural trends and anomalies beyond those 
driven solely by field-level climate such as the effects of technological 
improvements, mechanization, agricultural sector development, labor 
supply, geopolitical conflict, crop pests and diseases, and large-scale 
disasters (e.g., earthquakes, floods, hurricanes). Overall, Ray et al., 
(2015) estimated that the climate signal explains only about a third of 
observed global interannual yield variability. For these reasons we 
detrend FAOstat data and crop model outputs. GGCMI has explored 
multiple methods for detrending including first-difference, linear and 
polynomial fits, and there is a clear tradeoff between consistency in 
methods and unique characteristics in production time series that defy 
general approaches. While further efforts to isolate the climate signal in 
national production datasets using a blend of locally-selected detrending 
techniques would be beneficial to GGCMI and the broader agricultural 
community, here we calculate anomalies from a 5-year moving average 
and compare against similarly detrended GGCMI outputs (as described 
in Müller et al., 2017, and further evaluate in Supplemental Materials 
S8). We assign each simulated growing season according to the average 
harvest date for the purpose of time series correlations, which can cause 
an occasional mismatch with FAO data that assigns harvests to the 
growing season in which the majority of the growing period occurs, 
leading to occasional differences for locations and seasons with early or 
late harvests that are on the other side of New Year’s day than the 
average harvest date. Additional information on the use of production 
datasets is provided in Supplementary Materials S4. 

To understand the role of climate variability on a sub-national scale 
we also employ the detrended United States Department of Agriculture’s 
National Agricultural Statistics Service (USDA NASS) county-level 

Table 2 
Coverage of Global Gridded Crop Models (GGCMs), Climate Forcing Datasets (CFDs), and GGCM configuration settings (see Supplementary Material S2 and S3 for 
configuration and model information). Underlined models are used in the ‘+’ subset for each CFD, and the bolded configuration was selected for analysis when outputs 
from multiple configurations were submitted for a given GGCM.  
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production (https://quickstats.nass.usda.gov/). NASS production data 
are collected using reported and surveyed yields. We combine the 
average of NASS 1981-2010 county-level cropped areas with simulated 
yields to calculate simulated county-level production for comparison to 
NASS production anomalies. 

We analyze uncertainty by determining the relative variation across 
ensemble members for each year compared to the variation of the 
ensemble median across years. Anomalies of precipitation and yield are 
first calculated as percentages to remove the effects of mean biases. We 
then calculate a standardized anomaly, which is the ratio of (i) the 
standard deviation of yearly ensemble member anomalies (compared to 
the ensemble mean) to (ii) the standard deviation of the ensemble mean 
time series itself. Standardized anomalies >1 therefore indicate that a 
given annual anomaly is more likely due to ensemble member differ
ences, while standardized anomalies <1 indicate that anomalies are 
likely representative of true interannual variation. Supplementary Ma
terial S.7 provides further detail on this method as well as two con
trasting examples (Figure S.5). 

3. Differences between climatic forcing datasets 

CFD regional differences can be measured in myriad ways, including 
in their mean quantities, statistical distributions, sequencing of events, 
variable relationships, modes of variability, long-term trends, and 
spatial coherence. While a comprehensive atlas of CFD differences for 
each growing season is beyond the scope of this paper, Fig. 1 provides 
the median of the CFD-all ensemble for the rainfed maize growing season 
as well as biases for AgMERRA and WFDEIgpcc, which are the CFDs 
most commonly used within GGCMI Phase 1. Corresponding bias maps 
for the other CFDs are provided in Supplementary Figures S.2-S.4. It is 
important to emphasize that the CFD-all median is not necessarily the 
true value given common biases in observational datasets and methods 
across CFDs. Computing the median is likely to reduce some of the more 
outlying values, however; and therefore serves as a ‘best-guess’ basis to 
help us identify CFD differences that are likely relevant to agricultural 
production. The Princeton CFD was not included in these CFD-all climate 
maps because it ends in 2008, and because it displayed a checkerboard- 
like spatial bias pattern for precipitation threshold statistics. This sug
gests errors in re-gridding and/or interpolation of daily sequences in the 
GGCMI processing of that dataset, although this pattern was not 
apparent in the mean precipitation rate or other variables. The following 
metrics are evaluated for the rainfed maize growing season and culti
vation regions as an example given that maize is an important staple 
crop with widespread cultivation. 

3.1. Mean growing season metrics 

Median CFD-all mean temperature in the rainfed maize growing 
season (Fig. 1a) generally follows mean climatological patterns with 
warmer conditions in the Tropics and cooler conditions at higher lati
tudes, as maize generally corresponds to the warm season unless part of 
a multi-cropped region. CFD differences for mean temperature are 
generally low (<1◦C). AgMERRA (Fig. 1b) is slightly cooler than CFD-all 
in most of the United States, South America, Africa, Europe, and 
Indonesia, and is slightly warmer in South and East Asia as well as the 
Middle East, Mexico, and South America west of the Andes. WFDEIgpcc 
(Fig. 1c) has generally the opposite differential pattern for the United 
States and Asia, and is also cooler than CFD-all in Europe, East Africa, 
and southern South America. 

Median CFD-all mean precipitation rate (Fig. 1g) reflects that rainfed 
maize generally grows during the local wet season. AgMERRA is 
generally very close to the median CFD, with a slight dry bias (≈5%) in 
Southern Russia and scattered small regions around the world. 
WFDEIgpcc has a widespread wet bias with prominent differences >10% 
in the US Midwest, southern South America, central Africa, Europe, and 
eastern India. Dry bias pockets >10% are less common, but include 

southwest India and Myanmar. 
Solar radiation in the CFD-all (Fig. 1p) reflects a combination of 

latitude, aridity, and seasonality of the growing period, with cloudier 
conditions in the moist Tropics and reduced solar radiation in the cool 
season maize in SE China and northern Mexico. AgMERRA has solar 
radiation very close to the ensemble median. This is likely because many 
CFDs used the same NASA/GEWEX SRB information (Stackhouse, Jr 
et al., 2011) and the others did not substantially differ on aggregate. 
WFDEIgpcc is generally cloudier in the tropics and sunnier at mid- 
latitudes (≈ +/- 1.5 MJ/m2/day). 

