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Abstract

In this paper, we study various aspects of the ODE’s flow X solution to the equation
X (t,x) = b(X(t,z)), X(0,2) = z in the d-dimensional torus Yy, where b is a regular
Z%-periodic vector field from R? in R?. We present an original and complete picture in
any dimension of all logical connections between the following seven conditions involving
the field b:

the everywhere asymptotics of the flow X,

the almost-everywhere asymptotics of the flow X,

the global rectification of the vector field b in Yy,

the ergodicity of the flow related to an invariant probability measure which is abso-

lutely continuous with respect to Lebesgue’s measure,

e the unit set condition for Herman’s rotation set C, composed of the means of b
related to the invariant probability measures,

e the unit set condition for the subset Dy of C; composed of the means of b related to
the invariant probability measures which are absolutely continuous with respect to
Lebesgue’s measure,

e the homogenization of the linear transport equation with oscillating data and the

oscillating velocity b(z/c) when b is divergence free.

The main and surprising result of the paper is that the almost-everywhere asymptotics of
the flow X and the unit set condition for Dj are equivalent when D, is assumed to be non
empty, and that the two conditions turn to be equivalent to the homogenization of the
transport equation when b is divergence free. In contrast, using an elementary approach
based on classical tools of PDE’s analysis, we extend the two-dimensional results of Oxtoby
and Marchetto to any d-dimensional Stepanoff flow: this shows that the ergodicity of the
flow may hold without satisfying the everywhere asymptotics of the flow.
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1 Introduction

In this paper we study various aspects of the ODE’s flow X in the torus Yy
0X
ot
X(0,7) =z € RY,

(t,z) =b(X(t,z)), teR (L.1)

where b is a Z%-periodic vector field in C*(R%)¢ (denoted by b € C{(Yy)?), which completely
determines the flow X.
First, we are interested in the asymptotics of the flow X depending on whether it can hold

almost-everywhere (a.e.), or everywhere (e.) in Yy, namely
3 lim X(t,x) X(t,x)

t—o00

p-ae. x €Yy or 3 tlirn VzeYy,

—00
for some probability measure p on Y. If the flow X is ergodic with respect to some invariant
probability measure p, 4.e. that p agrees with its image measure py.) for any t € R (see
Section 1.2 below), then Birkhoff’s theorem (see, e.g., [9, Theorem 1, Section 2, Chapter 1])
ensures that

t

lim X(t,z) = lim (1/ b(X(s,x))ds) :/ b(y)du(y) p-ae. x € Yy
t—00 t t=oo \ { Jg Yy

The non empty set ., composed of the invariant probability measures for the flow X plays a

fondamental role in ergodic theory. Associated with the set ., the rotations sets of [1&] are

strongly connected to the asymptotic behavior of the flow. In particular, the compact convex

Herman rotation set [13] defined by

Cp = {/Yd b(y) du(y) : p € ﬂb} (1.2)

characterizes the everywhere asymptotics of the flow, since by [%, Proposition 2.1] we have for
any ¢ € R%,

X(t
C, = {g} & Vo eyy, thm <t, $) = (. (13)
—00
We also consider the subset D, of C, defined by
D, := {/ by)o(y)dy : o € L;(Yd) and o(y)dy € fb} : (1.4)
Yo

which is a priori less interesting than Herman’s rotation set, since it may be empty and it
is not compact in general. But surprisingly, the set D, characterizes the almost-everywhere
asymptotics of the flow, which is the first result of our paper. More precisely, assuming the
existence of an a.e. positive invariant density function with respect to Lebesgue’s measure, we
prove that for any ¢ € R? (see Theorem 2.1),

S,

=( ae T €Yy (1.5)



On the other hand, as a natural association with flow (1.1), we consider the linear transport
equation with oscillating data

