

INRA

Identifying the influence of dams and ponds on the thermal regime at regional scale The case of Loire catchment

Hanieh Seyedhashemi; Florentina Moatar; Jean-Philippe Vidal; Aurelian Beaufort; André Chandesris; Laurent Valette

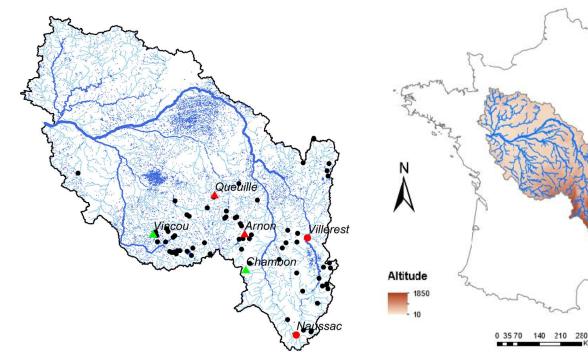
INRAE, RiverLy, Villeurbanne, France

This work is licensed under a Creative Commons Attribution 4.0 International License.

Hanieh.seyedhashemi@inrae.fr

7.Perspect

Stream (water) Temperature (ST)


- A key factor in the distribution of aquatic communities (Poole et al., 2001);
- Modified by natural processes and human activities differently (Webb, 1996);
- Exacerbated modifications due to climate change (Webb, 1996; Moatar and Gailhard, 2006; Michel et al., 2020);
- Lack of data on both upstream and downstream of anthropogenic structures (Hill et al., 2013);
- New tools required for identifying and predicting human impacts.

Objectives

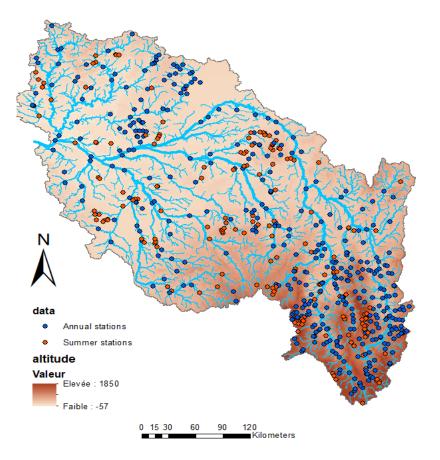
- Defining thermal signatures to identify human impacts on ST
- > Testing them on a large database of ST over a large French basin
- Distinguishing between natural regimes and altered ones
- > Detecting the impacts of dams and cumulative effects of upstream ponds

Study area and data

Loire basin and standing surface waters

Loire at the entry of estuary

Coise river

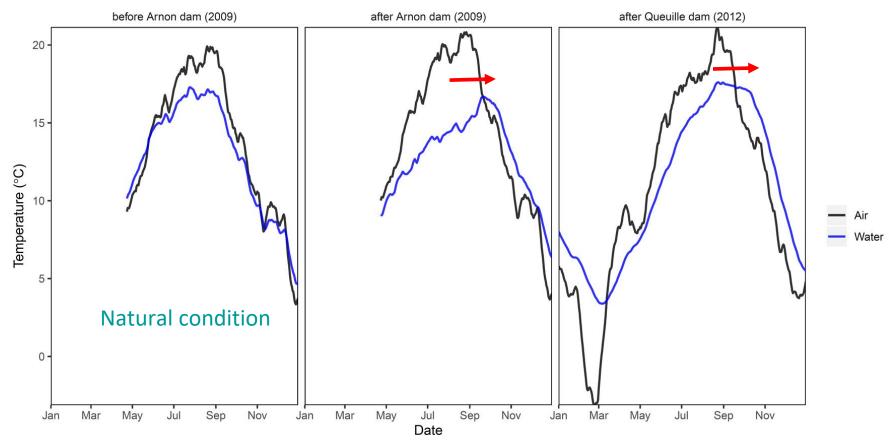

0.8% of the catchment areas with standing surface waters73 large dams0.3% of the catchment areas with ponds

INRAO

Identifying the influence of dams and ponds on the thermal regime May 7th 2020 / Hanieh Seyedhashemi One of the largest European catchments $(10^5 \ km^2)$ Contrasting natural conditions