3.2. Distributional statistics within the growing season 

Days where maximum temperature exceeds 35◦C (Fig. 1d) are 
associated with negative impacts on maize pollination and production 
(Hatfield and Prueger, 2015), and patterns of this extreme temperature 
are a reasonable proxy for similar heat stress thresholds of wheat, rice, 
and soybean (Deryng et al., 2014; Schauberger et al., 2017). The median 
CFD-all sees more of these extreme heat days along the fringes of the 
major growing areas, including in the Sahel, Central Asia, NE Brazil, and 
the SW Great Plains and NE Mexico. AgMERRA is similar to CFD-all in 
major breadbaskets of the Central United States, Europe, and East Asia 
but tends to underestimate these days (by ≈10) in many tropical areas 
while overestimating them in semi-arid zones of Southern Africa, 
Southern South America, Central and West Asia, and the western Great 
Plains. WFDEIgpcc has an overall tendency towards more extreme heat 
days than CFD-all (by ≈10-15 in many regions), particularly in North 
America and along the fringes of the Amazon although it is similar to 
CFD-all in Europe and East Asia. WFDEIgpcc has more extreme heat even 
in several regions that showed an overall cool bias in mean temperature, 
suggesting a larger diurnal temperature range or broader distribution of 
daily extremes. 

The number of wet days (P > 0 mm) within a growing season is an 
important proxy for the likelihood of dry spells and the overall pro
portion of precipitation that reaches the root zone (as opposed to 
running off). CFD-all median number of precipitation days per growing 
season (Fig. 1j) has a pattern generally similar to the mean growing 
season precipitation rate. AgMERRA has fewer wet days in most maize- 
growing regions (especially in Africa, Mexico and South Asia), while 
WFDEIgpcc has more wet days (particularly in Africa, Southern South 
America, Eastern Europe, and the foothills of the Hindu-Kush- 
Himalayas). These differences are likely due to the additional bias- 
adjustment of the number of precipitation days within AgMERRA, 
AgCFSR, and GRASP which corrects a common drizzle-bias in reanalyses 
and leads to lower numbers than the CFD-all median. 

Heavy precipitation days can be problematic for crops given that 
they are often associated with nitrogen leaching, and a larger proportion 
of total precipitation that falls as heavy precipitation events can reduce 
the overall soil infiltration and heighten the risk of low soil column 
spells. The median CFD-all number of days where P > 20 mm (Fig. 1n) 
has similar spatial patterns to the mean precipitation field, with the most 
frequent heavy events in the Amazon and monsoon regions of Asia. 
Different crop systems and soil profiles may have distinct thresholds for 
pluvial flooding and high runoff proportions, but we employ P > 20 mm 
as representative of the higher tail of the distribution and note that these 
days likely consist of heavier daily totals in smaller regions within the 
larger grid cell (see Supplementary Material S9). AgMERRA has more 
heavy wet days in the Tropics (≈3 more) and Western Africa in partic
ular, likely as a secondary consequence of the reduction in drizzle days 
resulting in fewer (but more intense) precipitation events to match 
monthly totals. WFDEIgpcc has fewer very wet days than CFD-all with 
nearly the opposite geospatial pattern of bias as AgMERRA but more 
substantial reduction over the rainforests of Central Africa. 
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Fig. 1. Rainfed maize growing season (1981-2010) mean and extreme climatologies over maize-growing areas (>10 ha) for (left) mean of all climatic forcing dataset 
(CFD-all) ensemble, (center) deviation of AgMERRA compared to CFD-all, and (right) deviation of WFDEIgpcc compared to CFD-all. From top to bottom, rows are 
deviations in growing season mean temperature (◦C), mean precipitation (%), mean solar radiation (MJ m− 2 day− 1), mean number of days where Tmax > 35◦C, mean 
number of days where P > 0 mm/day, mean number of days where P > 20 mm/day. AgMERRA and WFDEIgpcc are the most commonly simulated CFDs from GGCMI 
Phase 1; corresponding deviation maps for other CFDs are shown in Figures S.3-S.5. 
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4. GGCM response to interannual climate 

In order to understand the geographical distribution of climatic un
certainty, Fig. 2a,c shows the standardized anomalies of rainfed maize 
growing season temperatures and precipitation from CFD-all, revealing 
the places where the CFD ensemble is less clear than a typical annual 
anomaly. High values over the Western Amazon, Central and Western 
Africa, and Borneo reflect the difficulty of obtaining high quality 
observational data in these regions. Standardized temperature anoma
lies above one, indicating CFD variance is greater than interannual 
variance, are also seen across much of Africa, the Hindu-Kush- 
Himalayas and Mexico, while lower values reflect larger interannual 
variance and consistent observational data across North America, 
Europe, Southeast Africa, India, East Asia, and Eastern South America. 

Most maize-growing areas that show high standardized temperature 
anomalies also show high standardized precipitation anomalies, with 
additional regions of larger CFD uncertainty for precipitation over East- 
Central Africa, the Middle East, Central Asia, and Southeast Asia. 