Ou, . d
E(t,z) —b(z/e) - Vyu(t,z) = f(t,z,x/e) in (0,T) x R (L.6)

u(0, 1) = ug(x, z/¢) for z € RY,

where f(t,z,y) and ug(z,y) are suitably regular and Z?-periodic functions with respect to
variable y. In their famous paper [10] DiPerna and Lions showed the strong proximity be-
tween ODE’s flows (1.1) and transport equations, in particular when the velocity has a good
divergence. In the context of homogenization, the linear transport equation with oscillating
data (1.6) as ¢ — 0 was widely studied in the literature. Tartar [25] proved that in general
homogenization of first-order equations leads to nonlocal effects. These effects were studied
carefully in [2] for equation (1.6). In order to avoid any anomalous effective effect, namely
to get a homogenized transport equation of same nature, it is thus necessary to assume some
additional condition. Assuming that the vector field b is divergence free and the associated
flow X is ergodic, Brenier [1] first obtained the weak convergence of the solution u. to the
transport equation. Following this seminal work, the homogenization of the transport equation
was obtained for instance in [11, 12, 15, 24] with various conditions, but which are all based on
the ergodicity of the flow. Extending the result of [1] with ergodicity arguments, Peirone [21]
proved the convergence of the solution to the two-dimensional transport equation (1.6) with
f(t,z,y) = 0 and up(z,y) independent of y, under the sole assumption that b is a non vanishing
field in Cﬁ1 (Y5)2. More recently, the homogenization of the transport equation with f(¢,z,y) = 0
and ug(z,y) independent of y, was derived in [6] (see [7] for a non periodic framework) under
the global rectification of the vector field b, which is not an ergodic condition, i.e. the existence
of a C%-diffeomorphism ¥ on Y, and of a vector ¢ € RY such that

VyeYy VU(y)by)=-¢. (1.7)

This result was extended in [8] replacing the classical ergodic condition by the unit rotation set
condition #C, = 1, or, equivalently, the everywhere asymptotics (1.3) of the flow.

In the present paper, we prove (see Theorem 3.2) that the homogenization of transport
equation (1.6) with a divergence free velocity field, holds if, and only if, one of the equivalent
conditions of (1.5) is satisfied. It is a quite new result beyond all the former results based
on the sufficient conditions induced either by the ergodic condition, or by the unit Herman’s
rotation set condition. The proof of this result which is partly based on two-scale convergence
[19, 1], clearly shows (see Remark 3.1) the difference between the ergodic approach of [15], and
the present approach through the unit set condition (1.5) which turns out to be optimal.

Therefore, we establish strong connections between the three following a priori foreign
notions: the oscillations in the transport equation (1.6), the means of b only related to the
invariant measures for the flow X which are absolutely continuous with respect to Lebesgue’s
measure, and finally the almost-everywhere asymptotics of X. More generally, owing to this
new material we do build the complete array of all logical connections between the following
seven conditions (see Theorem 4.1 and Figure 1 below):

e the global rectification (1.7) of the vector field b,

e the ergodicity of the flow X (1.1) related to an invariant probability measure which is
absolutely continuous with respect to Lebesgue’s measure,

e the everywhere asymptotics of the flow X in (1.3),
e the almost-everywhere asymptotics of the flow X in (1.5),
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e the unit set condition for Herman’s rotation set C, (1.2),
e the unit set condition for D, (1.4),
e the homogenization of the transport equation (1.6) when b is divergence free in R

In addition, the following pairs of conditions cannot be compared in general:

- the global rectification of b and the ergodicity of X,
- the ergodicity of X and the everywhere asymptotics of X,
- the ergodicity of X and the unit set condition for C,.

The proof of the three last items involves the Stepanoff flow [23] (see Example 4.1) in which
the vector field b has a non empty finite zero set, and is parallel to a fixed direction ¢ € R?
with incommensurable coordinates. Using a purely ergodic approach, Oxtoby [20] and later
Marchetto [17] proved that any two-dimensional flow homeomorphic to a Stepanoff flow admits
a unique invariant probability measure p for the flow which does not load the zero set of b,
that p is absolutely continuous with respect to Lebesgue’s measure on Y3, and finally that the
flow is ergodic with respect to p. Moreover, the set Dy is a unit set, but the rotation set C,
is a closed line set of R?, possibly not reduced to a unit set. We extend (see Proposition 4.1)
the two-dimensional results of [20, 17] on the Stepanoff flow to any dimension d > 2, thanks to
a new and elementary approach based on classical tools of PDE’s analysis. Finally, owing to
another two-dimensional flow (see Example 4.2 and Proposition 4.4) we obtain that the set D,
may be either empty or a singleton, while the rotation set C, is a closed line set of R? possibly
not reduced to a singleton.