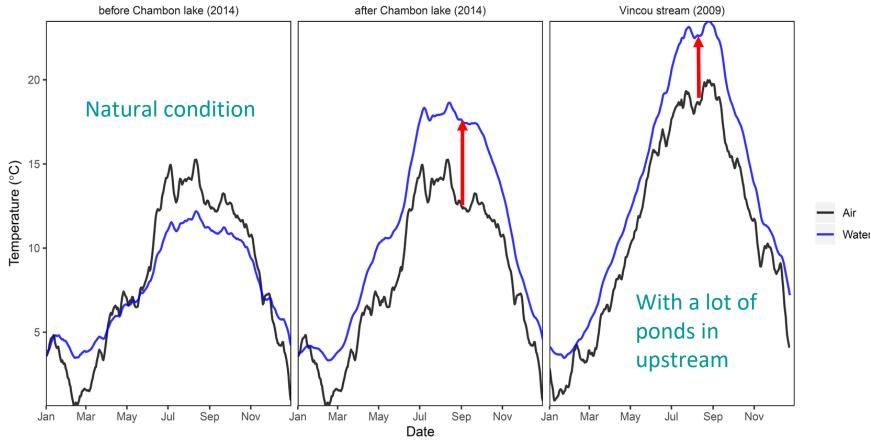
Study area and data

Observed stream and air temperature


Data Annual Summer(JJA) 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Year

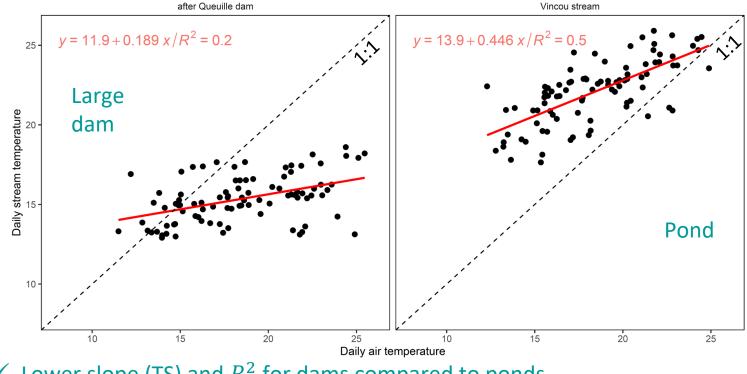
526 stations of observed ST 2008-2018 with some gap years

Air temperature from Safran reanalysis data 8~km spatial resolution and daily temporal resolution (Quintana-Segui et al., 2008; Vidal et al., 2010)


INRA

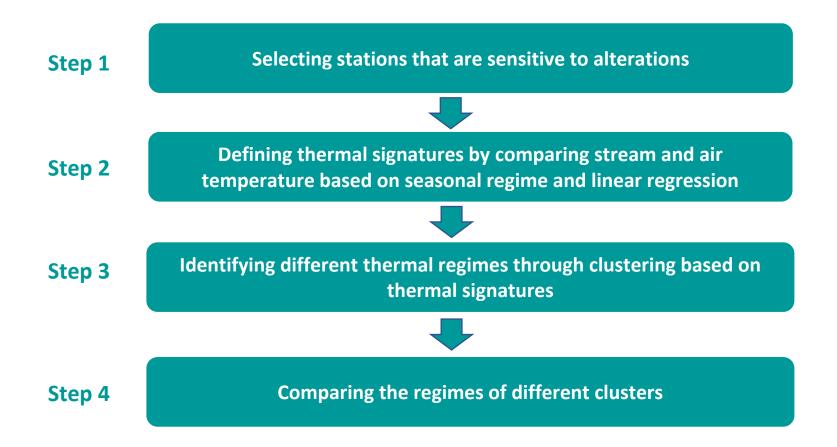
Examples of human impacts: Large dams

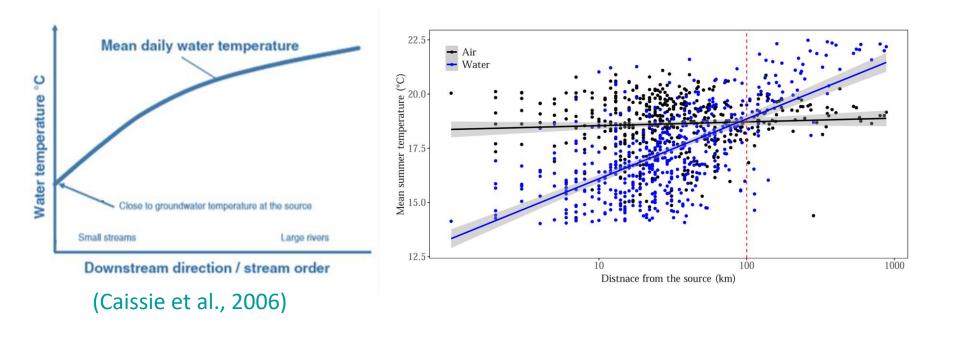
✓ Decrease ST and delay the annual cycle


