
HAL Id: hal-03122083
https://hal.science/hal-03122083

Submitted on 26 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Applications Mapping onto Heterogeneous
MPSoCs interconnected using Network on Chip

Dihia Belkacemi, Daoui Mehammed, Samia Bouzefrane

To cite this version:
Dihia Belkacemi, Daoui Mehammed, Samia Bouzefrane. Parallel Applications Mapping onto Hetero-
geneous MPSoCs interconnected using Network on Chip. The 6th International Conference on Mobile,
Secure and Programmable Networking, Oct 2020, Paris (virtuel), France. �10.1007/978-3-030-67550-
9_9�. �hal-03122083�

https://hal.science/hal-03122083
https://hal.archives-ouvertes.fr

Parallel Applications Mapping onto

Heterogeneous MPSoCs interconnected

using Network on Chip

Dihia Belkacemi1, Mehammed Daoui1, and Samia Bouzefrane2

1 Laboratoire de Recherche en Informatique, Université de Tizi-Ouzou, Algeria
2 CEDRIC Lab, CNAM, France
{samia.bouzefrane}@cnam.fr

Abstract. To meet the growing requirements of today’s applications,
multiprocessor architectures (MPSoCs) interconnected with a network
on chip (NoC) are considered as a major solution for future powerful
embedded systems. Mapping phase is one of the most critical challenge
in designing these systems. It consists of assigning application’ tasks on
the target platform which can have a considerable influence on the per-
formance of the final system. Due to the large solutions’ research space
generated by both the application complexity and the platforms, this
mapping phase can no longer be done manually and hence it requires
powerful exploration tools called DSE (Design Space Exploration Envi-
ronment). This paper proposes a new tool for static mapping applications
on NoC based on heterogeneous MPSoCs. This tool integrates several
multiobjective optimization algorithms that can be specified in order to
explore different solutions’ spaces, mainly: exact method, metaheuristics
(population-based metaheuristics and single solution-based ones) as well
as hybrid ones; it offers different cost functions (defined using analytical
or simulation models). The user can specify them or define others easily
and it provides an easy way to evaluate the performance of the Pareto
front returned by different algorithms using multiple quality indicators.
We also present a series of experiments by considering several scenarios
and give guidelines to designers on choosing the appropriate algorithm
based on the characteristics of the mapping problem considered.

Keywords: Static Mapping ·Multiobjective Optimization · Network on
Chip (NoC)· Multi-processor System on Chip (MPSoCs).

1 Introduction

In order to meet today’s applications requirements (e.g. multimedia, digital sig-
nal processing, image processing, etc.), MPSoCs are becoming increasingly pop-
ular solutions for future embedded systems [1]. These MPSoCs are classified as
homogeneous or heterogeneous. Several studies have shown that heterogeneous
MPSoCs outperform their homogeneous counterparts [2][3]. Heterogeneous MP-
SoCs are composed of PEs of different types such as General Purpose Processor

2 Dihia Belkacemi, Mehammed Daoui, and Samia Bouzefrane

(GPP), Application Specific Integrated Circuit (ASIC), Digital Signal Processor
(DSP), hardware accelerators or IP blocks (e.g. video encoder), etc. The distinct
features of different processing elements (PEs) provide high performance with
less energy consumption. Typical examples of heterogeneous MPSoCs are ST No-
madik for cellular phones [4], NVIDIA’s Tegra designed for multimedia in mobile
phones [5], Samsung Exynos 5422 SoC [6], etc... P The growing complexity of
heterogeneous MPSoCs requires effcient communication infrastructure. Network
on Chip (NoC) [7] is used as the communication infrastructure which provides
modularity and scalability unlike buses and point to point communication. A
NoC consists of a set of processing elements (PEs), routers, links, and network
interfaces (NIs) as shown in Figure 1. Each PE is connected to a router and ac-
cesses to the network through NI. Routers are interconnected using a set of links
to form a given topology (e.g. 2D Mesh, 2D Torus, etc...). The processing ele-
ments (PEs) interconnected to the NoC exchange data in the form of packets (set
of flits). Routing and switching policies are used respectively to determine the
path and how the data is communicated between PEs (source and destination).
NoCs are also characterized by arbitration as well as flow control techniques.
Arbitration is used to solve contentions and flow control technique defines how
NoC resources are allocated to data.

Fig. 1. Example of Heterogeneous MPSoC with three types of processors intercon-
nected using 2D Mesh NoC Topology

One critical problem of heterogeneous MPSoCs interconnected using Network
on Chip is how to map an application on this platform which is a NP-hard [8]
problem. In addition, when solving the mapping problem, the designer is often
called to specify several objectives to be optimized simultaneously. These ob-
jectives are often conflicting (e.g. communication vs load, energy consumption
vs total execution time, etc.), so the goal is to find reliable trade-off mapping
solutions which simultaneously optimize the different contradictory metrics (ob-

Title Suppressed Due to Excessive Length 3

jectives) commonly called Pareto Optimal Solutions Set (i.e. Mapping problem is
an instance of a multiobjective optimization problem MOP). To tackle all these
challenges, designing tools that can automate this step is required. This paper
presents a new tool for mapping applications on NoC based on heterogeneous
MPSoCs. The work reported in this article extends our prior work [9] with the
following contributions:

- In addition to the analytical models used to define the cost (or objective)
functions, we propose a simulation model to take into account the dynamic
aspect (like contentions) of the system during the mapping process.

- In order to enrich our mapping tool, we have added other metaheuristics
like single-solution based metaheuristics (Archived Multiobjective Simulated An-
nealing (AMOSA) [10] and Parallel Multiobjective Tabu Search (PMOTS) [11])
and hybrid ones.

- We have implemented multiobjective exact method called Multiobjective
Branch and Bound (MBB) [12] to check the efficiency of the metaheuristics
presented in the tool in solving small mapping problem instances.