1.1 Notation

e (e1,...,e4) denotes the canonical basis of R
e “.” denotes the scalar product and | - | the euclidian norm in R<.

e Y, d > 1, denotes the d-dimensional torus R¢/Z? which is identified to the unit cube
[0,1)% in RY.

o CF(RY), k € NU {oo}, denotes the space of the real-valued functions in C*(R?) with
compact support in R?.

o Cf(Yy), k € NU{oo}, denotes the space of the real-valued functions f € C*(R?) which
are Z’-periodic, i.e.
VkeZi Yo eRY flz+k)=f(x). (1.8)

e The abbreviations “a.e.” for almost everywhere, and “e.” for everywhere will be used
throughout the paper. The simple mention “a.e.” refers to the Lebesgue measure on R

e dz or dy denotes the Lebesgue measure on R,

e For a Borel measure p on Yy, extended by Z-periodicity to a Borel measure ji on R (see
definition (1.21) below), a ji-measurable function f : R? — R is said to be Z2-periodic
j-a.e. in RY, if

VkeZ' f(-+k)=f(-) fira.e. on R (1.9)

e For a Borel measure p on Yy, Lg (Yg, 1), p > 1, denotes the space of the u-measurable
functions f: Yy — R such that [, |f(2)[" du(x) < cc.
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. Lﬁ’ (Ya), p > 1, simply denotes the space of the Lebesgue measurable functions f in
LF (R?), which are Z%periodic dr-a.e. in R%.

loc

° //floc(Rd) denotes the space of the non negative Borel measures on R?, which are finite
on any compact set of R,

o /;(Yy) denotes the space of the non negative Radon measures on Yy, and .#,(Y;) denotes
the space of the probability measures on Y.

e 2'(R%) denotes the space of the distributions on R¢.

e For a Borel measure i on Y, and for f € Lé (Ya, 11), f denotes the p-mean of f on Yy

=] fly)duly), (1.10)
Yy
which is simply denoted by f when p is Lebesgue’s measure. The same notation is used
for a vector-valued function in L} (Y, ).

e The notation .#, in (1.18) will be used throughout the paper.

1.2 Definitions and recalls

Let b: RY — R? be a vector-valued function in Cﬁl(Yd)d. Consider the dynamical system

X
5 (Lbo) =b(X(t2)), teR (1.11)

X(0,7) =z € R%

The solution X (-, z) to (1.11) which is known to be unique (see, e.g., [11, Section 17.4]) induces
the dynamic flow X associated with the vector field b, defined by

X: RxR — R4

(t,z) — X(t2), U2
which satisfies the semi-group property
Vs,t €R, Vo e R, X(s+t,z) = X(s, X(t,2)). (1.13)
The flow X is actually well defined in the torus Yy, since
VteR, Ve eRY VkeZ', X(t,x+k)=X(tx)+k. (1.14)

Property (1.14) follows immediately from the uniqueness of the solution X (-, x) to (1.11) com-
bined with the Z?-periodicity of b.
A possibly signed Borel measure p on Yy is said to be invariant for the flow X if

VieR VO e O, [ (X)) duty) = | vl duty) (1.15)

For a non negative Borel measure p on Yy, a function f € L;(Yd, ) is said to be invariant for
the flow X with respect to p, if

VteR, folX(t,:)=f() pae inYjy. (1.16)
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The flow X is said to be ergodic with respect to some invariant probability measure p, if
Vfe L;(Yd,u), invariant for X w.rt. p, f=f pae. inYy. (1.17)
Then, define the set
Iy = {p € M,(Yy) : p invariant for the flow X}, (1.18)

where ./,(Yy) is the set of probability measures on Y;. From the set of invariant probability
measures we define the so-called Herman [13] rotation set

Cp = {5” = /Y2 by) duly) : p € fb} : (1.19)

and its subset
D, := {E = / b(y)o(y)dy : o € Ly(Yy) and o(y) dy € fb} (1.20)
Yo

which is restricted to the invariant probability measures which are absolutely continuous with
respect to Lebesgue’s measure. If there is no such invariant measure, then the set D, is empty
(see Remark 4.1).

We have the following characterization of an invariant measure known as Liouville’s theorem,
which can also be regarded as a divergence-curl result with measures (see [$, Proposition 2.2]
and [8, Remark 2.2] for further details).