Standardized anomalies of Ensemble-all rainfed maize yield simula
tions (Fig. 2e) reflect many of the patterns seen in the standardized 
anomalies of growing season temperature and precipitation, under
scoring the role of climate uncertainty in the overall simulation uncer
tainty. Standardized anomalies for simulated yield (peaking above 5 in 
some locations) are much larger than for the climate variables (which 
peaked closer to 2), suggesting strong interactions between uncertain 
GGCM configurations and climate variability within the simulated 
yields. High uncertainties are particularly prominent in developing 
countries, where crop simulation models are typically more difficult to 

Fig. 2. Standardized anomalies (unitless) for 1981-2010 rainfed maize growing season (left) and rainfed rice growing season (right) mean (a,b) temperature and (c, 
d) precipitation (across all climatic forcing datasets) as well as for (d,e) yield (across all GGCMIxCFD combinations). Standardized anomalies are the ratio of (i) the 
standard deviation of yearly ensemble member anomalies (compared to the ensemble mean) to (ii) the standard deviation of the ensemble mean time series itself. 
Only regions with >10 ha of harvested area (You et al., 2014) are presented; note that many areas with high standardized anomalies have low planted areas 
(Figure S1). 
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configure given the relative lack of observational climate, soils, and 
agronomic data, their greater proportion of small-holder farms, and 
heterogeneous cultivars and management that may not be consistently 
represented across GGCMs (Fritz et al., 2015). Regions with lower fer
tilizer usage have additional interactions between nitrogen stress and 
heat or water stress driven by climate, which would only be captured in 
GGCMs including nitrogen dynamics. Very few places have standardized 
yield anomalies below 1. 

Standardized anomalies for the wheat and soybean (Supplementary 
Figure S.2) have similar patterns, with lower standardized anomalies for 
temperature than precipitation and the highest standardized anomalies 
coming from the simulated yield. Major production regions for maize, 
wheat, and soybean, which tend to be in the middle latitudes, typically 
have standardized anomalies <1 for climate variables, however the 
major production regions for rice (Fig. 2b,d,f) in Southeast Asia have 
standardized precipitation anomalies >1, corresponding with substan
tial yield uncertainty likely dependent on CFD selection. 

Fig. 3 shows the correlation between median Ensemble-all yields with 
the median CFD-all growing season mean temperature, precipitation, 
and solar radiation to identify regional and crop-specific agroclimatic 
sensitivities. These fundamental climate responses motivate agricultural 
management decisions to reduce risk and point to areas where uncer
tainty in CFD variables is likely to strongly affect simulated yields. 
Higher correlations do not necessarily mean more accurate simulations, 
only that the GGCM simulations for a given crop have a strong and 
consistent response to regional variation of a particular climate variable. 

Rainfed maize, wheat, rice, and soybean simulations each follow a 
common interannual pattern dominated by precipitation, with a positive 
correlation associating wet years with higher yields and the worst- 
yielding years generally associated with drought. This relationship is 
strongest in areas with marginal rainfall totals and low irrigation, 
including NE Brazilian maize, wheat in the western Great Plains of North 
America, rice in the Sahel, and soybean in SE Europe. Temperature 
correlations are broadly negative, indicating that yields are higher in 

Fig. 3. Regional and crop system-dependent GGCM responses to climatic forcing dataset (CFD) growing season anomalies (1981-2010), expressed as Pearson’s 
correlations between the medians of all GGCMxCFD ensemble members (Ensemble-all) compared to the ensemble of all CFDs (CFD-all). Rows are rainfed maize, 
wheat, rice, and soybean, as well as irrigated maize; columns are growing season mean correlations for temperature (left), precipitation (center), and solar radiation 
(right). Only correlations that are significant at p<0.05 level are colored and hatched areas indicate that 2/3 of GGCMxCFD combinations agree on a significant 
correlation in the same direction. Only regions with >10 ha of harvested area (You et al., 2014) are presented. 
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cool years and depressed in hotter conditions. Regional pockets show a 
positive correlation with temperature, indicating that warmer condi
tions can be beneficial along the cooler poleward and high-elevation 
fringes. Yield is often negatively correlated with seasonal solar radia
tion anomalies, which is likely a reflection of cross-correlations in the 
climate system whereby higher precipitation is associated with cloudier 
weather and droughts with clearer skies. It is also likely that high tem
peratures are cross-correlated with drier conditions and higher potential 
evapotranspiration. 

Exceptions to this general pattern are also illustrative, as apparent in 
diverse median responses and a lack of consistency across GGCM/CFD 
combinations (represented by the hatching in Fig. 3). Most crops are less 
sensitive to seasonal climate metrics in the moist tropics, where water is 
less often a limiting factor and interannual variations are generally small 
compared to the average growing season total. These areas are likely 
more responsive to shifts in sub-seasonal characteristics such as heat 
waves and the onset, exit, break periods, and intense precipitation 
events within rainy seasons. Rice, which is often grown in those moist 
tropical regions, is the least dependent on seasonal climate anomalies, a 

result consistent with the finding of reduced sensitivity to climate 
variability by Ray et al. (2015). 

A comparison between rainfed and irrigated maize (top and bottom 
rows of Fig. 3, respectively) highlights the ways in which water man
agement affects climate response, most notably by reducing the 
dependence on precipitation anomalies. Simulations of irrigated maize 
are not completely absent of precipitation response, however; showing 
signs that modeled irrigation management does not eliminate water 
stress in places like Texas, Spain, the Indus Basin, and Northern China. 
Negative responses to wet seasons may reflect nutrient leaching under 
increased runoff in Central America, Northern Europe, and India. Irri
gated maize in Northern Europe and the northern Great Plains has an 
enhanced positive response to temperature compared to the rainfed 
maize, possibly related to a reduction in water stress that can accompany 
a warmer season’s higher evapotranspiration demand. Irrigated areas 
also have relatively higher correlations with solar radiation as water 
supply diminishes the effects of the cross-relationship between sunshine 
and drought conditions. 