The remainder of this paper is organized as follows. Section 2 describes the
multiobjective optimization principles. The related works are discussed in Sec-
tion 3. In Section 4, the proposed exploration tool is presented. Experimental
results are presented and discussed in Section 5. Section 6 concludes this paper.

2 Multiobjective Optimization

A multiobjective optimization problem (MOP) can be mathematically formu-
lated as given by [22]:

MOP =

”min”F (x) = (f1(x), . . . , fn(x))

x ∈ S

where n (n ≥ 2) is the number of objectives, x = (x1, . . . , xk) is the vector
representing the decision variables, and S represents the set of feasible solutions
associated with equality and inequality constraints and explicit bounds. F (x) =
(f1(x), . . . , fn(x)) is the vector of objectives to be optimized. The objectives in
MOP are often conflicting. Before defining a Pareto optimality, a partial order
relation could be defined, known as dominance relation.

Definition 1. Pareto dominance [22]. An objective vector u = (u1, . . . , un)
is said to dominate another vector v = (v1, . . . , vn), denoted as u ≺ v, if and
only if no component of v is smaller than the corresponding component of u and
at least one component of u is strictly smaller, that is,
∀i ∈ {1, . . . , n} , ui ≤ vi and ∃i ∈ {1, . . . , n} : ui < vi.

Definition 2. Pareto optimality [22]. A solution x∗ ∈ S is Pareto optimal
if for every x ∈ S, F (x) does not dominate F (x∗), that is, F (x) ⊀ F (x∗).

4 Dihia Belkacemi, Mehammed Daoui, and Samia Bouzefrane

Definition 3. Pareto optimal set [22]. For a given MOP (F, S), the Pareto
optimal set is defined as P ∗ = {x ∈ S/@x∗ ∈ S, F (x∗) ≺ F (x)}.

Definition 4. Pareto front [22]. For a given MOP (F, S) and its Pareto op-
timal set P ∗, the Pareto front is defined as PF ∗ = {F (x), x ∈ P ∗}.

3 Related Work

Several authors proposed to use multiobjective optimization algorithms to solve
the mapping problem [13–21]. Ascia et al. [13] present an approach based on
SPEA2 metaheuristic for exploring the mapping design space. Their aim is to ob-
tain the Pareto mappings that maximize performance and minimize the amount
of power consumption. Erbas et al. [14] give a comparative study between two
metaheuristics NSGAII and SPEA2. Their aim is to optimize processing time,
power consumption, and architecture cost. Zhou et al. [15] address the problem
of topological mapping of Intellectual Properties (IPs) on the tile of a mesh-
based NoC using NSGA metaheuristic while treating two conflicting objectives:
minimizing the average hop and achieving the thermal balance. A multiobjective
genetic algorithms MOGA to determine the Pareto-optimal configuration which
optimizes average delay and routing robustness is presented in [16]. In [17], au-
thors propose the use of multiobjective evolutionary algorithms (NSGAII and
MicroGA) to minimize hardware area, execution time and the total power con-
sumption. Wu et al. [18] propose a new mapping algorithm based on the Ge-
netic Algorithm (GA) and the MAX-MIN Ant System Algorithm (MMAS) called
GA-MMAS to optimize power consumption and NoC latency. He and Guo [19]
use ACO to solve the mapping problem while optimizing communication power
consumption and delay. Chatterjee et al. [20] propose a constructive heuristic
method to solve the problem of mapping applications on a NoC (with a mesh
topology). Their goal is to optimize the cost of network communications as well
as the reliability of the system. Bruch et al. [21] present an optimization flow
for mapping applications on a NoC in order to meet the time requirements and
minimize the costs of using virtual channels. The approach used is based on the
NSGAII algorithm. Authors in [18–20] used the aggregation approach (using a
unified cost function) in order to take several objectives into account during the
mapping. The disadvantage of their approach comes from the difficulty to ad-
just the weights which requires knowledge of the problem. Other works like [15,
17] did not take into account the dynamic effects (i.e. contentions) of the NoC
during mapping. An important limitation of these approaches is that only a
few metaheuristics like NSGA ([15]), NSGAII ([14, 17, 21]), SPEA2 ([13, 14]),
MOGA ([16]), etc. are mainly explored. Most of the works take into account the
two-dimensional optimization space (i.e. optimize only two cost functions), e.g.
performance and energy consumption in [13], minimize the average number of
hops and achieves a thermal balance [15], etc.

Title Suppressed Due to Excessive Length 5

Fig. 2. Inputs and Outputs of the proposed mapping tool

4 Description of the proposed tool

Figure 2 gives an overview of the proposed mapping tool. This tool has as inputs
(1) the application model represented as an annotated task graph, (2) the high
level architecture model, (3) the objective functions defined using analytical or
simulation models and (4) the architecture and application constraints. A set
of multiobjective optimization algorithms is used to explore the mapping space
and to find a set of Pareto optimal solutions.

4.1 Application model

The application model is represented in the form of a Directed Acyclic Graph
(DAG), denoted G(V,E). The set of nodes V={T0,T1, . . . ,Tn} represents the
application’s tasks and E is a set of edges ei. Each edge ei in E designates the
precedence relation between two tasks connected by ei labeled with volume(ei)
representing the amount of data exchanged between these tasks. Each task Ti
is annotated with Load(Ti) which is the number of instructions of task Ti. Two
vectors Ei and Ci contain respectively the energy consumption and execution
time of task Ti on each type of processing element. A task Ti may have a deadline
d(Ti).

6 Dihia Belkacemi, Mehammed Daoui, and Samia Bouzefrane

4.2 Architecture model

The architecture model includes the high level description of the target platform
that will run the application. The informations considered in our case are:

- The characteristics of the processors (e.g. number, type, frequency, etc.)
- The characteristics of the storage elements (e.g. maximum memory capacity,

etc.) and
- NoC features including: router characteristics (e.g. routing algorithm, switch-

ing modes, flow control techniques, arbitration, etc.); the characteristics of the
links (e.g. direction, link rate, etc.) and the NoC’s topology.

