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The Schur complement on a bounded domain is a
spectral Padé approximation about infinity of the Schur

complement on the unbounded domain

Martin J. Gander1, Lukáš Jakabčin2 and Michal Outrata1

January 23, 2021

Abstract

We show for a specific model problem that the truncation of an unbounded domain
by an artificial Dirichlet boundary condition placed far away from the domain of interest
is equivalent to a specific absorbing boundary condition at the boundary of the domain
of interest. In particular, using Schur complement techniques, we prove that the ab-
sorbing boundary condition obtained is a spectral Padé approximation about infinity of
the transparent boundary condition. We also study numerically two improvements for
this boundary condition – the truncation with an artificial Robin boundary condition
placed far away from the domain of interest, and a Padé approximation about different
point than infinity. Both of these give new and substantially better results compared
to the artificial Dirichlet boundary condition.

Seen through the optic of linear algebra, we show that the Schur complement of our
model problem written with respect to the eigenbasis can be identified with a truncation
of a certain continued fraction. We use the theory of continued fractions to establish an
approximation result of this truncation and hence interpreting the Schur complement
as the Padé approximation of the optimal boundary operator in the eigenbasis. We
then look to further improve the approximation qualities by changing some of the
structure of the continued fraction so that the approximation is more accurate around
a point of our choice and propose two different ways of achieving this result.

1 Introduction

In order to numerically solve a problem on an unbounded domain, we need to truncate the
domain to a finite size to perform computations. This domain truncation problem was first
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studied in [7], where the authors introduced the so called absorbing boundary conditions
(ABC) for wave propagation phenomena, see also [3]. A second major technique for the
truncation of infinite domains are the perfectly matched layers (PML), presented in the
seminal paper [4]. The pole condition, introduced in [19], is yet another new way to construct
and study domain truncations and in [11, 12] the authors relate the pole condition technique,
ABC and PML, obtaining an important understanding of all of these techniques.

At the discrete level, the ABC and PML techniques can be identified with techniques
approximating the Schur complement in some sense. A number of iterative solvers has been
derived based on this connection, see, e.g., [10] and the references therein. Our approach
builds upon the eigendecomposition of the Schur complement, which for our model problem
is very closely linked with the Fourier analysis of the Schur complement or, equivalently, the
frequency domain analysis. Notably, the question of the optimal PML for problems with
finite difference grids has been discussed in [14, 1] for the Laplace equation and then also
extended to the Helmholtz equation in [6]. Our results go in a similar direction but are
qualitatively different.

Domain truncation is also important in domain decomposition where a given computa-
tional domain is decomposed into many smaller subdomains, and then subdomain solutions
are computed independently in parallel. An iteration process is used to obtain better and
better approximations of the true solution on the entire domain. The solutions on the smaller
subdomains can naturally be interpreted as solutions on truncated domains, and thus it is
of interest to use ABC or PML techniques at the interfaces between the subdomains to
enhance the convergence. Based on the insight from [18] this led to a new class of optimal
and optimized Schwarz methods, see [8, 9] and references therein, and also the review on
Schwarz methods [10].

The classical Schwarz method [20] uses Dirichlet transmission conditions between subdo-
mains and an overlap to achieve convergence [21]. In what follows the goal is to interpret the
overlap as a specific ABC once the unknowns of the overlap are folded onto the interface, sim-
ilarly to the patch method in [17, 13]. In this sense, the overlapping domain decomposition
method is shown to be equivalent to a non-overlapping domain decomposition method with
a particular ABC transmission condition. Although the Schwarz method is not explicitly
mentioned in what follows, it is one of the main applications for our results.

We start in Section 2 by defining the model problem and its discrete counterpart. We
recall the notion of the Schur complement for this problem in Section 3. Section 4 contains
the main theoretical results of this paper, obtained by spectral analysis: we show that there
exists a limit of the Schur complement as the width of the overlap goes to infinity, and that the
Schur complement of a finite width truncation with a Dirichlet condition is a spectral Padé
approximation around infinity of the unbounded width limit. We next explore numerically
how the spectral approximation changes when the Dirichlet condition is replaced by a Robin
condition in Section 5, and present an optimized choice for the Robin parameter, and also
a generalization in volume. We give concluding remarks and discuss possible extensions in
Section 7.
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Figure 1: The unbounded strip domain in R2 with Ω = (0,+∞)× (0, 1).

2 Model Problem

We use as our model problem the partial differential equation (PDE)

(η −∆)u = f in Ω, η > 0,
u = 0 on ∂Ω,

(1)

where the domain Ω := (0,+∞) × (0, 1), see Figure 1. We assume that the support of the
right-hand side function f is localized, namely

suppf ⊂ Ωa := (0, a)× (0, 1) ⊂ Ω.

Let b ≥ a and set Ωb := (0, b) × (0, 1) ⊂ Ω as a larger region, containing Ωa. Solving
problem (1) on Ωb and with homogeneous Dirichlet boundary condition at x = b (i.e.,
u(b, y) = 0) gives a discrete approximation ub of the true solution u on the unbounded
domain Ω. Increasing b, the error of ub as an approximation of u is decreasing.

Using a finite difference discretization of (1) on Ωb with an equidistant mesh with mesh
size h := 1

N+1
, the unknowns approximate the function values at the points of the grid.

We can simplify the notation by gathering the unknowns with identical x coordinate into
a vector of unknowns of length N . Assuming that the boundaries coincide with the mesh
points, i.e.,

a = (Na + 1)h and b = (N b + 1)h, (2)

we obtain the system of linear equations

Abub = f b, (3)

where f b = [fT1 , · · · ,fTNa ,0T , · · · ,0T ]T , with f i ∈ RN for i = 1, 2, . . . , Na and 0 ∈ RN . The
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system matrix Ab can be written in the classical block tridiagonal form

Ab =
1

h2



D1 −IN
−IN

. . .
. . .

. . . DNa −IN
−IN DNa+1

. . .
. . .

. . . −IN
−IN DNb


∈ R(N ·Nb)×(N ·Nb), (4)

with IN the identity matrix of size N ×N and

Di = D =

ηh
2 + 4 −1

−1
. . . −1
−1 ηh2 + 4

 ∈ RN×N , i = 1, 2, . . . , N b. (5)

In this notation, we can also identify the problem only on Ωa, i.e.,

Aaua = fa, (6)

with fa = [fT1 , . . . ,f
T
Na ]T and

Aa =
1

h2


D1 −IN
−IN

. . .
. . .

. . .
. . . −IN
−IN DNa

 . (7)

Finally, we introduce also the discretization of the unbounded problem without domain
truncation, i.e.,

Au = f , (8)

where the solution as well as the right-hand side are vectors of infinite size, i.e.,

f = [fT1 , · · · ,fTNa ,0T , · · · ,0T , . . . ]T ,
u = [uT1 , · · · ,uTNa ,uTNa+1, · · · ,uTNb , . . . ]

T ,

and the system matrix A is also of infinite dimension, i.e.,

A =
1

h2



D1 −IN
−IN

. . .
. . .

. . . DNa −IN
−IN DNa+1

. . .
. . .

. . . −IN
−IN DNb

. . .
. . .

. . .


.
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In what follows, it is enough to understand this infinite system simply as the limit of (4) as
b→ +∞; for more details on infinite matrices, see, e.g., the historical overview [5].

Because the data (the function f) vanishes outside of Ωa we can formulate two new
problems on Ωa so that their solutions coincide with the solution of the problem (3) on Ωb

and with the solution of the problem (8) on Ω. This can be done both at the continuous level,
using the Dirichlet-to-Neumann map (see, e.g., [10, Section 5.2]), and at the discrete level
using the Schur complement. Here we choose the latter and introduce the Schur complement
in the following section in more detail.

3 The Schur complement operator

To reduce the system (3) to a smaller one of the dimension of (6), we eliminate the variables
(ubNa+1, . . . ,u

b
Nb). Since those satisfy the equations in (3), i.e.,

−
ub
Nb−1

h2
+
DNbubNb

h2
= 0,

−
ubi−1
h2

+
Diu

b
i

h2
−

ubi+1

h2
= 0, for i = N b − 1, . . . , Na + 1,

(9)

we can recursively eliminate them. This is the well-known process of block Gaussian elimi-
nation and in the matrix formulation is known as the Schur complement approach.