Fig. 4. 1981-2010 correlations (r) between the LPJmL GGCM simulation driven by an individual climatic forcing dataset (CFD) and the ensemble of the simulations 
using all CFDs (LPJmL-all). a) LPJmL-AgMERRA simulations vs. LPJmL-all for rainfed maize; b) LPJmL-CFSR simulations vs. LPJmL-all for rainfed maize; c) EPI
C_TAMU-AgMERRA simulations vs. EPIC_TAMU-all for rainfed maize; d) EPIC_TAMU-WFDEIgpcc simulations vs. EPIC_TAMU-all for rainfed maize; e) LPJmL-WFDEIcru 
simulations vs. LPJmL-all for rainfed rice; f) LPJmL-WFDEIgpcc simulations vs. LPJmL-all for rainfed rice. Only correlations that are significant at p<0.05 level 
are colored. 
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5. Crop model performance with different climatic forcing 
datasets 

The selection of climate forcing dataset(s) for GGCM applications 
often depends on the availability of those inputs as well as the resources 
allocated to exploring CFD uncertainty and/or benefiting from CFD 
ensemble behaviors. In this section we examine how the selection of a 
CFD compares to the use of the full CFD ensemble, examining global CFD 
differences, performance against regional production observations, and 
the simulations’ ability to capture national production anomalies. Dif
ferences in GGCM-CFD performance also highlight the ramifications of a 
given CFD’s selection of an underlying reanalysis and specific bias- 
adjustment targets and methods, as well as non-climatic configura
tions that reduce GGCM correlations regardless of the CFD selected. 

5.1. Global implications of CFD selection 

GGCM responses to CFD differences accumulate within any given 
regional farming system’s growing season, with the aggregate effect 
being a CFD-dependent crop yield for each grid cell for each year. The 
temporal correlations between GGCM simulations using different CFDs 
therefore indicate whether the CFD selection altered the overall climate 

response, with low correlations indicating a fundamentally different 
agro-climatic relationship over the 1981-2010 period. 

Fig. 4 presents the correlation between individual GGCM-CFD sim
ulations and the median of the GGCM-all ensemble. A full intercom
parison of GGCMs across all crop systems is beyond the scope of this 
study, so here we examine pDSSAT and LPJmL to explore potential in
teractions between CFD selection and GGCM utilized. LPJmL-AgMERRA 
correlates highly with the median of the LPJmL-all ensemble in much of 
the mid-latitudes; however, lower latitudes and many developing 
countries have lower correlation suggesting more CFD-based uncer
tainty (Fig. 4a; (r>0.85; with r>0.9 in many high producing areas). This 
is consistent with the regional patterns of heightened temperature and 
precipitation uncertainty shown in Fig. 2. Regions of high correlations 
between LPJmL-AgMERRA and CFD-all cover the vast majority of maize- 
growing regions including major breadbaskets in the US Midwest, 
Europe, China, and South America. This suggests that a single LPJmL- 
AgMERRA simulation provides a broadly similar response to using all 
CFDs and then creating an ensemble median. This is not true for all 
CFDs, however, as can be seen for LPJmL-CFSR where lower regional 
correlations indicate a different pattern of interannual response imposed 
by that specific CFD (Fig 4b). pDSSAT generally shows a larger differ
ence between any CFD and the CFD-all runs, as the highest-correlated 

Fig. 5. 1981-2010 correlations (r) between NASS county-level yield observations and GGCM yield simulations driven by various CFDs. a) pDSSAT-AgCFSR, b) 
pDSSAT-CFSR, c) LPJmL-WFDEIgpcc, d) LPJmL-ERAI, and median across all GGCM simulations using each CFD e) pDSSAT-all, and f) LPJmL-all. Only regions with >10 
ha of planted area (You et al., 2014) are presented, and only correlations that are significant at p<0.05 level are colored rather than gray. 
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AgMERRA and WFDEIgpcc simulations still have lower correlations 
than were seen for LPJmL rainfed maize (Figs. 4c-d). The correlations of 
LPJmL-WFDEIcru and LPJmL-WFDEIgpcc vs. LPJmL-all for rainfed rice 
(Figs. 4e-f) show increased dependence on CFD (lower correlations) over 
the major rice production zones of SE Asia than were seen for maize 
breadbaskets in places like the US Midwest (Fig 4a). Even as WFDEIcru 
and WFDEIgpcc differ only in their monthly precipitation totals, LPJmL 
simulations driven by WFDEIgpcc follow the LPJmL-all median closely, 
while those driven by WFDEIcru are considerably lower in much of 
Brazil, the Democratic Republic of the Congo, and Madagascar. 

Regional implications of CFD selection 

Differences between CFDs are likely to be heightened on smaller 
scales, particularly when they interact with unique vulnerabilities in 
regional crop systems. A focus on sub-national heterogeneity is also 
particularly important in large countries with production regions across 
multiple climate zones. Fig. 5 examines sub-national features of rainfed 
maize simulations driven by various CFDs against the US NASS county- 
level production anomalies. 

The importance of bias-adjustment is underlined by comparisons 
between pDSSAT-AgCFSR and pDSSAT-CFSR, with the non-bias-adjusted 
CFSR achieving substantially lower skill over nearly all US rainfed maize 
regions with particularly low values over the northwest Midwest (from 
Missouri through North Dakota, Fig. 5a,b). Both CFDs use the same 
underlying CFSR reanalysis, so differences here are related to monthly 
mean climate, the imposition of SRB solar radiation, changes in the 
number of precipitation days, and adjustments to the diurnal tempera
ture range. A similar reduction in skill is seen in LPJmL simulations 
using the non-bias-adjusted the ERAI reanalysis compared to the 
WFDEIgpcc, which also is based on ERAI daily sequences (Figs. 5c-d). In 
this case the swath of low-correlation simulations extending from 

Nebraska to Wisconsin appears in simulations run with both CFDs, 
indicating a bias stemming from crop model configuration rather than 
the selection of CFDs. Jägermeyr and Frieler, (2018) identified this as a 
problem related to erroneous planting dates and cultivars that have been 
updated in later LPJmL configurations. 