4.3 Objective functions

We have defined objective functions using two models: analytical and simulation.

Analytical model It consists in finding mathematical equations used to eval-
uate a solution of a given mapping. This model has the advantage of being less
expensive in terms of execution time at the expense of the level of precision. In
this section, cost functions which measures the quality of a given mapping using
analytical model is presented. In the rest of this paper, we use a decision variable
xi,j which is defined as follows:

xij =

{
1 if Ti is assigned to processor PEj
0 otherwise

Load balancing This cost function gives the load balancing between the different
PEs for a given mapping, such that all the processing elements in the system are
equally loaded (avoiding task concentration in just some processors). This cost
function is defined as follows:

P−1∑
j=0

abs

(
load(PEj)

f(PEj)
−M

)
(1)

where load(PEj) represents the workload of the processor PEj expressed as the
sum of instructions of tasks that run on it.

load(PEj) =
∑
Ti∈V

xij × load(Ti) (2)

M represents the average load.

M =

P−1∑
j=0

load(PEj)

P−1∑
j=0

f(PEj)

(3)

f(PEj) represents the frequency of the processor PEj and and P represents the
number of PEs.

Title Suppressed Due to Excessive Length 7

Communication This cost function gives the total amount of communication
between all the PEs.

Commcost =
∑
ei∈E

volume(ei)×Distance[PE(Src(ei)), PE(Snk(ei))] (4)

where E is the set of edges in the application task graph, volume(ei) is the
amount of data exchanged by the tasks connected by the edge ei. Src(ei) and
Snk (ei) represent respectively the source and the sink tasks of the edge ei.
PE(Ti) gives the PE on which the task Ti is mapped. Distance(PE1, PE2)
gives the distance (the hop count number) between PE1 and PE2.

Energy consumption This cost function estimates the total energy consumption
of the system under consideration as follows:

Etotal = Ep + Ecomm (5)

where Ep is the processing energy and Ecomm is the communication energy.
Let Eij be the energy needed to execute the task Ti on a processor PEj . The
processing energy can be computed as follows:

Ep =

NBT−1∑
i=0

P−1∑
j=0

xij × Eij (6)

where P represents the number of processors (PEs) and NBT represents number
of tasks. The communication energy is estimated with the same model as the
one given in [23]:

Ebit = ESbit
+ ELbit

(7)

where ESbit
and ELbit

represent respectively the energy consumed on the switch
and on the output link of the router. By using the preceding equation, the
average energy consumption for sending one bit of data from PEi to PEj can
be computed as follows:

Ei,jbit = (nhops+ 1)× ESbit
+ nhops× ELbit

+ 2× Elocal (8)

where nhops is the hop count number between routers and Elocal represents the
energy consumed by the link between the router and PEs. We can determine the
total communication energy as follows:

Ecomm =
∑
ei∈E

volume(ei)× EPE(src(ei)),PE(snk(ei))
bit (9)

where src(ei) and snk(ei) represent respectively the source and sink tasks of the
edge ei and PE(Ti) gives the PE on which the task Ti is mapped. volume(ei)
is the amount of data exchanged by the tasks connected by the edge ei. Note
that this model does not consider the energy consumed by buffers in presence
of contentions. For this purpose, the designer can specify the simulation model
presented below (Section 4.3).

8 Dihia Belkacemi, Mehammed Daoui, and Samia Bouzefrane

Overall completion time (Schedule Length) To define the total execution time
of an application, we have defined two attributes ST (Ti, PEj) and FT (Ti, PEj)
which represent respectively the Start Time and the Finish Time of the task Ti
on the processor PEj . The values of ST and FT are calculated as follows :

ST (Ti, PEj) =

max(0, FT (Tj , PEj)), if pred(Ti) = 0

max(FT (Tj , PEj),maxTk∈pred(Ti)(FT (Tk, PEk) + Tcommki)), else

FT (Ti, PEj) = ST (Ti, PEj) + Cij (10)

where pred(Ti) is the set of the predecessors of Ti, FT (Tj , PEj) represents the
end time of the last task executed on the same processor PEj where Ti is mapped.
FT (Tk, PEk) is the end time of the task Tk, where Tk ∈ pred(Ti). Tcommki is
the communication time between two tasks Tk and Ti. Equation (10) gives the
end time of the execution of the task Ti. Cij represents the execution time of the
task Ti on the processor PEj . Once all tasks are mapped, the total execution
time of the application Ttotal is given by equation (11) as follows:

Ttotal = max
Ti∈V

FT (Ti) (11)

As for energy model, this model does not take contentions into account.

Simulation model In addition to the analytical model, to compute cost func-
tions, a discrete event-based simulation model has been developed. The advan-
tage of this model over analytical one is that it takes into account the waiting
time caused by simultaneous accesses to shared resources (e.g. router output
ports). As previously described in [24], the proposed model is composed of an
event list (Listevent) to store the system events in a chronological order. The
simulation consists of extracting and processing the events one by one until the
event list becomes empty (i.e. application’s tasks are completed) (see Algorithm
2). Each event occurs at a particular instant of time and generates other events
that will be inserted into the event list using Schedule() method. Note that
the simulation clock (currentTime) is advanced to the time of the next event.
The peek() method retrieves the first item in the list, the retrieved item is not
deleted and the getWhen() method gives the time when the event occurred. In
this work, according to the assumed architecture model, the following events
have been considered:

-Event 1. Execute Task (Ti, PEj): the simulation starts by executing this
first event where the ready tasks of each processor (Rlist(PEj)) can start their
execution if the processor to which they are assigned is free as given by Algorithm
1. FT (Tk, PEj) is the finish time of the last task running on the same processor
PEj where Ti is mapped and delta is the waiting time required to release the
processor PEj so that the task Ti can start its execution on it.