Definition 3.1 (Schur complement) The Schur complement T bNa is defined recursively
by

T bNb =
DNb

h2
=
D

h2
,

T bi =
Di

h2
−

(T bi+1)
−1

h4
=
D

h2
−

(T bi+1)
−1

h4
, for i = N b − 1, . . . , Na.

(10)

Using the Schur complement T bNa and the particular zero structure of the right-hand side
in (3), we can reduce the problem (3) to a problem on Ωa, namely

Ãaũa = fa, (11)

where

Ãa =


D1

h2
− IN
h2

− IN
h2

. . .
. . .

. . . DNa−1

h2
− IN
h2

− IN
h2

T bNa

 . (12)

The only difference between (6) and (11) is the last block in (12) where the Dirichlet boundary
condition block has been replaced by the Schur complement T bNa , representing the “far-field”
domain (or the overlap) unknowns in Ωb\Ωa that have been folded in. Since the solution
ũa of the modified system (11) coincides with the solution ũb of (3) restricted to the points
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in Ωa, the smaller system gives a better approximation of the underlying solution u on the
infinite domain compared to the solution of (6).

To further improve the solution, we can move the boundary point b to the right to some
b̃ > b (and thus having an N b̃ > N b) and hence, the Schur complement matrix T b̃Na will be
defined by a longer recurrence (see Definition 3.1). If b goes to infinity, the corresponding
Schur complement matrix T∞Na will be governed by the limit of (10), namely

T∞Na =
D

h2
− (T∞Na)−1

h4
, (13)

which does not depend on Na. Thus, T∞Na ≡ T∞ for any Na, where T∞ satisfies the same
equation (13), i.e., one has

T∞ =
D

h2
− (T∞)−1

h4
. (14)

Using T∞ instead of T bNa in (12), the corresponding solution ũa will coincide with u on the
points in Ωa. Equation (14) can be reformulated into a quadratic matrix equation for T∞

given by

(T∞)2 − D

h2
T∞ +

I

h4
= 0. (15)

This equation has two solutions, each of them corresponding to a different underlying solution
u. But only one of these corresponds to a bounded solution u, which is of interest. In order
to solve (15), it is convenient to change the basis we work in to the eigenbasis of D, which,
in this case, corresponds to the discrete sine basis1. We present the change of the basis and
its implications for the computation in the following section.

4 Spectral analysis

The eigenpairs of the matrix D in (5) can be evaluated by writing D = Dyy + 2I, where
Dyy is the 3-point finite difference stencil discretization of η − ∂yy multiplied by h2. The
eigenpairs of Dyy are known in closed form, i.e., Dyy = QTZQ with

Z := diag(z1, . . . , zN), zk := ηh2 + 4 sin2

(
kπ

2(N + 1)

)
, (16)

and Q unitary and symmetric, with the eigenvectors qk in its columns,

qk :=
[√

2
N

sin
(
kπ
N+1

j
)]N

j=1
=

√
2

N + 1

 sin
(
kπ
N+1

)
...

sin
(
kπ
N+1

N
)
 ∈ RN . (17)

Thus, we can diagonalize D with the same basis, i.e.,

D = QTΛQ

1It would be possible to do the analysis that follows for a much more general PDE, but for simplicity and
clarity, we use our model problem (1) throughout; more comments can be found in the concluding Section 7.
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with eigenvalues given by

Λ = diag(λ1, . . . , λN) and λk = 2 + zk. (18)

For the rest of the text we fix the index notation so that the index k = 1, . . . , N corre-
sponds to a particular eigenmode (or frequency or Fourier mode in different terminologies).

Remark 1 Changing the basis so that the diagonal blocks of the matrices A,Ab, Aa and also
Ãa diagonalize will on the one hand make the Schur complement analysis significantly easier
- we will be able to treat each eigenmode separately - but on the other hand more complicated
- treating each eigenmode separately adds yet another index to the already loaded notation.
Throughout the text we keep the index k reserved for the eigenmode notation.

Although it is in our eyes not possible to simplify the notation while avoiding confusion,
we recognize the difficulties associated with the notation of the following subsection.

4.1 Diagonalization of the Schur Complement

Changing the basis for the Schur complement definition in (10) gives

T̂ bNb = QT bNbQ
T = Q

D

h2
QT =

Λ

h2
,

T̂ bi = QT bi Q
T = Q

D

h2
QT −Q

(T bi+1)
−1

h4
QT =

Λ

h2
−

(T̂ bi+1)
−1

h4
,

(19)

where i = N b+1, . . . , Na and all of the matrices T̂ bi are diagonal. Working with the diagonal
entries only, each mode (frequency) also follows the analogous recurrence, namely

t̂bNb,k =
λk
h2
,

t̂bi,k =
λk
h2
− 1

h4t̂bi+1,k

, for i = N b + 1, . . . , Na.
(20)

Moreover, we can also write an analogue of the above recurrence for the recurrence we
establish for the solution ub in (9). In particular, having

−
ub
Nb−1

h2
+
QTΛQub

Nb

h2
= −

ub
Nb−1

h2
+QT T̂ bNbQu

b
Nb = 0,

−
ubi−1
h2

+
QTΛQubi

h2
−

ubi+1

h2
= −

ubi−1
h2

+
QT T̂ bi Qu

b
i

h2
= 0,

(21)

with i = N b−1, . . . , Na, setting ûbi := Qubi and multiplying (21) on the left by Q, we obtain

−
ûbNb−1

h2
+

ΛûbNb

h2
= −

ûbNb−1

h2
+ T̂ bNbû

b
Nb = 0,

−
ûbi−1
h2

+
Λûbi
h2
−

ûbi+1

h2
= −

ûbi−1
h2

+
T̂ bi û

b
i

h2
= 0,

(22)

7



where i = N b + 1, . . . , Na.
In the following section we use the above recurrences to analyze the the Schur complement

T bNa and its limit as b → +∞. Notice that in the context of Section 1, obtaining the
limit limb→+∞ T

b
Na allows us to construct ũa such that it coincides with u (restricted to Ωa

unknowns) and thus to obtain the best possible approximation in this framework.

4.2 Convergence of the Schur Complement

Focusing on the limit case limb→+∞ T
b
Na , (19 – 20) implies that we can compute the limit for

each eigenmode independently, meaning we can focus on N scalar limits

lim
b→+∞

t̂bNa,k =: t̂∞Na,k, (23)

for k = 1, . . . , N . Since (20) holds for any b fixed, the limit t̂∞Na,k satisfies the same equation,
meaning we have

(t̂∞Na,k)
2 − λk

h2
t̂∞Na,k +

1

h4
= 0. (24)

Since the equation does not depend on Na, neither will the solutions, i.e., the limits, and
thus we can omit the Na subscript in (23), obtaining t̂∞Na,k ≡ t̂∞k . Returning to equation (24),
there are two solutions,

τ̂∞,1k =
λk +

√
λ2k − 4

2h2
and τ̂∞,2k =

λk −
√
λ2k − 4

2h2
, (25)

and using the definition of λk in (18), both solutions are real and positive for all k = 1, . . . , N .
Taking any k and using the Vieta formulas for (24), we have

(h2τ̂∞,1k )(h2τ̂∞,2k ) = 1, (26)

and, moreover,
0 < h2τ̂∞,2k < 1 < h2τ̂∞,1k . (27)

The next step is to show that one of the solutions τ̂∞,1k , τ̂∞,2k indeed acts as the limit Schur
complement for our solution vector ũa.

The key observation is that the characteristic polynomial of the recurrence relation in (22)
is preserved through the limit process and thus the solutions τ̂∞,1k , τ̂∞,2k of the limit equa-
tion (24) coincide with the roots of the characteristic polynomial

pk(r) = −r2 + λkr − 1.