The ensemble median of pDSSAT-all and LPJmL-all are highly 
correlated with NASS county-level production for most of the US 
(Fig. 5e,f). Different regions exhibit strengths and weaknesses for each 
GGCM, indicating that national level production anomalies are the 
aggregate across regions with heterogeneous skill. In general, pDSSAT- 
AgCFSR is not substantially different from pDSSAT-all, and LPJmL- 
WFDEIgpcc is likewise similar to LPJmL-all. This indicates that rainfed 
maize simulations over the US can utilize one of these CFDs without 
losing too much information that would otherwise be gained from the 
full CFD ensemble. AgCFSR, AgMERRA, WFDEIcru, and WFDEIgpcc all 
capture similarly high levels of correlation for LPJmL and pDSSAT 
rainfed maize, with CFSR and ERAI (the unadjusted reanalyses) and 
GRASP showing lower correlations. In some regions the best-performing 
CFD has higher correlations than the CFD-all median, but CFD-all excels 
at being near the top correlations for all regions. 

5.3. National implications of CFD selection 

Fig. 6 displays correlations between detrended FAO national pro
duction reports and simulated production (including rainfed and irri
gated areas) from 1981-2010. The top 20 producing countries (2013- 
2017) for maize, wheat, rice, and soybean are shown using the CFD+
ensembles (featuring the largest common subset of GGCMs), allowing us 
to identify the climate-driven signal (independent of GGCM differences) 
and its correlation with FAO reports for each country and crop type. We 
also include the larger AgMERRA-all and WFDEIgpcc-all ensembles to 
understand the ramifications of including additional GGCMs, Ensemble+

Fig. 6. Comparison of simulated GGCMI-CFD subset production anomalies with 1981-2010 FAO national production anomalies for the top 20 producer countries 
(production-ranked from left to right) of a) maize; b) wheat, c) rice, and d) soybean. Thick black lines separate the CFD+ ensembles, CFD-all ensembles, Ensemble+, 
and Ensemble-all, and the columns showing the top 20 producing countries and the global production response. Symbols indicate levels of significance (filled symbols 
are significant at 95th percentile level, open at 90th percentile level) as well as the highest correlation for each country (square indicates highest national correlation 
was not significant at 90th percentile level). Serbia maize and soybean are not shown (colored gray) as Serbia’s recent independence makes for insufficient national 
production reports from 1981-2010; Ukraine (maize, wheat), Kazakhstan (wheat), and Uzbekistan (wheat) have only 18 years with FAO statistics available. GSWP3 
and PGFv2 are not shown as not enough GGCMs simulated these CFDs. 
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to understand how an ensemble of CFDs affects performance for the 
common GGCM subset, and Ensemble-all for the complete GGCMI Phase 
1 set of GGCM-CFD combinations (bolded configurations in Table 2). 
The final column in Fig. 6 shows correlations between the simulation 
ensembles and the total global production of each crop. Below we 
highlight the main features of these results, with broader interpretation 
provided in the discussion section that follows. 

5.3.1. National maize production anomalies 
Simulations of leading national maize producers show statistically 

significant positive correlations (p<0.05) for many of the top producing 
countries, indicating that the simulations are capturing a strong climatic 
signal within the FAO reports (Fig, 6a). The most apparent patterns in 
correlations come from differences between countries, whereby simu
lations tend to have similarly high (or low) correlations in all ensembles 
for a given country. This leads to stark differences between, e.g., 
Romania (relatively high correlations for nearly all ensembles) and 
Nigeria (relatively low and insignificant correlations for nearly all en
sembles). Due to Serbia’s independence and separation from 
Montenegro in 2006, only 5 years of FAO-reported production overlap 
with the 1981-2010 climatology, despite being a top-producer for maize 
and soybean in the 2013-2017 period; therefore, correlations for Serbia 
have been excluded from Figs. 6a,d. 

Bias-adjusted CFDs tend to produce higher correlations in Fig. 6 than 
the raw reanalyses (CFSR and ERAI) and the GRASP dataset that 
adjusted according to fixed parameters determined from a previous 
climatological period. AgMERRA+ and WFDEIgpcc+ are typically among 
the highest CFD+ correlations. The addition of GGCMs for AgMERRA-all 
and WFDEIgpcc-all did not show clear benefits over the corresponding 
AgMERRA+ and WFDEIgpcc-all (correlations improved in 10 and 8 of the 
19 countries, respectively) This is similar to expectations given that 
there is a reduced benefit when adding to an ensemble that already has 6 
GGCMs unless a unique simulation feature is added, which seems to be 
the case in Brazil given higher correlations for both although the addi
tional models lower correlations in Nigeria. The ensemble of the GGCM 
subset and CFDs in Ensemble+ is nearly identical to the full Ensemble-all, 
with the latter showing higher correlations in 13 of 19 maize countries. 

Several ensembles produce significant correlations with FAO global 
production reports. These include AgCFSR+, AgMERRA+, ERAI+, 
WFDEIcru+, WFDEIgpcc+, AgMERRA-all, WFDEIgpcc-all, Ensemble+, and 
Ensemble-all. WFDEIgpcc-all has the highest global correlation (r=0.682) 
as well the highest correlation out of all ensembles in 5 of the top 8 
maize production countries. AgMERRA-all correlations are significant 
for 16 of the 19 countries, with significantly higher skill than any other 
ensemble in the Philippines and Ethiopia. These results highlight the 
potential for broader GGCM application for national and global maize 
production decision making. Ensemble-all had an increase in global 
correlation (+0.094) compared to Ensemble+. 