-Event 2. Generate Packets: once a given task with successors completes its
execution, this second event occurs. It consists of generating packets for each

Title Suppressed Due to Excessive Length 9

Algorithm 1 Execute Task(Ti, PEj)

if (PEj .state = free) then
ST (Ti, PEj) = currentT ime
Ti.state = ASSIGNED
PEj .state = busy
FT (Ti, PEj) = ST (Ti, PEj) + Cij

Schedule(Generate Packets, FT (Ti, PEj))
Rlist(PEj).remove(Ti)

else
delta= FT (Tk, PEj)− currentT ime
Schedule(Execute Task(Ti, PEj), currentT ime+delta)

end if

communication. These packets are stored at the network interface’s buffer. Each
packet contains a set of flits mainly: the header, the payload and the tail.

-Event 3. Transfer Flits (PE To Router): packet’s flits will be sent flit by flit
from the processor to the router according to the flow control technique assumed.

-Event 4. Flit ArrivesAtInputBuffer (Router): after crossing the link between
the source processor and router, the flit arrives at input buffer of this router.

-Event 5. Apply Routing: as soon as a header flit arrives at the router’s input
buffer, the next hop is calculated according to the assumed routing protocol.

-Event 6. Apply Arbitration: this event occurs when several packets request
the same output port. In this case, the arbitration policy is applied to select the
winner packet.

-Event 7. Traverse Router: the winner packet sends its flits one by one through
the router (crossbar) if there is enough space in its output buffer.

-Event 8. Flit ArrivesAtOutputBuffer (Router): after crossing the router’s
crossbar, flit arrives at the router’s output buffer. If the entire packet has arrived
(i.e. flit is queue), a new arbitration for this output buffer can start.

-Event 9. Traverse Link (Router-Router): according to the flow control tech-
nique considered, flits are transmitted between two neighboring routers.

-Event 10. Transfer Flits (Router-Processor): this event occurs if the packet’s
final destination corresponds to the router’s local port.

-Event 11. Flit ArrivesAtInputBuffer (NI): at the end, the flit arrives at the
network interface of the destination processor, where a phase of packet arrival
control (flits) and initial message formation will take place.

Overall Completion Time using Simulation Model: the total execution time of a
given application corresponds to the time elapsed between the execution of the
first event and the execution of the last event given by Ttotal (see the Algorithm
2).

Energy consumption using Simulation Model: unlike the analytical model given
above, this model takes into account routing, arbitration and buffer’s ener-
gies when computing communication energy Ecomm. It should be noted that

10 Dihia Belkacemi, Mehammed Daoui, and Samia Bouzefrane

Algorithm 2 proposed simulation model

Listevent: is the list of events considered
NBTT : is the number of completed tasks initialized to 0
NBTTotal: is the total number of tasks in a given application
currentTime: is the current time initialized to 0

Determine the Rlist(PEj) (See Algorithm 3)
for each processor PEj do

if Rlist(PEj) is not empty then
Ti = Rlist(PEj).peek()
Schedule(Execute Task(Ti, PEj), currentT ime)

end if
end for
while (NBTT < NBTTotal) do

while (Listevent is not empty) do
event = Listevent.peek()
if (event.getWhen() > currentT ime) then
nexttime = event.getWhen()
break

end if
event.run()
Listevent.remove(event)

end while
currentT ime = nexttime

end while
Ttotal = currentT ime

Algorithm 3 Determine the Rlist(PEj)

Tlist : is a list containing the application’s tasks ordered with a given scheduling pol-
icy

for each task Ti ∈ Tlist do
Ti.state = INIT
if (nb(Ti.pred()) = 0 and xi,j = 1) then
Rlist(PEj).add(Ti)
Ti.state = READY

end if
end for

Title Suppressed Due to Excessive Length 11

this value increases proportionally with the waiting time generated during con-
tentions.

4.4 Application and architecture constraints

The proposed tool offers a very effcient mechanism to associate a set of con-
straints with each solution. The following constraints can be specified by the
designer:

Task assignment Each task is assigned to exactly one processor, i.e:

P−1∑
j=0

xij = 1,∀i ∈ [0, NBT − 1] (12)

where P is the number of processors (PEs) and NBT is the number of tasks.

Deadline constraint We can set a deadline for each task or application. In
these two cases their finish time should be less than their deadline.

Pre-assignment In some cases, one can predefine a tasks assignment on specific
processors (like dedicated accelerators) for better performance purposes.

4.5 Mapping problem

As mentioned above, the mapping problem involves optimization of several ob-
jectives (often conflicting) simultaneously. So our goal is to find the Pareto op-
timal mapping solutions set. For this purpose, in addition to multiobjective op-
timization algorithms included in jMetal framework [25] which we have adapted
to solve mapping problem in our previous work [9], we have added the following
multiobjective algorithms:

-AMOSA [10]: is a multiobjective vesion of Simulated Annealing (SA). Its
principal features are: (1) It integrates an archive to store non-dominated so-
lutions found during the search. (2) The archived solutions are also used to
determine the probability of acceptance of a new solution (active elitism). The
size of the archive is kept limited. (3) AMOSA uses the concept of amount of
domination in the calculation of the probability of acceptance of a degrading
solution.

-PMOTS [11]: is a multiobjective version of Tabu Search TS, called PMOTS,
which means ”Parallel-MultiObjective Tabu Search”. The algorithm exploits K
parallel search trajectories. A tabu list is assigned to each search path. This
list is used to prevent cycles and to force the acceptance of degrading solutions
(dominated solutions), in order to direct the search to new regions not yet visited.
The non-dominated solutions found during the search will be saved in a list. This
list will contain the final non-dominated solutions (the optimal Pareto front).

