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Example cost function

 Error function based on W TDS spectrum

 𝑓 𝒙 =
σ𝑖 𝛼𝑖 |𝑑𝑖−𝑑sim|

σ𝑖 𝛼𝑖

 𝛼𝑖: weights

 𝑑i: experimental data

 𝑑𝑠𝑖𝑚: simulated data 

 Objective: find the minimum

Tungsten

 W under 200 eV D+ at 300K [2]

 5D optimisation (3 energies, 4 densities)

 𝐸𝑝,1 = 0.83 eV ; 𝐸𝑝,2 = 0.97 eV

𝐸𝑝,3 = 1.51 eV

 𝑛1 = 10−3at. fr. ; 
𝑛2 = 7 × 10−4at. fr.

 Convergence reached in a few hours
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Multidimensional, multi-material and multi-

physics modelling of Hydrogen transport in 

ITER

 FESTIM: a modelling tool for hydrogen transport modelling

 Well suited for high-dimensional optimisation

 High inventory in ITER PFCs during resting phases

 1D modelling is not sufficient for quantitative

estimation of PFC inventory

 Reproducing experimental results can be long and tedious

 Is it possible to automatically fit a thermal desorption spectrum and identify 

materials properties ?

 Can these properties be used to perform complex multidimensional 

simulations ?

 Is there a discrepancy between 2D and 1D simulations ?
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𝑑𝑡

= 𝑘 𝑐m (𝑛𝑖 − 𝑐t,𝑖) − 𝑝 𝑐t,i

Hydrogen transport

𝜌𝐶𝑝
𝑑𝑇

𝑑𝑡
= 𝛻 𝜆𝛻𝑇 + 𝑄

Heat transfer

HIs Inventory over time

 Inventory limited by near surface 
retention zone

 Inventory during implantations 
keeps increasing

 Up to 95% error between 1D and 2D
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Simulation parameters

 2 traps in W
 1 trap in CuCrZr

1 cm
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2D
1D

 Finite Element Methods 
 FEniCS backend
 FESTIM code [1]
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Cu

CuCrZr

 Convective exchange
 Recombination

Co-deposited Be-D

 Co-deposited 1μm-thick Be-D under at 

330K [3]

 6D optimisation (2 energies, 2 densities, 2 

initial occupancies)

 𝐸𝑝,1 = 0.75 eV ; 𝐸𝑝,2 = 0.93 eV

 𝑛1 = 10−1at. fr. ; 
𝑛2 = 4 × 10−2at. fr.
 𝑓1 = 0.73 ; 𝑓2 = 0.28

 Convergence reached in a few minutes
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Temperature field
during implantation

 Maximum surface 
temperature 1471 K

 Homogeneous 
temperature during 
rests
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