Examples of human impacts: Ponds and lakes

✓ Increase ST and impose a vertical shift in regime

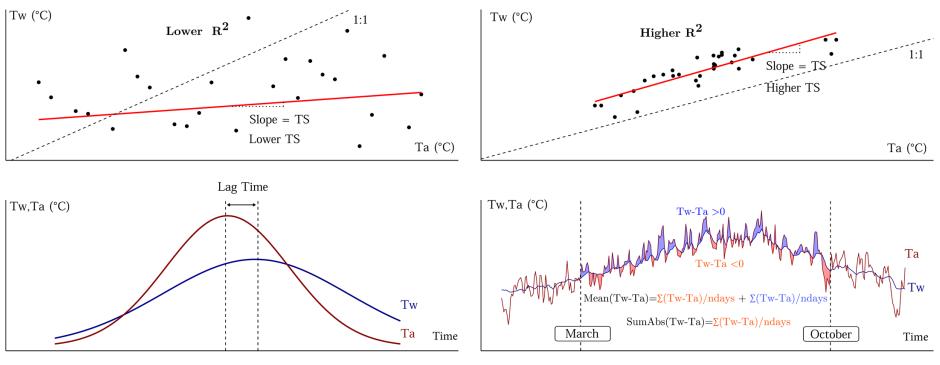
Examples of stream-air temperature relationship: dams and ponds


Using air temperature as a proxy of the heat budget (Mohseni et al., 1999, Caissie et al., 2008)


 \checkmark Lower slope (TS) and R^2 for dams compared to ponds

	1.Introduction	2.0bserved data	3. Method	4.Thermal indicators	5.Clustering	6.Dam and pond impacts	7.Perspective	
--	----------------	-----------------	-----------	----------------------	--------------	------------------------	---------------	--

Methodology



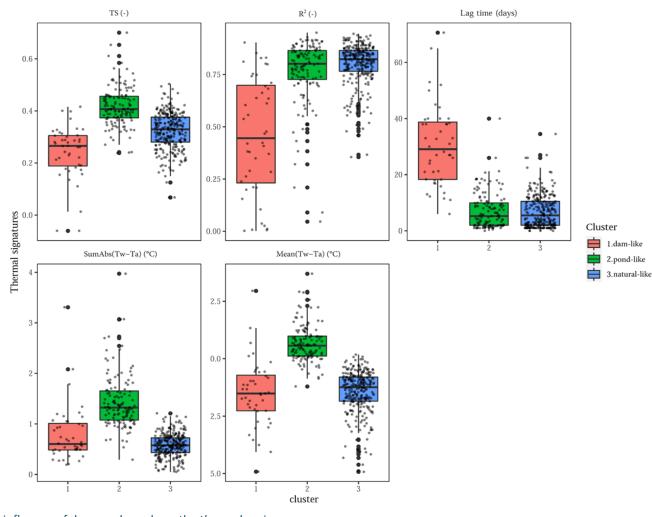
Step 1: Selecting stations that are sensitive to alterations

 The larger a river, the larger its volume (thermal capacity) and the less responsive it is to the alterations

Step 2: Defining thermal signatures by comparing stream and air temperature based on seasonal regime and linear regression

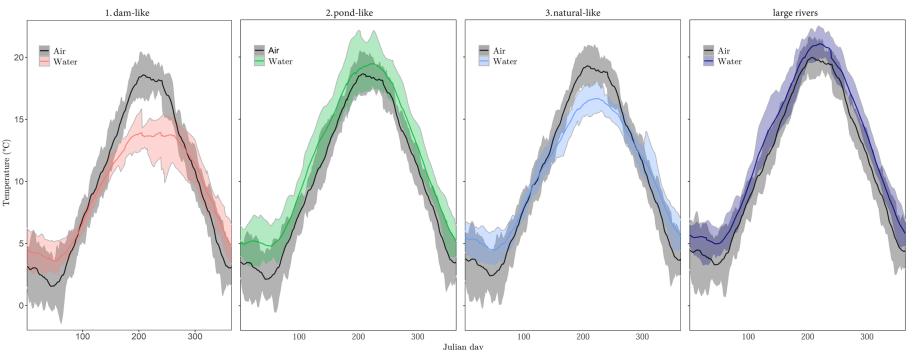
Pond Impact

INRA© Identifying the influence of dams and ponds on the thermal regime May 7th 2020 / Hanieh Seyedhashemi