12 Dihia Belkacemi, Mehammed Daoui, and Samia Bouzefrane

-MBB [12]: is a multiobjective version of Branch & Bound based on Pareto’s
dominance. The search space is explored by dynamically building a tree whose
root node represents the problem being solved and its whole associated search
space. The leaf nodes are the potential solutions and the internal nodes are sub-
problems of the total solution space. The size of the subproblems is increasingly
reduced as one approaches the leaves. The construction of such a tree and its
exploration are performed using two main operators: branching and pruning [22].

-Hybrid metaheuristics: we have also combined metaheuristics which gives
new ones called hybrid metaheuristics. For example, instead of initializing the
AMOSA’s archive or PMOTS’s parallel search randomly, we have used the so-
lutions returned by population-based metaheuristics offered by our tool.

Solving Mapping problem using AMOSA [10] and PMOTS [11] To
apply these algorithms to the mapping problem, a solution representation and
a corresponding neighborhood move operator are to be specified.

- Solution Representation: the potential solution (point) in AMOSA and
PMOTS algorithm is like the chromosome representation given in [9].

- Neighborhood Move Operator: all mutations’ type provided by jMetal
framework [25] can be specified as neighborhood move operator for AMOSA
and PMOTS algorithms. These operators have been adapted to solve the map-
ping problem in [9].

Solving Mapping problem using MBB [12] In this paper, we have used
an exact method to check the efficiency of the metaheuristics presented in the
tool in solving small and medium mapping problem instances. For this, we have
defined these two main operators:

- The branching strategy: it determines the order in which the branches are
explored [22]. In our case, at each search level, the non-dominated solutions are
explored first (i.e. the best-first strategy), and if more than one non-dominated
solutions are found, the depth-first strategy is applied.

- The prunning strategy: it eliminates the partial solutions that do not lead
to optimal solutions by computing the lower bound associated with a partial
solution [22]. In our work, at each level, the lower bound corresponds to the
best solution’s evaluation which can be found starting from the partial solution
of this level. If the lower bound of a node (partial solution) is dominated by a
given solution in the upper bound, the exploration of the node never leads to
optimal solution, so the node is ignored. Note that, upper bound set corresponds
to a set of non-dominated solutions generated randomly. Figure 3 presents an
illustration of the MBB [12] method on the mapping of three tasks (T0, T1, T2)
and each task has two permissible processors (PT0={0, 1}, PT1={2, 3} and
PT2={6, 7}).

Title Suppressed Due to Excessive Length 13

Fig. 3. Illustration of the MBB [12] method on the mapping problem

5 EXPERIMENTAL RESULTS

In this section, we present a set of experiments illustrating the use of our pro-
posed mapping tool to solve several mapping problems’ instances (small, medium
and large). These instances differ from each other regarding the task graphs
and platform size used. TGFF [26] is used to generate a set of task graphs
randomly. The architecture model (Platform) consists of k types of processors
interconnected using NoC topology. Table 1 gives the NoC parameters used in
the following experiments. To evaluate and compare multiobjective optimization

Table 1. NoC’s parameters

NoC topologies 2D-Mesh, 2D-Torus and Spidergon
Switching technique Wormhole switching
Routing technique XY routing algorithm (2D-Mesh and 2D-Torus)
Arbitration technique Round Robin (RR)
Flow control Credit-based

algorithms performances, two properties are usually required: convergence and a
uniform diversity. Several quality indicators for measuring these two criteria are
included in jMetal framework [25]. In this paper, we have considered the follow-
ing evaluation metrics: Inverted Generational Distance (IGD)(convergence and
diversity measure)([27] and Epsilon (convergence measure) [25]. The smaller
the IGD and Epsilon values are, the better the quality of the obtained solu-
tions. Since some of the applied metrics require an optimal Pareto set to be
computed, we have constructed it by collecting the results of all the runs of the
different algorithms. In all our experiments, we have performed 30 independent
runs and the obtained tables represent the mean and standard deviation values
of the quality indicator applied. The best and the second best metaheuristics
are marked with different levels of gray as background color. TABLE 2 gives
algorithm’s parameter setting used in the following experiments. A PC Intel (R)

14 Dihia Belkacemi, Mehammed Daoui, and Samia Bouzefrane

Core (TM) i7 CPU, 2.7GHz, with 8 GB of RAM is used to perform all the
calculations.

Comparative study of the different algorithms

To make a comparison between the algorithms offered by our mapping tool, we
have considered several cases:

- Case1 -Variation of task graphs and platforms used - Figure 4 gives com-
paraison between several multiobjective optimization algorithms offered by our
mapping tool (NSGAII, FastPGA, SPEA2, PESAII, IBEA, SMPSO, PAES,
FastPGA, OMOPSO, AbYSS, MOCell, AMOSA, PMOTS and MBB) for solv-
ing small (P1), medium (P2) and large (P5) mapping instances (see Figure 4
(a, b and c) respectively). We have fixed some tasks’ processors assignement
(i.e. pre-assignement constraint). Two conflicting cost functions are optimized:
the energy consumption and the overall completion time defined using analyt-
ical model and Epsilon and IGD are the quality indicators used to assess the
performance of the fronts returned by the different algorithms. These experi-
ments show that the performance order of multiobjective algorithms changes
according to the mapping problem considered (task graph and platforms used).
For example, for small and medium mapping problems, the two best algorithms
are respectively MBB and PMOTS, while for large mapping instance, the best
results are given by SMPSO and OMOPSO respectively. This confirms that a
mapping tool must provide several metaheuristics in order to explore different
solution spaces. We can also see that the algorithms’ execution time increases
with the size of the problem (task graph and platform used). An example of some
algorithms’ runtime for solving small, medium and large mapping problems is
given in TABLE 4.