This together with the explicit formula for the solution of the recurrence relation (22) is
enough to establish the following result.
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Theorem 4.1 The Schur complement T bNa defined in (10) converges to T∞,1, i.e., the solu-
tion of the formal limit equation (15), as b→ +∞. To be more specific, the eigenvectors of
those matrices are equal and the eigenvalues of T̂ bNa converge to the ones of T̂∞,1, i.e.,

t̂∞k ≡ lim
Nb→∞

t̂bNa,k = τ̂∞,1k =
λk +

√
λ2k − 4

2h2
, (28)

where λk = ηh2 + 2 + 4 sin2
(
hkπ
2

)
, see (18).

Proof Fixing b, we take the solution subvector ûbi of length N for any i = Na, . . . , N b and
denote its scalar entries by ûbi,k for k = 1, . . . , N . These entries follow the system of difference
equations in (22) and as such they can be written as a linear combination of powers of the
roots of the characteristic polynomial of the difference equation. In other words, there exist
two constants νbk and µbk such that the solution ûbi,k of (22) is given by

ûbi,k = µbk
(
h2τ̂∞,1k

)i−Na

+ νbk
(
h2τ̂∞,2k

)i−Na

, (29)

where the constants µbk, ν
b
k depend on N b and Na. Recalling the inequality of the roots

τ̂∞,1k , τ̂∞,2k in (27) it follows that (
h2τ̂∞,1k

)Nb−Na

→ +∞.

Since we look for the limit of solutions satisfying a homogeneous Dirichlet boundary condition
at x = b, the limit has to decay at +∞. Thus the bounded solution of the form (29) has to
satisfy

µbk → 0 as b→ +∞.
Hence, setting ν∞k as the limit of νbk as b→ +∞ we obtain

û∞i,k = ν∞k
(
h2τ̂∞,2k

)i−Na

. (30)

Returning to the system of difference equations (22), the scalar equations become

−ûbNa,k + λkû
b
Na+1,k − ûbNa+2,k = −ûbNa,k + h2t̂bNa+1,kû

b
Na+1,k = 0,

and solving for h2t̂bNa+1,k, we get

h2t̂bNa+1,k =
ûbNa,k

ûbNa+1,k

.

Inserting the values of ûbi,k from (30), we find

lim
Nb→∞

h2t̂bNa+1,k =
limNb→∞ û

b
Na,k

limNb→∞ û
b
Na+1,k

=
û∞Na,k

û∞Na+1,k

=
ν∞k
(
h2τ̂∞,2k

)i−Na

ν∞k
(
h2τ̂∞,2k

)i−Na+1
=

1

h2τ̂∞,2k

= h2τ̂∞,1k ,

where the last step follows from (26), finishing the proof. �
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Remark 2 All of the computations starting at the beginning of this subsection with (23)
and finishing by Theorem 4.1 were focusing on computations for the full Schur complement,
i.e., the full recurrence in (20). However, starting in (23) with Na + 1, Na + 2 or any fixed
Na+n, all of the computations remain the same. This confirms that indeed the limit result is
independent of Na as the same result holds also if we stop the recurrence elimination process
one, two or any other fixed number of steps earlier (that is before reaching the domain of
interest Ωa).

The limit t̂∞k can be written in a more convenient form, using the notation λk = zk + 2
from (18). A direct computation gives

t̂∞k =
λk +

√
λ2k − 4

2h2
=

2 + zk +
√

(2 + zk)2 − 4

2h2
=

1

h2
+

zk
2h2

+

√
z2k + 4zk
2h2

=
1

h2
+

zk
2h2

+

√
z2k(1 + 4

zk
)

2h2
=

1

h2
+

zk
2h2

+
zk

2h2

√
1 +

4

zk
,

(31)

and thus, for any k = 1, .., N , the limit t̂∞k can be written in the form

t̂∞k =
1

h2

(
1 +

zk
2

(
1 +

√
1 +

4

zk

))
, (32)

with zk := ηh2 + 4 sin2(hkπ/2). Each limit mode t̂∞k can thus be seen as a function of an
argument z,

t̂∞(z) =
1

h2

(
1 +

z

2

(
1 +

√
1 +

4

z

))
, (33)

evaluated at z = zk ∈ [ηh2 + 4 sin2(hπ/2), ηh2 + 4 sin2(hNπ/2)]. In the same way, the
recurrence relation (19) for t̂bi,k can be interpreted as a function evaluation at the points
z = zk,

t̂bi,k = t̂bi(zk) for i = Na, . . . , N b.

The first three functions are

t̂bNb(z) =
2 + z

h2
,

t̂bNb−1(z) =
2 + z

h2
− 1

h4 2+z
h2

=
1

h2

(
2 + z − 1

2 + z

)
,

t̂bNb−2(z) =
2 + z

h2
− 1

h4t̂b
Nb−1(z)

=
2 + z

h2
− 1

h4 1
h2

(
2 + z − 1

2+z

)
=

1

h2

(
2 + z − 1

2 + z − 1
2+z

)
,

and by the recursive definition in (20), the general term is

t̂bi(z) =
2 + z

h2
−

1
h2

2 + z − 1

2+z−
. . .

2+z− 1
2+z

. (34)
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Objects of this form are called continued fractions. Their theory links various areas of math-
ematics, e.g., Padé approximations, orthogonal polynomials, Vorobyev’s moment matching
problem, Gauss quadrature and the method of conjugate gradients (see [16] and also [15,
Section 3.3.2 - 3.3.6] for further references) and we will use some of these links to establish
our main result in Section 4.4 later on. In the light of this observation we adjust our notation,
clarifying everything in Remark 3 below.

Remark 3 Notice that in the continued fraction representation of t̂bi(z) in (34), the contin-
ued fraction has exactly N b− i levels. In order to simplify the notation, we will from now on
change the subscript i to correspond to the “number of levels” or “depth” of the continued
fraction. Hence, for the rest of the text we will write

t̂b0(z) =
2 + z

h2
,

t̂b1(z) =
2 + z

h2
− 1

h4 2+z
h2

=
1

h2

(
2 + z − 1

2 + z

)
,

t̂b2(z) =
2 + z

h2
− 1

h4t̂b
Nb−1(z)

=
2 + z

h2
− 1

h4 1
h2

(
2 + z − 1

2+z

)
=

1

h2

(
2 + z − 1

2 + z − 1
2+z

)
,

and so on. This means that the index i changes the meaning from the number of grid columns
in the domain Ωb to the number of grid columns in the domain Ωb \Ωa. Whenever i increases,
we understand it as extension of the domain Ωb, rather than the mesh size changing.

We continue by a simple observation regarding the functions t̂∞ and t̂bi .

Remark 4 By a direct computation we obtain

t̂∞(z) = 2 + z − 1

t̂∞(z)
,

and by re-insertion we also get

t̂∞(z) = 2 + z − 1

2 + z − 1
t̂∞(z)

,

and so on. This suggests that the function t̂∞(z) is equal to the infinite continued fraction

t̂∞(z) = 2 + z − 1

2 + z − 1
2+z−...

and the functions t̂bi(z) in (34) are approximations in the sense of a truncation of this infinite
continued fraction after i levels.
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Since the continued fractions are not the primary focus, which is to say that we will use
the continued fractions only as a tool to arrive at our main result, we choose [2] as the
main reference, which is a book written as an overview for Padé approximations and the
continued fractions are approached mainly from that perspective. We refer the interested
readers to [16] and [22] for more detailed expositions of the theory of continued fractions.
We continue with Section 4.3 where we recall some standard terminology and results of the
field and give some auxiliary lemmas in the following subsection.

4.3 Padé Approximation and Continued Fractions

We start by recalling the Padé approximation theory. We follow the notation from [2], i.e.,
the [M/L]-Padé approximant of f(z) is denoted by [M/L]f ≡ [M/L]f (z).

Theorem 4.2 ([2, Theorem 1.5.3, 1.5.4, 1.5.1]) Let f(z) be a real function of a real
variable. Then the following holds provided the Padé approximants exist :

1. Let α, β ∈ R. Then α + β[M/L]f = [M/L]α+βf .

2. Let m ≥ 1 be fixed and assume f(z) =
+∞∑
j=0

cjz
j to be a formal power series (we do

not consider the convergence question here). Setting g(z) = 1
zm

(
f(z)−

m−1∑
j=0

cjz
j

)
and

assuming M −m ≥ L− 1 we have

[M −m/L]g(z) =
1

zm

(
[M/L]f (z)−

m−1∑
j=0

cjz
j

)
.