Dam Impact

Step 2: Defining thermal signatures by comparing stream and air temperature based on seasonal regime and linear regression

Notation	Definition
Dam signatures	
TS	slope
R ²	coefficient of determination
Lag time	$day(Tw_{peak}) - day(Ta_{peak})$
Pond signatures	
SumAbs(Tw-Ta)	$\sum_{MarOctb.}^{Tw>Ta} (Tw-Ta)/nbdays$
Mean(Tw-Ta)	$\sum_{Mar,=Oct.} (Tw - Ta)/nbdays$


INRAe

Step 3: Identifying different thermal regimes through clustering based on thermal signatures

INRAØ

Step 4: Comparing the regimes of different clusters

✓ Dams:

delay the annual cycle by 18 days; decrease ST by 2.1°C in average over the summer

INRAe

Identifying the influence of dams and ponds on the thermal regime May 7th 2020 / Hanieh Seyedhashemi

 Cumulative effects of upstream ponds: increase ST by 2.7°C in average over the summer exacerbate the effect in a hot year with 2°C increase in ST in average over the summer

Conclusion and Perspectives

- Dealing with spatial and temporal gaps in ST data
- Defining five thermal signatures by comparing stream and air temperature
- Distinguishing between natural regimes and altered ones
 - o Dams:

Delay the annual cycle by 18 days; Decrease ST by 2.1°C in average over the summer

o Cumulative effects of ponds:

increase ST by 2.7°C in average over the summer exacerbate the effect in a hot year with 2°C increase in ST in average over the summer

- Identifying highly influenced streams, and taking mitigation actions
- Designing strategic network surveys
- Using natural thermal regime for developing a reference-condition numerical model

INRAe

Thank you for your attention!

Hanieh.seyedhashemi@inrae.fr

Selective References:

Caissie, D. (2006). The thermal regime of rivers: a review. Freshwater biology, 51, 1389-1406.

Chandesris, A., Van Looy, K., Diamond, J. S., & Souchon, Y. (2019). Small dams alter thermal regimes of downstream water. Hydrology & Earth System Sciences, 23.

Dripps, W., & Granger, S. R. (2013b). The impact of articially impounded, residential headwater lakes on downstream water temperature. Environmen-tal earth sciences, 68, 2399-2407.

Hill, R. A., Hawkins, C. P., & Carlisle, D. M. (2013). Predicting thermal reference conditions for usa streams and rivers. Freshwater Science, 32, 39-55.

Olden, J. D., & Naiman, R. J. (2010). Incorporating thermal regimes into environmental Ows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology, 55, 86-107.

Maheu, A., St-Hilaire, A., Caissie, D., El-Jabi, N., Bourque, G., & Boisclair, D. (2016c). A regional analysis of the impact of dams on water temperature in medium-size rivers in eastern canada. Cana- dian Journal of Fisheries and Aquatic Sciences, 73, 1885-1897.

Moatar, F., & Gailhard, J. (2006). Water temperature behaviour in the river loire since 1976 and 1881. Comptes Rendus Geoscience, 338, 319-328.

Mohseni, O., Erickson, T. R., & Stefan, H. G. (1999). Sensitivity of stream temperatures in the united states to air temperatures projected under a global warming scenario. Water Resources Research, 35, 3723-3733.

Michel, A., Brauchli, T., Lehning, M., Schaei, B., & Huwald, H. (2020). Stream temperature and discharge evolution in switzerland over the last 50 years: annual and seasonal behaviour. Hydrol- ogy & Earth System Sciences, 24.

Poole, G. C., & Berman, C. H. (2001). An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of humancausedthermal degradation. Environ- mental management, 27, 787-802.

Webb, B. (1996). Trends in stream and river temperature. Hydrological processes, 10, 205-226.

INRA@