5.3.2. National wheat production anomalies 
Wheat simulations generally have lower correlations than were seen 

for maize, indicating a comparatively smaller agroclimatic signal or 
common biases in the structure or configuration of wheat models (Fig, 
6b). Correlation levels are once again highly related to the various na
tions, with simulation ensembles of the top two producing countries, 
China and India, not significantly correlated to their FAO production 
statistics (with the exception of WFDEIgpcc-all in China) even as positive 
correlations dominate most of the other countries. This may be due, in 
part, to the large area devoted to irrigated wheat in these countries, 
which lowers the response to drought hazards and therefore overall 
climate sensitivity. Diseases are also not included in GGCM simulations 
but can play a major role in wheat breadbaskets (Savary et al., 2019). 
Intensified systems in the United States, France, Germany, the United 
Kingdom, and the Ukraine also have mostly insignificant correlations 
even as weather data are likely of good quality, indicating a large role of 
irrigation and perhaps a muddled signal in grid cells where both spring 

wheat and winter wheat is present. GGCMI Phase 1 simulations only ran 
one wheat season per grid cell, which can miss second season production 
anomalies and underrepresent vernalization requirement effects. Sub
sequent GGCMI phases have conducted separate simulations for winter 
and spring wheat in order to better capture production in regions where 
both systems are prominent (Franke et al., 2020, 2019; Jägermeyr et al., 
2020). Simulations capture high correlations indicating a strong climate 
response for Australian wheat, which is dominated by rainfed winter 
wheat demonstrating a strong precipitation response (Fig 3e). Simulated 
wheat in European countries showed little response to growing season 
temperature, precipitation, and solar radiation in Fig. 3, however; which 
is consistent with relatively low national-level correlations to FAOstat. 

The bias-adjusted CFDs largely outperform the raw reanalyses and 
GRASP for most wheat countries. WFDEIgpcc-all increases correlations 
for China and Germany in comparison to WFDEIgpcc+ likely due to high 
correlations in at least one of the added GGCMs, although a decrease in 
correlation is seen for Poland and the United States. AgMERRA-all 
similarly improves upon AgMERRA+ correlations in Canada and the 
Ukraine. Overall, AgMERRA-all and WFDEIgpcc-all both improved cor
relations in half of the countries. Although the Ensemble+ and Ensemble- 
all have higher wheat correlations in Pakistan, there is otherwise little 
difference between AgMERRA+, WFDEIgpcc+, Ensemble+, and Ensemble- 
all which have significant correlations in 13, 13, 12, and 12 of the top 20 
wheat producing countries, respectively. Global wheat anomalies are 
fairly consistently and significantly simulated by all ensembles, with 
WFDEIgpcc-all producing the highest global correlation (r=0.603) aided 
by relatively strong performance in China, Germany, and the United 
Kingdom. 

5.3.3. National rice production anomalies 
Rice simulations have the lowest FAO correlations of the four 

simulated crops (Fig. 6c). Significant correlations are highest for Japan, 
which Ray et al. (2015) also noted as being strongly driven by temper
ature variation, as is also evident in Fig. 3. Significant correlations are 
also broadly seen for Bangladesh, Vietnam, Philippines, United States, 
North Korea, Egypt and Madagascar, but there are no clear patterns 
identifying geographic regions with cohesively high or low correlations. 

Rice is largely irrigated across top producing countries, with a 
smaller weather signal in interannual yield fluctuations. Yet, insignifi
cant rice correlations in many countries could be an indication of 
incomplete FAO data, inaccurate CFDs, poor GGCM simulation, or a 
realistically small agroclimatic response that may reflect regional 
farming systems or limiting factors beyond direct climate conditions. 
Ray et al. (2015) and identified that interannual rice variability was 
driven less by climate than were maize, wheat and soybean, which may 
also reflect the substantial influence of geopolitical events and socio
economic limitations in major rice producing countries over the 
1981-2010 period that would influence FAO production data. Iizumi 
et al., (2018) similarly found weak attribution of climate change impacts 
in long-term rice trends. The simulation ensemble demonstrated only 
weak response to growing-season mean temperature and precipitation 
over the major rice baskets of East, South, and Southeast Asia (Fig. 3g-i). 
These are among the only major breadbaskets in the Tropics, which tend 
to have lower interannual variability of mean temperature and total 
precipitation than mid-latitude breadbaskets. These rice areas also have 
more uncertain climate information (Fig. 2) and have a higher propor
tion of total production coming from heterogeneous farming systems 
that are difficult to configure within GGCMs. GGCM configurations may 
also simulate upland (non-flooded) rice systems in areas where rice is 
grown in paddies (flooded), and only contain a maximum of one rainfed 
and one irrigated season even as it is common for some rice-growing 
areas to have two or three seasons in a given year (e.g., the aus, aman, 
and boro seasons in Bangladesh). Major flood events that can destroy 
large rice harvests in the Mekong, Indus, Ganges, and other river basins, 
as well as the influence of large hurricanes and typhoons, are also not 
resolved by crop models despite being substantial climate disasters 
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(Lesk et al., 2016). 
There is no substantial benefit in bias adjustment for national rice 