3. Assume f(0) 6= 0 and set g(z) = 1/f(z). Then [M/L]g(z) = 1/[L/M ]f (z).

We continue by introducing the basic terminology of continued fractions following [2,
Chapter 4].

Definition 4.3 A continued fraction is given by sequences of real numbers {aj}j, {bj}j –
the numerator and the denominator sequence of the continued fraction – and has the general
form

b0 +
a1

b1 + a2
b2+

a3
. . .

=: b0 +
+∞∑
j=1

aj
bj+
≡ b0 +

a1
b1 +

a2
b2 +

. . . ,

where the sum is to be understood only formally. The continued fraction is called infinite as
long as aj, bj 6= 0 for all j.

The n-th truncation (or convergent) of a continued fraction is given by

An
Bn

= b0 +
n∑
j=1

aj
bj+

= b0 +
a1

b1 + a2

bn−2+
. . .

bn−1+
an
bn

,

12



where An and Bn are the n-th truncation (or convergent) numerator and denominator.
Replacing the scalars aj and/or bj by linear (or affine) functions of a real variable z, An

and Bn become polynomials in z and the n-th truncation of the continued fraction becomes a
rational function in z. Different settings of this framework lead to different types of continued
fractions. Most notably, a continued fraction is called regular C-fraction (short for regular
classical continued fraction), provided it has the form

b0 +
a1z

1 + a2z
1+

a3z

. . .

≡ b0 +
a1z

1 +

a2z

1 +
. . . ,

with aj 6= 0 for all j. If, moreover, aj > 0 for all j, then it is called S-fraction (short for
Stieltjes continued fraction). If the continued fraction takes the form

b0 +
r1

z + s1 − r2
z+s2− r3

. . .

≡ b0 +
r1

z + s1 −
r2

z + s2 −
. . . ,

with kj 6= 0 for all j then it is called J-fraction (short for Jacobi continued fraction).

Next, we give some remarks on the definition above. First, let us emphasize that we have
ignored the questions of convergence of infinite continued fractions and we refer the reader
to [16] and [22]. Also, notice that one function can be represented by two seemingly different
continued fractions (different possibly in type and/or in the coefficient values) and one way
to recognize the equality of two continued fractions is via the three-term recurrence relation
of the numerators and denominators of the continued fraction truncations (convergents),
see [2, Theorem 4.1.1, pp.106]. We have that

A−1 = 1, A0 = b0, An = bnAn−1 + anAn−2, (35)

B−1 = 0, B0 = 1, Bn = bnBn−1 + anBn−2.

and assuming the n-th truncation (convergent) of two continued fractions are equal for any
n, the infinite continued fractions are equal as well. For more details on the introduced
types of continued fractions as well as other types of continued fractions (e.g., non-regular
C-fraction, T-fraction, P-fraction,. . . ) we refer to [16] and [22] and references therein. Last
but not least, we want to note that some authors will call a continued fraction an S-fraction
even though the fraction itself does not meet the definition above but can be transformed
into a continued fraction that does. We next recall a basic transformation rule of continued
fractions.

Lemma 4.4 ([2, Section 4.1, pp. 105-106]) Let {aj}j, {bj}j be two real sequences of the
numerators and denominators of a continued fraction as in Definition 4.3. Let {ej}j be a
sequence of real numbers different from zero. Then we have

b0 +
a1
b1 +

a2
b2 +

a3
b3 +

· · · = b0 +
e1a1
e1b1 +

e1e2a2
e2b2 +

e2e3a3
e3b3 +

. . . ,
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For purposes of this text we present immediately the continued fraction result for the
square root function, which is of interest to us2. We state the result in Theorem 4.5, ref-
erencing to the book of Baker but the original result is due to Gauss, who showed a much
more general result for the hypergeometric function 2F1; for more details derivation we refer
the reader to [22, Chapter XVIII] or [16, Chapter VI].

Theorem 4.5 ([2, Section 4.6, Theorem 4.4.3 and formula (6.4) on pp. 139]) For
any α ∈ (−1,+∞)3 we have

√
1 + α = 1 +

α
2

1 +
α
2

2+
α
2

1+
α
2

bn−2+
. . .

bn−1+
an

bn+
an+1
...

= 1 +
α
2

1 +

α
2

2 +

α
2

1 +
. . .

+

an
bn +

. . . , (36)

where the denominator sequence is given by b0 = 1, bj = 3+(−1)j
2

and the numerator sequence
is given by aj = α

2
, j ≥ 1.

Moreover, for any n the [n, n]-Padé approximation of
√

1 + α expanded about α = 0 is
given by the (2n)-th truncation of the continued fraction in (36) and the [n + 1, n]-Padé
approximation of

√
1 + α expanded about α = 0 is given by the (2n+ 1)-st truncation of the

continued fraction in (36).

Remark 5 By a direct computation we see that
√

1 + α = 1 +
α

2 +

α

2 +

α

2 +
. . . ,

and thus the above representation in (36) can be equivalently written as a cyclic S-fraction4

with aj = 1/2 for all j.

We finish this subsection by proving some preparatory results, the first of which will be
useful in linking a truncation of the S-fraction introduced in Theorem 4.5 and a truncation
of the J-fraction from Remark 4. However, notice that the continued fraction considered
there is not identical with the one in (36) – they obey the same recurrence but they differ
at the beginning.

Lemma 4.6 Let α be real and consider the continued fraction

τ(α) :=
α
2

2 +
α
2

1+
α
2

2+
α
2

1+...

2Although we do not use them, there are many ways to create a continued fraction representation of a
function based on its formal power series. We do not consider these here in more detail but rather refer the
interested reader to [2, Section 4.2, 4.4, 4.5], [16, Chapter V] or [22, Part II].

3There is a misprint in [2, equation (6.4), page 139]. The authors state the convergence “for all z except
−∞ < z ≤ 1)” but the the result also holds for z ∈ (−1, 1].

4Infinite continued fractions such that the sequences {aj}, {bj} are periodic are called cyclic continued
fractions.
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and denote its n-th truncation by An(α)/Bn(α). Considering the J-fraction

σ(α) :=
1

1 + 4
α
− 1

2+ 4
α
− 1

2+ 4
α−

1

2+ 4
α−...

with n-th truncation Cn(α)/Dn(α) we have

A2n(α)/B2n(α) = Cn(α)/Dn(α)

for any n = 1, 2, . . . .

Proof We start by transforming the continued fraction τ by the rules of Lemma 4.4 and
without further relabeling we obtain

τ(α) :=
1

4
α

+ 1
1+ 1

4
α+ 1

1+ 1
4
α+ 1

1+...

. (37)

First, by a direct computation, we confirm the equality for n = 1, obtaining

1
4
α

+ 1
1

=
1

4
α

+ 1
,

and next, we notice that the continued fraction (37) can be written in a cyclic form with the
core R given by

R =
4

α
+

1

1 + 1
R

. (38)

That is, the continued fraction can be obtained by a successive re-insertion of the core
equality (38) into itself, e.g.,

1
4
α

+ 1
1︸ ︷︷ ︸

=
A2(α)
B2(α)

,
1

4
α

+ 1
1+ 1

4
α+1

1︸ ︷︷ ︸
=
A4(α)
B4(α)

,
1

4
α

+ 1
1+ 1

4
α+ 1

1+ 1
4
α+1

1︸ ︷︷ ︸
=
A6(α)
B6(α)

, . . . .

Notice that in this way every re-insertion adds two elements of the numerator and denomi-
nator sequences as highlighted by the indices of the truncations. Using the algebraic identity

1

1 + 1
R

= 1− 1

1 +R
,

we reformulate the core equality (38) to obtain

R =
4

α
+ 1− 1

1 +R
,
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or, more conveniently,

1 +R = 2 +
4

α
− 1

1 +R
. (39)

Notice that using the algebraic identity above we contracted the two-level core that is to be
re-inserted to only a one-level core, while not changing the resulting value of the fraction.
Moreover, the core equality in (39) is the one that generates the J-fraction σ(α).