- Case2 -Variation in the number of objectives to be optimized (NObj)- The
experiments presented in this second case give a comparison between a set of
algorithms offered by our mapping tool (NSGAII, SPEA2, MOCell, AbYSS,
SMPSO, OMOPSO, AMOSA and PMOTS) by specifying two objectives (load
balancing, communication cost), three objectives (load balancing, communica-
tion cost and energy consumption) and four objectives (load balancing, com-
munication cost, energy consumption and overall execution time) (see Table 5).
These cost functions are defined by analytical models. From Table 5, we see
that, firstly, for the same mapping problem (the problem P3 in our case), the
performance of metaheuristics changes according to the number of objectives
specified. For instance, in these experiments, the results returned by OMOPSO
algorithm are poor when considering two objectives, but they are good in the
case of three and four objectives. Secondly, these experiments show that meta-
heuristics’ execution time increases with the increase in the number of objectives
considered. For example, the execution time of NSGAII for 2, 3 and 4 objectives
is respectively 0.560s, 0.950s and 6.791s.

- Case3 -Effect of the choice of metaheuristic parameters on the quality of the
returned mapping solutions- In this third case, we present a set of other exper-
iments showing how metaheuristics are sensitive to their parameters. Figure 5

Title Suppressed Due to Excessive Length 15

Table 2. Algorithms’ Parameterization

Population-based metaheuristics (NSGAII, FastPGA, SPEA2,
PESAII, IBEA, MOCell,
AbYSS, SMPSO and OMOPSO)

NSGAII/ FastPGA
Population Size 100
Max Iterations 25000 / 10000 (case 4)
Mutation Probability 1.0/L (L : individual length)
Crossover Probability 0.8 / 0.9 (case 4)
SPEA2/ PESAII/ IBEA
Population Size 100
Archive Size 100
Max Iterations 25000 / 10000 (case 4)
Mutation Probability 1.0/L (L : individual length)
Crossover Probability 0.8 / 0.9 (case 4)
MOCell
Population Size 100
Archive Size 100
Max Iterations 25000
feedback 20
Mutation Probability 1.0/L (L : individual length)
Crossover Probability 0.8
AbYSS
Population Size 100
Archive Size 100
Max Iterations 25000
Reference Set Size 10 + 10
Mutation Probability 1.0/L (L : individual length)
Crossover Probability 1.0
SMPSO/ OMOPSO
Swarm Size 100
Max Iterations 500
Archive Size 100
Mutation Probability 1.0/L (L : individual length)
Single-based metaheuristics (AMOSA, PMOTS and PAES)
AMOSA
Initial temperature (T0) 700 / 800 (case 4)

Final temperature (T1) 10−3

Cooling rate (α) 0.8 / 0.9 (case 4)
Max Iterations 1000
Hard Limit (HL) 100
Soft Limit (SL) 110
Gamma 1.7 / 1.8 (case 4)
PMOTS
Max Iterations 5000
Max Pareto Rank (Rmax) 4
Max Neighbours 50
Number Parallel search paths (K) 10
Size min of Tabu List (Tabmin) 10
Size max of Tabu List (Tabmax) 15
PAES
Archive Size 100
Max Iterations 25000
Mutation Probability 1.0/L (L : individual length)

Table 3. mapping problems’ instances (MPs)

MP Task graph Platforms
P1 7 tasks 3x3 2D-mesh with 3 processors’ types
P2 10 tasks 4x4 2D-mesh with 3 processors’ types
P3 100 tasks 8 processors interconnected with

Spidergon topology (3 processors’ types)
P4 100 tasks 4x4 2D-mesh with 3 processors’ types
P5 100 tasks 8x8 2D-torus with 6 processors’ types

16 Dihia Belkacemi, Mehammed Daoui, and Samia Bouzefrane

Fig. 4. Algorithms’ comparison: (a) Solving small mapping instance, (b) Solving
medium mapping instance, (c) Solving large mapping instance.

MPs NSGAII IBEA MOCell AbYSS SMPSO OMOPSO AMOSA PMOTS PAES MBB

P1 (small) 0.235s 2.027s 0.177s 0.169s 0.222s 0.216s 0.242s 11.653s 0.122s 3.595m

P2 (medium) 0.272s 2.080s 0.209s 0.208s 0.302s 0.287s 0.384s 11.720s 0.153s 17.95m

P5 (large) 3.560s 5.496s 3.572s 3.499s 6.166s 6.064s 7.577s 5.601m 3.0576s –

Table 4. Algorithms’ runtime

shows several experiments on the effect of some parameters like: the evaluations’
number (MaxEval), an example of AMOSA’s parameter (α), and mutation op-
erator on the performance of some metaheuristics proposed by our mapping tool
such as: SMPSO, AMOSA and SPEA2. In all these experiments, we varied one
parameter for each algorithm and other parameters were set. The study was
done on P3 problem presented in Table 3. Load balancing and communication
were specified as objective functions to be optimized in these experiments. Fig-
ure 5(a) shows clearly that the more the evaluations are, the better the quality
of the mapping solutions found at the expense of the execution time (see Table
1 in Figure 5). Another example of a parameter affecting the AMOSA algorithm
is given in Figure 5(b). It is the parameter α whose value varies between]0, 1[.
The closer the value of this parameter is to 1, the better is the performance of
AMOSA, also at the expense of its execution time (see Table 2 in Figure 5).