Proposition 1.1 (Liouville’s theorem) Let b € C}(Yy)?, and let p € #4(Yy). We define
the Borel measure ji € Mo.(R?) on R? by

[ e@aita) = [ adut). where )= 3 gl k) for € CHRY. (121

Yy

kezd
Then, the three following assertions are equivalent:
(1) p is nvariant for the flow X, i.e. (1.15) holds,
(i1) b is divergence free in the space R4, i.e.
div(iib) =0 in 2'(RY), (1.22)
(1i1) pb is divergence free in the torus Yy, i.e.
Vi e CoM. [ ) Tol)duty) o (1.23)
4

Remark 1.1 Since any function ¢ € C’&”(Yd) can be represented as a function 4 for a suitable
function o € C*(RY) (see [5, Lemma 3.5]), we deduce that the mapping

MYa) {ue//zloc<Rd> Vo e R, v =02 [ elo)ivte) :o}

po=
is bijective. Therefore, the measure i of (1.21) completely characterizes the measure .

By virtue of [3, Proposition 2.1] (see also [18]) Herman’s set C, satisfies the following result.

Proposition 1.2 ([8, 18]) Let b € Cf (Yq)?. Then, we have for any ¢ € R?,
X(t,z)

C, = {C} & Vroe Yy, tli)m = C (124)
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2 The rotation subset D,

We have the following characterization of the singleton condition satisfied by Dy, which has to
be compared to the one satisfied by C, in Proposition 1.2 above.

Theorem 2.1 Let b € C’ﬁl (Yy)¢ be such that there exists an a.e. positive function oy € L§(Yd)
with o9 = 1, satisfying div(ogb) = 0 in Re. Then, the flow X associated with b satisfies for any
CERY,
X(t
Dy={(} o lim 2b?)

t—o00 t

=(, ae T€Yy (2.1)

Proof. First of all, by virtue of the Birkhoff theorem applied with the invariant measure
oo(x) dz with the a.e. positive function og € Lj(Yy), combined with the uniform boundedness
of X(t,r)/t for t € R and x € Yg, there exists a function £ € Lg°(Yy) which is invariant for the
flow X with respect to Lebesgue’s measure, such that

X
lim —(t’ 7)

t—o00 t

={(r) ae z€eYy

Hence, by Lebesgue’s theorem we get that for any invariant measure o(z) dz with o € Lé (Yy),

/de(f")"(x)df” — Jim Ot ( /Y db(X(S,x))a(x)da:) s

(=) Assume that D, = {(} for some ¢ € R% Then, we have for any invariant measure o () dx
with o € L;(Ya),

/Y b(x)o(x)de =( | o(x)dx,

Yy
which by (2.2) implies that

A}a@—oa@mx:o (2.3)

On the other hand, since the non negative and the non positive parts (£ — ¢)* of £ — ¢ are
also invariant functions for the flow X with respect to Lebesgue’s measure, by Lemma 2.1
below the measures (£(z) — ()* 0¢(z) dr are invariant for X. Therefore, putting the measures
o(x)dr = (£(z) — {)* oo(x) dz in equality (2.3) we get that

/ (€(z) =€) (€(z) — O)F oo(x) dr = :I:/ [(&(z) — C)i]an(x) dx =0,
Ya Yy
which due to the a.e. positivity of oq, implies the right hand-side of (2.1).

(<) Conversely, we deduce immediately from (2.2) that for any invariant measure o(z) dz with
(oS L; (Yd),

/Y b(x)o(x)de =( | o(x)dz,

Yy

which yields D, = {(}. O



Lemma 2.1 Let b € C'ﬁl(Yd)d be a vector field in RY such that there exists an a.e. positive
function o € L}(Yy) with o5 = 1, satisfying div(oob) = 0 in R?. Then, a function f in L°(Yy)
is invariant for the flow X with respect to Lebesque’s measure if, and only if, the signed measure
f(z)oo(x) dz is invariant for X.

Proof. First of all, for any t € R, X (¢, ) is a C!-diffeomorphism on R? with reciprocal X (—t,-),
as a consequence of the semi-group property (1.13) satisfied by the flow X. Moreover, by virtue
of Liouville’s theorem the jacobian determinant of X (¢,-) is given by

VteR, Vo €Yy, J(t x):=det(V,X(tx)) =exp </0t(div b)(X(s,x)) ds) : (2.4)

Since by Proposition 1.1 the measure oq(x) dr = o¢(z) dz (due to the Z%-periodicity of op) is
invariant for the flow X, we have for any function ¢ € C?(R?) and any t € R,

Spﬂ(X(_ta )) = (@(X(_tv )))ﬁ by (1'14)7

and
/Rd o(x) og(x) dq::/y y(x) oo(x) do
- [ wx-toyads = [ (oX(ta),o0(0) do

— [ exCtoya@ds = [ owa(X(ty) Ity
Re r=X(t,y) Re

This implies that the jacobian determinant J(t,-) satisfies the relation
VteR, oo(X(t,y) J(t,y) = oo(y) ae. ye R (2.5)