Hence we have shown that for any n ≥ 2 the 2n re-insertions of the core R in the
core equality (38) is equal to only n re-insertions of the core 1 + R in the equality (39). It
follows that the 2n-th convergent A2n(z)/B2n(z) is equal to the n-th convergent Cn(z)/Dn(z),
yielding the result. �

We build upon Lemma 4.6 with the following result that contracts the S-fraction in (36)
into a J-fraction.

Proposition 4.7 Let α be real and set the continued fractions τ(α) and σ(α) as in Lemma 4.6.
Moreover, we define the continued fractions

τ̃(α) :=
1

1 + τ(α)
and φ(α) := 1− 1

2 + 4
α
− 1

2+ 4
α
− 1

2+ 4
α−...

with n-th truncations Ãn(α)/B̃n(α) and En(α)/Fn(α) respectively. Then

A2n+1(α)/B2n+1(α) = En(α)/Fn(α)

for any n = 0, 1, 2, . . . with E0 = F0 = 1.

Proof The equality for n = 0 holds by inspection. Taking n ≥ 1, we use Lemma 4.6 for the
continued fraction τ̃(α) and we obtain

Ã2n+1(α)/B̃2n+1(α) =
1

1 + A2n(α)/B2n(α)
=

1

1 + Cn(α)/Dn(α)

and it remains to show that

1

1 + Cn(α)/Dn(α)
= 1− En(α)/Fn(α), (40)

where Cn(α), Dn(α) are the truncations of the J-fraction σ(α) from Lemma 4.6. We first
notice that the cyclic parts of both J-fractions σ(α) and φ(α) coincide and we denote them
by σ̃(α),

σ̃(α) :=
1

2 + 4
α
− 1

2+ 4
α
−...

(41)

We then notice that

σ(α) =
1

1 + 1
1+ 4

α
−σ̃(α)

,
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and

φ(α) = 1− 1

2 + 4
α
− σ̃(α)

.

Therefore, in order to show (40) it is enough to show that

1

1 + 1
1+ 4

α
−σ̃

= 1− 1

2 + 4
α
− σ̃

,

as σ̃ contains the common part. By a direct computation we obtain

1

1 + 1
1+ 4

α
−σ̃

=
1 + 4

α
− σ̃(α)

2 + 4
α
− σ̃(α)

,

and

1− 1

2 + 4
α
− σ̃

=
1 + 4

α
− σ̃(α)

2 + 4
α
− σ̃(α)

,

finishing the proof. �

4.4 Approximation Properties of the Schur Complement

We now show that the function t̂bi(z) representing the Schur complements T bi is a Padé ap-
proximation about z = +∞ of the function t̂∞(z) representing the infinite Schur complement
T∞. To obtain this result in Theorem 4.8 we use a similar technique as in [11] where the au-
thors compute a Padé approximation of the Dirichlet to Neumann operator. This similarity
is not a coincidence: the Schur complement and the Dirichlet-to-Neumann map have a very
deep connection, see, e.g., [10, Section 5.2].

Also, in the proof and in the rest of the document we change the variables back to the
ones from our application, i.e.,

α =
4

z
. (42)

Notice that the term change of variables here is somewhat misleading. Usually, change of
variables in approximation theory then requires a re-computation of the approximation –
because of the way derivation of a composite function works. However, our result considers
expansion about +∞, which is defined by considering the expansion of the same function
about zero but of the reciprocal argument, e.g., not of z but of 1/z. Recalling this convention,
our change of variables in fact consists only of multiplying by 4. Also, notice that such change
of variables does not require a re-computation of the derivatives.

Theorem 4.8 The function t̂bi(z) defined in (34) as

t̂bi(z) =
1

h2

2 + z − 1

2 + z − 1

2+z−
. . .

2+z− 1
2+z


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is the [i, i]-Padé approximation about the expansion point z = +∞ of the Schur complement
function t̂∞(z) defined in (33) as

t̂∞(z) =
1

h2

(
1 +

z

2
+
z

2

√
1 +

4

z

)
.

Proof First, we drop the 1/h2 factor for both of the functions and transpose the expansion
point z = +∞ to α = 0 as in (42) and without a further relabeling of the functions we
obtain

t̂bi(α) = 2 +
4

α
− 1

2 + 4
α
− 1

2+ 4
α
−

. . .

2+ 4
α−

1

2+ 4
α

,

t̂∞(α) = 1 +
2

α
+

2

α

√
1 + α.

Recalling (26), we have

{t̂∞}−1(α) :=
1

t̂∞(α)
= 1 +

2

α
− 2

α

√
1 + α (43)

and thus by Theorem 4.2 part 3., we have

[i/i]t̂∞(α) =
1

[i/i]{t̂∞}−1(α)

for any i ≥ 1. By a direct computation we obtain

{t̂∞}−1(α) = 1 +
2

α
− 2

α

√
1 + α = 1− 2

1

α

(√
1 + α− 1

)
,

and by application of Theorem 4.2 parts 1. and 2. we obtain

[i/i]{t̂∞}−1(α) = 1− 2
1

α

(
[i+ 1/i]√1+α(α)− 1

)
.

Using the continued fraction representation of the Padé approximant from Theorem 4.5, we
obtain

[i/i]{t̂∞}−1(α) = 1− 2

α

(
1 + 1 +

A2i+1(α)

B2i+1(α)
− 1

)
= 1− 2

α


α
2

1 +
α
2

2+
α
2

1+
α
2

b2i−1+
. . .

b2i+
a2i+1
b2i+1


,
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where A2i+1(α), B2i+1(α) are the (2i + 1)-st truncation numerator and denominator of the
continued fraction τ(α) in (36) and the sequences {aj}j, {bj}j are taken as in (36). Hence
we have

[i/i]{t̂∞}−1(α) = 1− 1

1 +
α
2

2+
α
2

1+
α
2

b2i−1+
. . .

b2i+
a2i+1
b2i+1

,

and recalling Proposition 4.7 we notice that the continued fraction is the (2i+1)-st truncation
of the continued fraction τ̃(α) defined there. Therefore, Proposition 4.7 gives that

[i/i]{t̂∞}−1(α) = 1−

(
1− C̃n(α)

D̃n(α)

)
=

1

2 + 4
α
− 1

2+ 4
α
− 1

2+ 4
α−

. . .

2+ 4
α−

1

2+ 4
α︸ ︷︷ ︸

i−1 “levels”

,

where C̃i(α), D̃i(α) are the (2i+1)-st truncation numerator and denominator of the J-fraction
σ̃(α) in (41) in Proposition 4.7. As a result we have that

[i/i]t̂∞(α) =
1
1

2+ 4
α
− 1

2+ 4
α−

1

2+ 4
α−

. . .

2+ 4
α−

1

2+ 4
α

= 2 +
4

α
− 1

2 + 4
α
− 1

2+ 4
α
− 1

2+ 4
α−

. . .

2+ 4
α−

1

2+ 4
α︸ ︷︷ ︸

i−1 “levels”

for any i ≥ 1, finishing the proof. �

Theorem 4.8 allows us to quantify the error5

errD(z, i) := t̂∞(z)− t̂bNa+i(z),

where i denotes the number of grid columns that were folded into the Schur complement, i.e.,
the number of layers between a and b, and thus also the degree of the Padé approximation.
We show plots of the function errD(z, i) for small i in Figure 2.

As expected, we see that the error errD(z, i) decreases when more grid columns are added,
i.e., when i and thus also b increases. Also, for any fixed i, the error is decreasing when z is
increasing. This behavior was established for z → +∞ by Theorem 4.8.

On the other hand, the error is still quite large for small z. Recalling the role of z, this can
be identified with poor quality of the approximation for low frequency modes following from
our spectral analysis. Reducing the maximum of the error would yield a better approximation
of the true solution u by the approximation ũa, see (11). We explore this direction in the
next section.

5The subscript D stands for the “Dirichlet” boundary condition at the end point x = b.
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Figure 2: Plots of the function errD(z, i) at the points zk with the parameters set to N = 20
and η = 2. The value i corresponds to the number of grid columns in Ωb \Ωa, see Remark 3.