Title Suppressed Due to Excessive Length 17

NObj NSGAII SPEA2 MOCell AbYSS SMPSO OMOPSO AMOSA PMOTS

2
IGD

MOY 8.18e− 02 8.86e− 02 8.13e− 02 8.30e− 02 2.78e− 02 1.16e− 01 7.88e− 02 8.99e− 02
ET 8.5e− 03 8.5e− 03 6.8e− 03 6.9e− 03 1.4e− 03 1.5e− 02 5.9e− 03 3.2e− 03

Runtime 0.560s 1.144s 0.568s 0.368 s 1.086s 0.777s 0.349s 2.522s

3
IGD

MOY 6.59e− 02 6.91e− 02 6.56e− 02 5.33e− 02 2.72e− 03 1.82e− 02 5.72e− 02 6.50e− 02
ET 5.6e− 03 4.8e− 03 3.7e− 03 8.3e− 03 1.5e− 04 6.0e− 04 2.1e− 03 2.0e− 03

Runtime 0.950s 1.580s 0.928s 0.727s 1.527s 1.325s 0.930 5.139s

4
IGD

MOY 2.17e− 02 2.41e− 02 2.20e− 02 1.61e− 02 6.50e− 03 1.21e− 02 2.53e− 02 2.44e− 02
ET 1.5e− 03 1.1e− 03 1.1e− 03 2.7e− 03 3.9e− 04 4.4e− 04 5.0e− 04 4.6e− 04

Runtime 6.791s 7.162s 6.687s 8.910s 265.742s 377.501s 8.953s 35.616s

Table 5. IGD. Mean and standard deviation

Fig. 5. Algorithms’ parameters setting effect: (a) varying of the evaluations’ number
(MaxEval) of SMPSO algorithm, (b) varying AMOSA’s cooling rate (α), (c) varying
SPEA2’s mutation operators.

Other important parameters affecting the performance of metaheuristics are the
reproduction operators: (1) mutation (type and probability) and (2) crossover
(type and probability). This is clearly demonstrated in the experiment shown
in Figure 5 (c) which indicates that Flip mutation operator gives better results
compared to the other types of mutation operators (polynomial and uniform
mutations).

18 Dihia Belkacemi, Mehammed Daoui, and Samia Bouzefrane

- Case4 -Comparing between hybrid and non hybrid metaheuristics- As the
last experiments, we compared hybrid (HNSGAII, HSPEA2 and HPESAII) and
non hybrid metaheuristics (NSGAII, SPEA2 and PESAII) for solving P5 prob-
lem (see Table 3). Two conflicting cost functions are optimized: the energy con-
sumption and the overall completion time defined using simulation model. From
Figure 6, we see that the proposed hybrid algorithms give promising results
(better fronts) compared to non-hybrid algorithms at the expense of time (see
Table 6). This extra time of the hybrid algorithms compared to the non-hybrid
algorithms in these experiments is due to the AMOSA runtime used for the
improvement of the Pareto fronts resulting by NSGAII, SPEA2 and PESAII
metaheuristics. It is important to note that the parameters of the hybid algo-
rithms are a combination of those given in Table 2 (with the same configuration
values).

Fig. 6. comparative study of hybrid and non hybrid algorithms.

NSGAII HNSGAII SPEA2 HSPEA2 PESAII HPESAII

Runtime (in minutes) 3.12m 6.354m 2.933m 6.121m 2.639m 5.83m
Table 6. Runtime of hybrid and non hybrid algorithms

5.1 Discussion

The proposed mapping tool offers several multiobjective algorithms that can be
specified when solving the mapping problem. The question is: ”What is the most
efficient algorithm (quality of solutions and runtime) to solve a given mapping
problem?” In this section, we try to summarize our experimental study, and thus
we give a series of guidelines on the use of the proposed tool. According to the
experimental results presented above, we concluded that:

Title Suppressed Due to Excessive Length 19

- For small (or medium) instances of the mapping problem, the exact method
(MBB) as well as metaheuristics with ”good parameter” give good compromise
solutions (i.e. good Pareto fronts). The exact method (MBB) gives the exact
Pareto front. Therefore, the exact method (MBB) is preferable in this case (see
case 1).

- For large mapping problems’ instances, only metaheuristics can be used.
The exact method (MBB) does not give results in polynomial time considering
a large search space. Therefore, the exact method (MBB) cannot solve large
mapping problems’ instances (see Table 4 in case 1).

- Although metaheuristics can deal with all mapping problems’ instances
(small, medium or large), their main disadvantage is their sensitivity to parame-
ters. Therefore, a sensitivity analysis must be done in order to estimate the right
parameters for each algorithm. It should be noted that there is no standard op-
timal setting for metaheuristics since this is strongly related to the mapping
problem under consideration (see case 3).

- No metaheuristic is better than another for any kind of mapping problem.
This depends on several factors such as: the task graph and the platform used (see
case 1), objectives’ number specified (see case 2) and metaheuristics’ parameters
(see case 3).

- Metaheuristics’ execution time (runtime) depends on several factors such
as: the problem’s size (task graph and platforms used) (see Table 4 in case 1),
the number of objectives to be optimized (case 2), the parameters’ configuration
of the algorithm (see Table1 and Table2 in Figure 5) and the type of objective
function specified (analytical (case 1) vs. simulation (case 4)).

- The solution-based metaheuristics, for example AMOSA can effectively im-
prove P-metaheuristics like NSGAII, SPEA2 and PESAII (see Figure 6). The
major disadvantages of these resulting hybrid metaheuristics are their additional
runtime compared to non hybrid ones (see case 4) and the difficulty of config-
uring their parameters, since they consist of a combination of parameters of the
metaheuristics which are, also by their nature, very sensitive to their parameters.

6 CONCLUSION

In this paper, a new tool for mapping applications on NoC based on heteroge-
neous MPSoCs is proposed, in which several multiobjective optimization algo-
rithms can be specified to explore the mapping space. Our tool offers the designer
the flexibility to easily add a new cost function or any application and archi-
tecture constraints. It offers also an easy way to assess the performance of the
front returned by different algorithms. In our future work, we are planning to
consider real time constraints during the mapping and generalize the mapping
solution proposed in this paper in simultaneous mapping of several applications
(critical and/or non-critical) on the same target platform.