applications, with no clear differences in correlation levels between the 
raw reanalyses (CFSR, ERAI), GRASP, and the other CFDs adjusted to 
match monthly observations. The bias-adjustments within AgCFSR+, 
AgMERRA+, WFDEIcru+, and WFDEIgpcc+ (but not Princeton+) lower 
correlations in Japan, although high correlations are seen when all 
GGCMs are included in AgMERRA-all and WFDEIgpcc-all. The top two 
rice production countries, China and India, are only significantly 
simulated in the AgMERRA+ and AgMERRA-all ensembles. Compared to 
AgMERRA+ and WFDEIgpcc+, respectively, the additional GGCMs in
crease correlations for many countries in AgMERRA-all (notably Japan, 
Vietnam, the Philippines, the United States, and China but not India or 
Madagascar) and WFDEIgpcc-all (notably Japan and the United States 
but not Egypt or the Philippines). While the signal was mixed for 
WFDEIgpcc-all, 14 out of 20 AgMERRA-all country correlations were 
higher than AgMERRA+, including 10 that increased by ≥0.1 compared 
to only 2 where correlations dropped by ≥0.1. Ensemble+ and Ensemble- 
all capture many of the stronger correlations from rice simulations, but 
both also see reductions in some country correlations (e.g., Ensemble+ in 
Vietnam and Ensemble-all in North Korea). The highest global correlation 
is found in AgMERRA-all (r=0.347), aided by higher correlations in 
China, Vietnam and Thailand, with other ensembles unable to capture 
significant correlations with global rice production. 

5.3.4. National soybean production anomalies 
Soybean simulations have higher correlations overall than rice, with 

higher producing countries tending to have higher correlations and the 
lower producing countries tending to not be significantly correlated 
(Fig. 6d). The highest correlations are associated with the United States, 
Brazil, Argentina, Paraguay, South Africa and Indonesia, while Ukraine, 
Bolivia Russia are top-10 high-producing countries where relatively few 
ensembles capture a significant interannual signal. 

The bias-adjusted CFDs have a larger number of significant correla
tions than the raw reanalysis (CFSR+ and ERAI+) and GRASP+ en
sembles, which signifies a benefit to bias adjustment particularly in the 
highest producing countries. AgMERRA-all and WFDEIgpcc-all have 
slightly reduced correlations compared to AgMERRA+ (lower in 13 out 
of 19 countries) and WFDEIgpcc+ (lower in 11 out of 19 countries) as the 
inclusion of additional GGCMs reduces the captured climate signal 
particularly for China, India, Paraguay, and Uruguay. Ensemble+ and 
AgMERRA+ produce a significant correlation in each of the top 7 
countries, and Ensemble-all loses significant signals in China, India, and 
Uruguay. 

Global correlations are generally positive but weaker than those seen 
for maize and wheat. Significant correlations are captured by AgCFSR+, 
AgMERRA+, ERAI+ (top correlation at r=0.416), GRASP+ and 
Ensemble+. The low global correlation compared to the top countries’ 
high correlation is surprising, possibly indicating inter-breadbasket anti- 
correlations that act to offset a larger global signal. Ensemble-all global 
correlation is 0.313 lower than for Ensemble+, indicating a substantial 
loss of signal within the additional CFD/GGCM combinations. 

6. Discussion 

The analyses above demonstrate many ways that the selection of CFD 
strongly influences regional crop production simulations. Although it is 
not practical to analyze every combination of specific nations, cropping 
systems and crop model ensemble sets in this manuscript, the examples, 
approaches, supplementary material, and open data access of the 
GGCMI Phase 1 dataset provide a roadmap for further analysis. The 
extent of CFD influence depends on differences between CFD charac
teristics, crop models’ biophysical responses to these differences, attri
butes of national and global production for each crop species, and the 
use of multi-GGCM and multi-CFD ensembles. Key findings are discussed 
below, with additional uncertainties in climate and crop model 

information described in Supplemental Material S8. 
Regional differences in climate information and responses. CFDs differ 

most strongly in regions where in situ observations are sparse, incon
sistent or incomplete (Fig. 2), and can have nearly global differences in 
distributional or extreme characteristics (Figs. 1 and S.3-5). Regional 
cropping system models have different fundamental responses to 
climate variability in ways that can make them more sensitive to CFD 
differences (Fig. 3). The selection of CFDs is therefore most influential in 
regions where agricultural systems respond strongly to a climatic vari
able with strong observational uncertainties. Further analysis, and 
indeed GGCM development, is required to investigate cropping system 
response to variables beyond the growing season mean climate indices, 
as considerable variance is likely from sub-seasonal patterns, acute heat, 
drought and flood extremes, severe storms, and connected impacts from 
sequential or compound hazards (Ben-Ari et al., 2018; Grotjahn, 2020; 
Li et al., 2019; Raymond et al., 2020; Schewe et al., 2019). Fundamental 
climate responses also help prioritize observational network and agri
cultural resilience investments even as interannual response is not al
ways a clear predictor of long-term climate change risks (Ruane et al., 
2016). 

GGCM/CFD abilities to capture observed interannual variance: The se
lection of CFDs is only able to influence a fraction of interannual pro
duction variations. GGCMI results (e.g., Fig. 6) are broadly consistent 
with the findings of Ray et al. (2015), who found that climate variation 
explains only about one third of global observed yield variability, with 
upwards of 60% of variation explained in some highly intensified 
breadbaskets and lower fundamental climate responses for rice than 
maize, wheat or soybean. Lower correlations may also be related to 
non-representative model configurations, including incorrect planted 
area fractions which can change from year to year, growing season dates 
and cultivars (Jägermeyr and Frieler, 2018), the presence of multiple 
growing seasons (e.g., short and long rains), multi-cropping, sub-grid 
scale heterogeneity in climate and crop systems, soil types and textures, 
and alternative irrigation management strategies (Hoffmann et al., 
2016; Lopez et al., 2017). High correlations between FAO data and 
simulation outputs are therefore indicative of strong climate forcing in 
national production anomalies and an ability of the GGCMs (driven by 
CFDs) to capture those anomalies. In some cases the GGCMI 
climate-driven ensemble captures a higher proportion of the FAO pro
duction variability that was evident in Ray et al., (2015), including for 
maize in Mexico, wheat in Iran, rice in Madagascar, and soybean in 
Paraguay. 