5 Robin boundary condition for truncation

Theorem 4.8 shows that the choice of the Dirichlet boundary condition at b corresponds to
truncating the continued fraction interpretation, and leads to a the Padé approximation of
t̂∞(z) about the point z = +∞. Writing the interval containing the spectrum of Dyy as[

ηh2 + 4 sin2

(
π

2

1

N + 1

)
, ηh2 + 4 sin2

(
π

2

N

N + 1

)]
≈
[
ηh2, ηh2 + 4

]
, (44)

the expansion point z = +∞ of the Padé approximation is far away from the interval where
we want to approximate t̂∞, i.e., this expansion point is not well-chosen and far from optimal.
An idea is to replace the Dirichlet boundary condition used to truncate the recurrence relation
by a homogeneous Robin boundary condition6 with Robin parameter p ≥ 0 at b, i.e.,

∂u

∂n
+ pu = 0 at x = b.

The Dirichlet condition is the limit of the Robin condition as p → +∞. Taking any finite
positive p will change the approximation error function in Figure 2 and can give a better
approximation of t̂∞(z) in the interval (44), as we show next by introducing a discretization.

Using a centered finite difference approximation as before, the Robin condition can be
discretized with the so-called ghost point trick: first, we discretize the Robin condition,

uNb+1 − uNb−1

2h
+ puNb = 0 =⇒ uNb+1 = uNb−1 − 2phuNb .

Then in the discretized equation at b, −uNb+1 +DNbuNb −uNb−1 = 0, we can eliminate the
unknowns uNb+1 – the ghost points – to get (DNb + 2hpI)uNb − 2uNb−1 = 0, and thus the

6A Robin boundary condition is a simple approximation to the transparent boundary condition and works
in general substantially better than a Dirichlet condition; for subdomain truncation in domain decomposition
see [8].
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modified matrix Ab becomes

Ãb =
1

h2



D1 −IN
−IN

. . .
. . .

. . . DNa −IN
−IN DNa+1

. . .
. . .

. . . −IN
−IN D̃Nb


(45)

with D̃Nb = 1
2

(DNb + (2ph)IN). This also modifies the Schur complement, yielding

T̃ bNb =
D̃Nb

2h2
, with the diagonal entries t̃bNb,k =

λk
2h2

+
p

h
,

T̃i =
Di

h2
−
T̃−1i+1

h4
=
D

h2
−
T̃−1i+1

h4
, for i = N b − 1, . . . , Na.

(46)

The first three functions representing the diagonal entries are

t̃b0(z) =
1 + ph+ z

2

h2
,

t̃b1(z) =
2 + z

h2
− 1

h4
1+ph+ z

2

h2
,

=
1

h2

(
2 + z − 1

1 + ph+ z
2

)
,

t̃b2(z) =
2 + z

h2
− 1

h4t̃b
Nb−1(z)

=
2 + z

h2
− 1

h4 1
h2

(
2 + z − 1

1+ph+ z
2

)
=

1

h2

(
2 + z − 1

2 + z − 1
1+ph+ z

2

)
,

where we keep the subscript notation (see Remark 3) and by the recursive definition in (20),
the general form is

t̃bi(z) =
2 + z

h2
−

1
h2

2 + z − 1

2+z−
. . .

2+z− 1
1+ph+ z2

. (47)

Notice that by letting p→ +∞ we can recover the original Dirichlet boundary condition
with one less level of the continued fraction. In other words, having h fixed and the Robin
parameter p large enough, we can interpret this as a Dirichlet boundary condition in a
geometry where Ωb was extended by one additional grid column after b, i.e., by the strip
(b, b+ h)× (0, 1).

We see that the Robin condition just changes the last denominator in the continued
fraction representation. With (47), we can numerically explore the effect of the Robin
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Figure 3: Plots of the function errR(z, i) at the points zk evaluated for different values of i,
for p = 20, N = 20 and η = 2. The value i corresponds to the number of grid columns in
Ωb \Ωa, see Remark 3.
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Figure 4: Plots of the function errR(z, i) at the points zk evaluated for different values of i,
for p = 200, N = 200 and η = 2. The value i corresponds to the number of grid columns in
Ωb \Ωa, see Remark 3.

parameter p on the behavior of the error7

errR(z, i) := t̂∞(z)− t̃bi(z),

where i denotes again the number of grid columns that were folded into the Schur comple-
ment, i.e., the number of layers added after the point a. Similarly to Figure 2 we show the
evolution of the error function errR(z, i) in Figure 3.

We see that the behavior around the right endpoint of the interval is still present but the
Robin condition introduced another point zp around which the approximation is accurate.
In Figure 3 we see that for zp ≈ 0.75. To confirm the hypothesis, we use a finer mesh in z
in Figure 4.
This confirms that the Robin parameter p affects the approximation error by minimizing
it around a particular point zp. Shifting zp towards 0, i.e., towards the area where both

7The subscript R stands for the “Robin” boundary condition at the end point x = b.
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Figure 5: Left: minimization over p of the infinity norm of the Robin condition error,
clearly showing the equioscillation. Right: optimized error compared with the corresponding
Dirichlet condition error. We set N = 200, i = 5 and η = 2. The value i corresponds to the
number of grid columns in Ωb \Ωa, see Remark 3.

errD(z, i) and errR(z, i) attain their maximum, could thus reduce the overall maximum of
the error. By definition, zp is a solution of the equation

errR(z, i) = 0 (48)

for z with a given p. Assuming that errR(z, i) is smooth except at a finite number of points,
which is the case based on the numerical experiments above, equation (48) defines zp as an
implicit function of p and also the other parameters of the problem. For example, for i = 1
we get

errR(z, i) =
1

h2

(
1 +

z

2

(
1 +

√
1 +

4

z

))
−

1 + ph+ z
2

h2
=

1

h2

(
z

2

√
1 +

4

z
− ph

)
,

which gives zp as the positive root of the quadratic equation

z2p + 4zp − 4p2h2 = 0 =⇒ zp = −2 + 2
√

1 + p2h2. (49)

Based on the observation in Figure 4, varying the number of layers i does not substantially
change the value of zp.

In order to optimize the parameter p in the Robin condition, one can minimize the
infinity norm of the error in Figures 3 and/or 4. Using an optimization routine to minimize
the infinity norm of the error over p, the local maxima equioscillate, see Figure 5.

Here we did not use the natural values of zk but rather chose to span the entire interval
with logarithmically equidistant points. We used N = 200, i = 5, η = 2, and the optimal
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i p∗(i) ‖errD‖∞
‖errR‖∞

1 27.4013 2.569
2 13.7783 3.924
4 8.2295 5.167
8 5.6016 6.598
16 4.3271 8.940

Table 1: Evolution of the optimized Robin parameter p∗(i) depending on the number of
layers i and the improvement ratio from the Dirichlet condition error to the Robin condition
error in the infinity norm. The value i corresponds to the number of grid columns in Ωb \Ωa,
see Remark 3.
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Figure 6: Dependence of the optimized Robin parameter p∗(i) on the number of layers i
added after a compared with the predicted behavior. The value i corresponds to the number
of grid columns in Ωb \Ωa, see Remark 3.

value of p was found to be p = 7.167. The Dirichlet error in the infinity norm is equal
to 0.1371 while the Robin error in the infinity norm is equal to 0.0245, an almost 5.6 fold
improvement.

Running the optimization while varying i, i.e., the number of grid columns from a to b
we obtain Table 1, again for N = 200 and η = 2.

This shows that the improvement over the Dirichlet truncation increases with increasing
number of layers.

The corresponding results over a larger range of i are shown graphically in Figure 6.
Again we minimized the maximum norm ‖errR(z, i)‖∞ over the interval in (44). We used

again N = 200, η = 2 and varied i as powers of 2 from 21 = 2 to 28 = 256 on the left and
then up to 215 on the right. One can see a linear dependence in the log-log scale on the left,
i.e., for values i ≤ 256 and fitting the line gives the law
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p∗(i) ∼ C · iq (50)

with
C ≈ 11 and q ≈ −1

for i ≤ 256. For practical purposes having i > 256 is not desirable and thus the above law
basically covers a sufficient domain of i. However, Figure 6 shows that in general p∗(i) does
not follow the proposed relation (50).