20 Dihia Belkacemi, Mehammed Daoui, and Samia Bouzefrane

References

1. U. U. Tariq, H. Wu, and S. A. Ishak: Energy and memory-aware software pipelin-
ing streaming applications on NoC-based MPSoCs. Future Generation Computer
Systems111, 1–16 (2020)

2. H. Javaid and S. Parameswaran: Pipelined Multiprocessor System-on-Chip for Mul-
timedia. Springer, Cham (December 2013)

3. L. Suriano, A. Otero, A. Rodŕıguez, M. Sánchez-Renedo, and E. De La Torre: Ex-
ploiting Multi- Level Parallelism for Run-Time Adaptive Inverse Kinematics on
Heterogeneous MPSoCs. IEEE Access 8, 118707–118724 (2020)

4. STMicroelectronics, Nomadik application processor, http://www.st.com
5. NVIDIA Tegra: Next Generation Mobile Development,

https://developer.nvidia.com/tegra-development
6. Mobile processor exynos 5 octa (5422), https://www.samsung.com/semiconductor/

minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/.
7. L. Benini, G. De Micheli: Networks on Chips: A new SOC paradigm. IEEE Com-

puter 35(1), 70–78 (2002)
8. Michael R. Garey and David S. Johnson.: Computers and Intractability: A Guide

to the Theory of Np-Completeness. W.H.Freeman & Co Ltd, New York (1979)
9. D. Belkacemi, Y. Bouchebaba, M. Daoui, and M. Lalam.: Network on Chip and Par-

allel Computing in Embedded Systems. In: 2016 IEEE 10th International Sympo-
sium on Embedded Multicore/Many-core Systems-on-Chip (MCSOC), pp. 146–152.
IEEE, (September 2016)

10. S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb.: A Simulated Annealing-Based
Multiobjective Optimization Algorithm: AMOSA. IEEE Transactions on Evolution-
ary Computation 12(3), 269–283 (June 2008)

11. K. Jaffrs-Runser, J-M. Gorce, and C. Comaniciu: A Multiobjective Tabu Frame-
work for the Optimization and Evaluation of Wireless Systems. In: Wassim Jaziri,
Editor, Tabu Search. I-Tech Education and Publishing, Vienna, Austria (2008).
https://doi.org/ ISBN 978-3-902613-34-9

12. J. Carlos Soto-Monterrubio, Alejandro Santiago, H. J. Fraire- Huacuja, Juan
Frausto-Soĺıs, and J. David Terán-Villanueva: Branch and Bound Algorithm for
the Heterogeneous Computing Scheduling Multi-Objective Problem. International
Journal of Combinatorial Optimization Problems and Informatics 7(3), 7–19 (2016)

13. G. Ascia, V. Catania, and M. Palesi: Mapping Cores on Network-on-Chip. Inter-
national Journal of Computational Intelligence Research 1(2), 109–126 (2005)

14. C. Erbas, S. Cerav-Erbas, and A.D. Pimentel: Multiobjective optimization and evo-
lutionary algorithms for the application mapping problem in multiprocessor system-
on-chip design. IEEE Transactions on Evolutionary Computation 10(3), 358–374
(June 2006)

15. W. Zhou, Y. Zhang and Z. Mao: Pareto based Multi-objective Mapping IP Cores
onto NoC Architectures. Circuits and Systems, APCCAS (2006)

16. R. Tornero, V. Sterrantino, M. Palesi, and J. M. Orduna: A multi-objective strategy
for concurrent mapping and routing in networks on chip. 2009 IEEE International
Symposium on Parallel Distributed Processing, pp. 1–8. IEEE, (May 2009)

17. N. Nedjah, M. Vińıcius Carvalho da Silva, and L. de Macedo Mourelle: Customized
computer-aided application mapping on NoC infrastructure using multi-objective
optimization. Journal of Systems Architecture 57(1), 79–94 (January 2011)

18. N. Wu, Y. Mu, and F. Ge : GA-MMAS: an Energyand Latency-aware Mapping
Algorithm for 2D Network-on-Chip. IAENG International Journal of Computer Sci-
ence 39(1), (2012)

Title Suppressed Due to Excessive Length 21

19. T. He and Y. Guo: Power consumption optimization and delay based on ant colony
algorithm in network-on-chip. Engineering Review 33(3), 219–225 (2013)

20. N. Chatterjee, S. Reddy, S. Reddy, and S. Chattopadhyay: A reliability aware
application mapping onto mesh based Network-on-Chip. In 2016 3rd International
Conference on Recent Advances in Information Technology (RAIT), pp. 537–542.
(March 2016)

21. J.V. Bruch, E.A. da Silva, C.A. Zeferino, and L.S. Indrusia: Deadline, Energy
and Buffer-Aware Task Mapping Optimization in NoC-Based SoCs Using Genetic
Algorithms. In 2017 VII Brazilian Symposium on Computing Systems Engineering
(SBESC), pp. 86–93. IEEE, (November 2017)

22. El-Ghazali Talbi: Metaheuristics: from design to implementation. John Wiley &
Sons, Hoboken, N.J, New Jersey and canada (2009)

23. Jingcao Hu and R. Marculescu: Energy-aware mapping for tilebased NoC archi-
tectures under performance constraints. In Proceedings of the ASP-DAC Asia and
South Pacific Design Automation Conference, pp. 233–239. IEEE, (January 2003)

24. D.Belkacemi, : Parallel Applications Mapping onto Network on Chip Based on Het-
erogeneous MPSoCs Using Hybrid Algorithms. International Journal of Distributed
Systems and Technologies 10(2), (2019)

25. Juan J. Durillo and Antonio J. Nebro: jMetal: A Java framework for multi-objective
optimization. Advances in Engineering Software 42(10), 760–771, (October 2011)

26. R.P. Dick, D.L. Rhodes and W. Wolf: TGFF: task graphs for free. Workshop on
Hardware/Software Codesign, (1998)

27. Antonio J. Nebro, Francisco Luna, Enrique Alba, BernabÉ Dorronsoro, Juan J.
Durillo, and Andreas Beham: AbYSS: Adapting Scatter Search to Multiobjective
Optimization. IEEE Transactions on Evolutionary Computation 12(4), 439–457
(August 2008)