Some crop species and countries are not as clearly limited by climate. 
GGCMI simulations generally produced the highest FAO correlations for 
maize, followed by wheat, soy, and rice. For each species there were 
countries with high and low correlations. High correlations countries 
tend to feature some combination of large-scale intensified farming, 
mid-latitude climates, less uncertainty in climate and farm configuration 
information, and consolidated production regions. Lower correlation 
countries tend to have a relatively large proportion of heterogeneous 
and small-holder farming systems, are situated in tropical regions with 
lower interannual variability, and lie in areas with more uncertain 
climate anomalies and field data (Fig. 2). We would expect these 
process-based crop models to be more climate-limited than observa
tions, as factors not included in the models reduce the coherence with 
the seasonal climate signal (e.g., sociopolitical events, labor or machine 
shortages, river floods, pests and diseases) (Ray et al., 2015; van Itter
sum et al., 2016). Many of these non-climatic impact factors are more 
widespread in developing countries than in intensified agricultural re
gions of developed countries (van Bussel et al., 2015). 

Overall performance of CFDs. This study further confirms the utility of 
climatic forcing datasets for agricultural applications (Toreti et al., 
2019) and elucidates ways that CFD differences can affect crop model 
simulations (Figs. 4, 5, 6). Normalized anomalies between CFDs are 
larger for precipitation than for temperature, and differences between 
CFDs are larger for distributional characteristics and extreme events 
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than for mean response (Figs. 1,2). The use of bias adjustment (AgCFSR 
vs. CFSR and WFDEI vs. ERAI) improved crop model simulation in many 
regions and countries, while the sequence of sub-monthly weather pat
terns (AgCFSR vs. AgMERRA) had a smaller impact (Figs. 5,6). The se
lection of large-scale precipitation datasets (WFDEIgpcc vs. GPCCcru) 
did not have a substantial overall effect on performance. These con
clusions for complex biophysical models are consistent with those found 
by (Parkes et al., 2019) for empirical models. We advise those planning 
crop model applications for a given country and crop species to examine 
Fig. 6 to ensure that their CFD is associated with high correlations 
against FAO production variability. 

Effects of model ensemble statistics. GGCMI uses the 1980-2010 period 
to benchmark the performance of global gridded crop models (Müller 
et al., 2017), and this study has further demonstrated the utility of this 
period to elucidate the strengths and weaknesses of various GGCM/CFD 
ensembles through comparison against FAO anomalies. Comparing 
across minimal multi-GGCM ensembles for each CFD+, a major finding 
is that the difference between countries > difference between CFDs >
difference between CFD+ and CFD-all ensembles (the effect of more 
GGCMs on top of the multi-GGCM ensemble) > difference between 
Ensemble-all and Ensemble+ ensembles (the effect of adding further 
GGCM/CFD combinations on top of the multi-GGCM/multi-CFD 
Ensemble+). Differences between countries emphasizes the importance 
of improving data collection for climate, soils, cultivars, and field 
management which can vary widely by nation. Differences between 
CFDs can be substantial in some parts of the world (Fig. 2), but our 
overall finding is that the bias-adjusted datasets (e.g., AgMERRA and 
WFDEIgpcc) capture the bulk of the signal captured in the GGCMI 
ensemble. In light of previous AgMIP studies on the benefits of small 
multi-crop model ensembles (Wallach et al., 2016), we recommend that 
resources are likely better focused on additional configuration infor
mation and the inclusion of a multi-GGCM ensemble (3-7 models) before 
conducting a multi-CFD ensemble. Here the maize, wheat, and soybean 
CFD+ ensembles had 7 GGCMs (5 for rice), and the further addition of 
GGCMs was not consistently helpful to the extent that would justify 
investment for larger GGCM ensembles (Figs. 2, 3, S.2). Given that 
Ensemble+ has 56 GGCM/CFD combinations for maize, the lack of clear 
benefit from the full 91 GGCM/CFD combination Ensemble-all un
derscores that the full GGCMI ensemble is not typically needed for 
practical application. 

A number of agricultural system applications stand to benefit from 
more accurate climate observation, modeling, bias-adjustment, and 
methods to merge these into CFDs, including seasonal forecasting 
(Schauberger et al., 2017), disaster preparedness (Cottrell et al., 2019; 
Jägermeyr et al., 2020; Lunt et al., 2016), climate change resilience 
(Franke et al., 2019; Hasegawa et al., 2018; Rosenzweig et al., 2014; 
Ruane et al., 2018b; Zhao et al., 2017), and the development of more 
robust and sustainable markets and farming systems (Snyder et al., 
2019; Valdivia et al., 2015). A new generation of CFDs are now possible 
given updated reanalyses (Gelaro et al., 2017; Hersbach et al., 2019) and 
observational products (Funk et al., 2015; Lange, 2019c), which will 
enable further crop modeling applications (e.g., Iizumi et al., 2017; 
Lange, 2019b; Lange, 2019c). CFD characteristics also propagate into 
climate scenarios that use the CFD as a bias-adjustment target, so CFD 
deviations presented in Fig. 1 and Figures S.3-5 may help explain dif
ferences in regional projections among studies. We include a similar 
comparison of the W5E5 dataset to the GGCMI CFD ensemble in Sup
plemental Figure S.5 given its application in forthcoming ISIMIP Phase 3 
simulations. Improvements in CFDs, and the selection of a CFD partic
ularly suited for a given regional farming system, are therefore impor
tant elements of a crop model application even as they are a limited 
element of broader application improvement efforts. Further opportu
nities for model development and application motivated by this study 
are described in Supplementary Material S9. 
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