Although we have achieved considerable improvement over the Dirichlet boundary con-
dition, the Robin boundary condition still could be improved. Observing Figure 4 the Robin
boundary condition error function still decreases for large z and it seems that it inherited
most of the approximation qualities around z = +∞. This is, however, not useful for our
application as we simply want to minimize the error only over the interval spanned by the
eigenvalues, i.e., over [ηh2, ηh2 + 4]. A possible way to do this is to shift the expansion point
of the Padé approximation - an approach discussed in the following section.

6 Shifting the Padé expansion point

We start with shifting the expansion point of
√

1 + α. Taking some α0 > 0, a direct compu-
tation gives

√
1 + α =

√
1 + α0

√
1 +

α− α0

1 + α0

,

and denoting

α̃ :=
α− α0

1 + α0

,

we can write √
1 + α =

√
1 + α0

√
1 + α̃,

where α̃ is small for values of α around8 α0. Thus, using Theorem 4.5 we obtain the continued
fraction representation

√
1 + α =

√
1 + α0

1 +
α̃
2

1 +
α̃
2

2+
α̃
2

1+
α̃
2

2+...

 ,

and analogously to the proof of Theorem 4.8, we combine Lemma 4.6 and Proposition 4.7
to obtain the J-fraction representation

√
1 + α =

√
1 + α0

(
1 +

α̃

2

(
1− 1

2 + 4
α̃
− 1

2+ 4
α̃
−...

))
.

8Meaning we do not consider α, α0 such that |α− α0| > 1 in order to ensure the argument of the square
root being positive.
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Let us emphasize here that the equality is valid only for the infinite continued fraction and
once we truncate, the correspondence is again as established in Proposition 4.7.

Similarly, we have that
α = α̃ · (1 + α0) + α0, (51)

so that we can rewrite the function t̂∞(z) as

t̂∞(α) = 1 +
2

α
+

2

α

√
1 + α

= 1 +
2

α̃(1 + α0) + α0

+
2

α̃(1 + α0) + α0

√
1 + α0 ·

√
1 + α̃

= 1 +
2

α̃(1 + α0) + α0

(
1 +

(
1 +

α̃

2

)√
1 + α0

)
− 2

α̃(1 + α0) + α0

· α̃
2
· 1

2 + 4
α̃
− 1

2+ 4
α̃
−...

and set

t̄∞α0
(α̃) := 1+

2

α̃(1 + α0) + α0

(
1 +

(
1 +

α̃

2

)√
1 + α0

)
− 2

α̃(1 + α0) + α0

· α̃
2
· 1

2 + 4
α̃
− 1

2+ 4
α̃
−...

.

If we want to approximate t̂∞ around α0 it is intuitive to take some truncation of the
continued fraction in t̄∞α0

and based on Theorem 4.8 the expectation is that taking i levels

will result in an [i+ 1, i+ 1]-Padé approximant of t̂∞ around α0.
Following the development in Section 5, we define the approximation

t̄iα0
(α̃) := 1 +

2

α̃(1 + α0) + α0

(
1 +

(
1 +

α̃

2

)√
1 + α0

)
− 2

α̃(1 + α0) + α0

· α̃
2
· 1

2 + 4
α̃
−

. . .

2+ 4
α̃︸ ︷︷ ︸

i “levels”

,

and continue by focusing on the formulation of t̄iα0
as a function of z rather than α̃. Recalling

the definition of α̃ in (51) we have

z =
4

α
=

4

α̃(1 + 4
z0

) + 4
z0

,

obtaining

α̃ =
4 z0
z
− 4

4 + z0
,

and hence
4

α̃
=

4 + z0
z0
z
− 1

.
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Figure 7: Plots of the function errP (z, i) at points equally spaced in the interval [0, 4]
evaluated for different values of i, for α0 = 4 (and thus z0 = 1), N = 200 and η = 2. The
value i corresponds to the number of grid columns in Ωb \Ωa, see Remark 3.

Without relabeling the function9 we can write

t̄iz0(z) = 1 +
z

2

(
1 +

(
1 + 2

z0
z
− 1

4 + z0

)√
1 +

4

z0

)
−

1

2 + 4+z0
z0
z
−1 −

1

. . .

2 + 4+z0
z0
z
−1 −

1

2+
4+z0
z0
z −1︸ ︷︷ ︸

i “levels”

.

(52)

Hence we can write the error function errP (z, i) (P for Padé) as

errP (z, i) := |t̂∞(z)− t̄iz0(z)|.

The expectation is that the error function errP (z, i) should have one root at z0 = 4/α0,
which should get more pronounced as i increases. Indeed, the numerical results shown in
Figure 7 support this fully.
However, as Remark below emphasizes, this doesn’t constitute the result yet.

Remark 6 The results above do not prove that the function t̄iz0 is a Padé approximant

of either t̄∞z0 or t̂∞ about the point z0 (and then analogously in the α variable) because the

construction took into account only the approximant of
√

1 + α̃ in the α domain but neglected
the rest of the function t̄∞α0

. However, the numerical results suggest that in spite of that the
function t̄iz0 has good approximation qualities.

9However we do change the expansion point α0 to z0 in the subscript.
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Figure 8: Left: minimization over z0 (or equivalently over α0) of the infinity norm of the error
function errP , clearly showing the equi-oscillation. Right: optimized error compared with the
error functions errR for the optimal p∗ and the error function errD. We set N = 200, i = 5
and η = 2. The value i corresponds to the number of grid columns in Ωb \Ωa, see Remark 3.

We end this section by comparing the error function errP (z, i) to the other ones, i.e., to
errD(z, i) and errR(z, i). First, we present the equi-oscillation result in Figure 8, analogously
to Figure 5.

We again did not use the natural values of zk but rather chose to span the entire interval
with logarithmically equidistant points on the left and equidistant points on the right. We
used N = 200, i = 5, η = 2, obtaining the optimal value of z0 to be z0 ≈ 0.12 (the optimal
value of α0 amounts to α0 ≈ 32.57). The Dirichlet error in the infinity norm is equal to
0.1371 the Robin error in the infinity norm is equal to 0.0245 while the error of the “Shifted
Padé” (see Remark 6 is equal to 0.0052, an almost 4.7 fold improvement over the optimal
Robin parameter p∗ approximation and an overall 26.2 fold improvement over the original
Dirichlet approximation.

Running the optimization while varying i, i.e., the number of grid columns from after a
we obtain Table 2 (where we keep N = 200 and η = 2).

This shows that the improvement over both of the previous options increases with in-
creasing number of layers and does so quite rapidly.

The corresponding results over a larger range of i are shown graphically in Figure 9.
Again we minimized the maximum norm ‖errP (z, i)‖∞ over the interval in (44). We used

again N = 200, η = 2 and varied i as powers of 2 from 20 = 1 to 28 = 256 on the left and
then up to 215 on the right. We can see that for i ≤ 64 there seems to be a trajectory for the
optimal choice of z0. The evolution afterwards is caused by the finite precision. For i ≥ 80
the optimization routine (we used the Nelder-Mead algorithm) reaches εmach on the entire
interval [ηh2, 4 + ηh2] seemingly for any z0 beneath a certain threshold. As we increase the
value of i this threshold increases as well up to a point where the initial guess z0 = 1 already
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i optimal z0
‖errD‖∞
‖errP ‖∞

‖errR‖∞
‖errP ‖∞

1 0.4356 3.691 1.441
2 0.2101 10.091 2.572
4 0.1409 18.446 3.569
8 0.0932 86.163 13.058
16 0.0680 3595.822 402.186

Table 2: Evolution of the optimized expansion point z0 depending on the number of layers
i and the improvement ratio from the Dirichlet and Robin boundary condition error to the
error of the approximation t̄iz0 . The value i corresponds to the number of grid columns in
Ωb \Ωa, see Remark 3.
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Figure 9: Dependence of the optimal choice of z0 (and consequently α0 = 4/z0) on the
number of layers i added after a.
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suffices.
If the approximant t̄iz0 would be indeed the [i + 1, i + 1]-Padé approximant around z0 =

4/α0 (see Remark 6), then this behavior was to be expected from some value of i onward.
The fact that the optimal “expansion point” z0 tends towards the left endpoint was also
expected as we have seen that the error is largest around that point.

We conclude this section by linking the above proposed approximation back to the phys-
ical problem and its solution methods by introducing a new PML technique that stems from
the above approximation in the following section.

6.1 A new PML technique

Although the function t̄iz0(z) in (52) may not be the Shifted Padé approximant the numerical
results suggest that it still leads to a very good approximation and by the construction we
will be able to propose good and very accurate PML compared to the previously proposed
ones in this paper.

Recalling the definition of Ab in (4), the definition of the Schur complement in Defini-
tion 3.1 and the process of its transformation into a continued fraction, we need to reverse
this process (starting with the eigenvalue reccurences and working up to the block matrix
Ab). This requires returning to zk from the artificial z and linking the formulas containing
the variables zk to the blocks in Ab and thus obtain the PML method.

First, recalling

zk := ηh2 + 4 sin2

(
kπ

2(N + 1)

)
,

as in (16) we denote now the eigenvalues of the matrix Dyy by µk, obtaining

zk := ηh2 + µk.

having an artificial z0 as we have above can now be translated as having an artificial µ0 and
the denominator of the cyclic part of the continued fraction in t̄iz0(z) in (52) can be now
rewritten back in terms of the variables η, h, µk that are of interest. Returning to zk instead
of z, a direct computation gives

2 +
4 + z0
z0
zk
− 1

= 2 + z
4 + z0
z0 − zk

= 2 +
(
ηh2 + µk

) 4 + ηh2 + µk
µ0 − µk

(53)

for the reoccurring term of the continued fraction in (52) and

1 +
zk
2

(
1 +

(
1 + 2

z0
zk
− 1

4 + z0

)√
1 +

4

z0

)
= 1 +

zk
2

+
zk
2

√
1 +

4

z0
+
z0 − zk
z0 + 4

√
1 +

4

z0

= 1 +
ηh2 + µk

2
+
ηh2 + µk

2

√
1 +

4

ηh2 + µ0

+
µ0 − µk

ηh2 + µ0 + 4

√
1 +

4

ηh2 + µ0

(54)
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for the so-called absolute term in (52). Already here we can notice that the structure of the
absolute term seems quite similar to the exact formula in (33), especially compared with
the formulas (34) and (47) corresponding to the approximations given by the Dirichlet and
Robin boundary conditions at b.

Recalling the elimination process (19) - (22), we recover the last N b−Na− 1 block rows
in Ab (i.e., the block rows governing the unknowns in the interior of Ωb) from (53) and the
(Na − 1)-st block row (i.e., the block row governing the interface of Ωa and Ωb) from (54).
In particular, denoting the modified matrix by Āb we have

Āb =
1

h2



D1 −IN
−IN

. . .
. . .

. . . D̄Na −IN
−IN D̄Na+1

. . .
. . .

. . . −IN
−IN D̄Nb


(55)

where D̄Nb = D̄Nb−1 = . . . = D̄Na+1 6= D̄Na . Reversing the process of diagonalization of the
Schur complement from Section 4.1 and realizing that µ0, η and h are only real constants,
we get for any i = N b − 1, . . . , Na + 1

D̄i = QT

2 + z1
4+z0
µ0−µ1

. . .

2 + zN
4+z0
µ0−µN

Q

= QT

2 + (4 + z0)Z

µ0 − µ1

. . .

µ0 − µN


−1Q

= 2I + (4 + ηh2 + µ0)(D − 2I)(µ0I −Dyy)
−1,

(56)

with Z defined as the diagonal matrix Z = diag(z1, . . . , zN) (see (16)), Q being the discrete
Fourier sine basis (see (17)), D being the diagonal block of the original problem (see (5))
and Dyy being the three-point finite difference stencil discretization of the second derivative
in y (see (16) and above).
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Focusing on the block D̄Na we obtain

D̄Na = QT


1 + z1

2
+ z1

2

√
1 + 4

z0
+ µ0−µ1

z0+4

√
1 + 4

z0

. . .

1 + zN
2

+ zN
2

√
1 + 4

z0
+ µ0−µN

z0+4

√
1 + 4

z0

Q

= QT

1

2
(2I + Z) +

√
1 + 4

z0

2
Z +

√
1 + 4

z0

z0 + 4

µ0 − µ1

. . .

µ0 − µN


Q

= D +

√
1 + 4

z0

2
Z +

√
1 + 4

z0

z0 + 4
(µ0I −Dyy),

with the notation as in (56). We finish this section with the following remark.

Remark 7 Notice that the formula (56) contains an explicit inverse. This raises the ques-
tion whether it is more reasonable to perform the inverse operation (or, in practice, the solve
operation) in the original Schur complement (and thereby obtain the exact result) rather than
on this approximation.

This and other practical challenges as well as an overall deeper understanding of Āb and
its continuous counterpart are clearly of interest and will be discussed in future work.

7 Conclusion and future work

We proved for a model problem that truncation of the unbounded computational domain
by a Dirichlet boundary conditions at a certain distance away from the domain of interest
is a spectral Padé approximation about infinity of the transparent boundary condition at
the boundary of the domain of interest, and that the degree of the Padé approximation
increases with the distance. We then replaced the Dirichlet truncation condition by a Robin
truncation condition and showed that this greatly improves the behavior around a different
point in the spectrum. We showed how to optimize the Robin parameter leading to an
equioscillation property, but this is not a Padé approximation of the transparent boundary
condition any more.

Aiming to obtain the Padé approximation about a different point we have proposed a
different approximant in the eigenspace (leading to a new PML method for this problem),
which poses a significant improvement over the Robin truncation. However, the theoretical
proof of the approximation property is an open problem, which needs to be addressed prop-
erly on its own. We showed numerical results on the optimal choice of the parameter z0, i.e.,
the shifted expansion point.

There are many further roads of exploration opened up by our approach: first, one could
try to obtain an asymptotic formula for p∗(i) as h → 0, which would require to obtain
the first expansion terms in our closed form formula for the error function errR(z, i, p) for
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the Robin condition. Similarly one could try to obtain an asymptotic formula for the best
parameter in volume. Both would need expansions of the finite continued fraction (47),
which could be quite technical. Analogously, the same direction is worth exploring also for
the approximant with shifted expansion point z0. Moreover, the question about the nature
of the approximation produced by the Robin truncation is still open as well as the question
whether the second method matches the Padé approximation about the point z0. Last but
not least, putting the above in the context of the work on the Zolotarev approximation
in [14, 1] seems also beneficial. We intend to address these in a future work.

Recognizing that our results were developed for a very particular problem, namely for the
η−∆ equation on an unbounded strip in R2, there are some straightforward generalizations
as none of our computations required the particular choice of D in (5). As long as D is
symmetric and positive-definite, all of the computations still work and the only change is
in the interval of interest for the minimization of the Robin parameter p and the shifted
expansion point z0 in Section 5 and Section 6.

This even holds if D is only symmetric, non-singular and with eigenvalues outside the in-
terval (−∞,−1]. If the spectrum intersected the interval (−∞,−1], the square root becomes
a complex number and we would have to move to the complex domain with the continued
fractions. The same holds in fact for any diagonalizable non-singular normal matrix D. If D
is not normal, then the eigenvectors cannot be chosen to form an orthonormal basis of RN

(or CN). In that case, the formulas would follow (based on the spectrum) one of the above
mentioned cases in the same way, but one could not use the results directly. For example,
the improvement factor would not be of immediate interest as the condition number of the
eigenbasis would play an important role in computing the optimal Robin parameter p. If the
matrix is diagonalizable and singular, then the modes corresponding to the zero eigenvalues
do not admit the formulation of the function t̂ik(z) as in (31) but the analysis would work
for the rest of the modes, based on the normality and spectrum of the matrix. In the case
that the matrix is not diagonalizable, it is not immediately clear how to generalize any of
the results based on the available Jordan form.

Finally, as we mentioned in Section 4, the three term recurrence (and thus the continued
fraction formulation) has a deep, non-trivial connection with many other areas of mathemat-
ics, such as orthogonal polynomials, Gauss quadrature and the conjugate gradient method.
Investigating this further would certainly be a worthwhile effort.
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