Now, let f € Lg°(Yy). From (2.5) we deduce that for any function ¢ € C2(R?) and any t € R,

[ ety f@a@de = [ o) JXE) X)) It ) dy
R e=X(ty) TR

= [ e (X)) dy

By virtue of Remark 1.1 combined with the Z%periodicity of the function f, the former equality
also reads as

Vo e C)(Yy), Vt R, y V(X (—t,x)) f(x)op(x) de = g Y(z) f(X(t, ) oo(z)dr. (2.6)

Therefore, due to the a.e. positivity of oy, the function f € LﬁOO(Yd) is invariant for the flow X
with respect to Lebesgue’s measure, i.e. f(X(-,z)) = f(x) a.e. x € Yy, if, and only if, the
signed measure f(x)og(x)dzx is invariant for the flow X. O

3 A NSC for homogenization of the transport equation

First of all, recall the definition of the two-scale convergence introduced by Nguetseng [19] and
Allaire [1], which is easily extended to the time dependent case.
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Definition 3.1 Let T € (0,00).

a) A sequence u.(t,x) in L*((0,T) x RY) is said to two-scale converge to a function U(t,,y)
in L*([0,T] x RY L (Yy)), if we have for any function ¢ € C([0,T] x R CY(Yy)) with
compact support in [0,T] x R? x Yy,

lim ue(t, ) o(t, z,x/e) dtdr = / Ult,x,y) o(t, z,y) dtdzdy, (3.1)
(0,1)

€20 J(0,1)xRd XRIXY,

b) According to [1, Definition 1.4] any function (t,z,y) € C([0,T] x RY Lg(Yy)) with
compact support in [0,T] x R? x Yy, is said to be an admissible function for two-scale
convergence, if (t,x) — (t,z,x/c) is Lebesgue measurable and

lim V2 (t, 2,z /) dtdr = / V2 (t, 2, y) dtdzdy. (3.2)

€20 J(0,1) xRd (0,7) xR x Yy

Then, we have the following two-scale convergence compactness result.

Theorem 3.1 ([1], Theorem 1.2, Remark 1.5) Any sequence u.(t,x) which is bounded in
L2((0,T) x RY) two-scale converges, up to extract a subsequence, to some function U(t,z,y) in
L3((0,T) x Rd;Lﬁ(Yd)). Moreover, equality (3.1) holds true for any admissible function (3.2).

Let b(y) € C;(Ya)? be a vector field, let ug(z,y) € CJ(R% LF(Yy)) be an admissible function
with compact support in R* x Yy, and let f(t,z,y) € C2([0,T] x R% Lg°(Yy)) be an admissible
function with compact support in [0, 7] x R? x Y. Consider the linear transport equation with
oscillating data

%(t,x) —b(z/e) - Vau(t,x) = f(t,x,z/e) in (0,T) x R? (3.3)
u:(0,2) = up(z,z/e) for z € RY,

which by [10, Proposition II.1, Theorem I1.2] has a unique solution in L>((0,7T); L*(R%)).
We have the following criterion for the homogenization of equation (3.3).

Theorem 3.2 Let b be a divergence free vector field in Cﬁl(Yd)d, and let X be the flow (1.11)
associated with b. Then, we have the equivalence of the two following assertions:

(i) There exists ( € R? such that the flow X satisfies the asymptotics

X(t
lim —( )

t—o0 t

=(, ae x €Yy, (3.4)

or, equivalently, D, = {(}.

(i1) There exists ¢ € RY such that for any admissible functions uo(x,y) € C2(RY; L3 (Yy)) with
compact support in [0,T] x R, and f(t,z,y) € C°([0,T] x R L (Ya)) with compact
support in [0, T] x RY x Yy, the solution u. to (3.3) converges weakly in L>=((0,T); L*(R?))
to the solution u(t,x) to the transport equation

%(t,x) — (- Voult,z) = f(t,z,-) in (0,T) x R? (3.5)
u(0,z) = up(x,-) for x € R4



Moreover, in both cases we have ¢ = b.

Proof of Theorem 3.2.

(i) = (#4). First of all, note that, since b is divergence free in R?, by Proposition 1.1 Lebesgue’s
measure is an invariant probability measure for the flow X associated with b, which implies
that b € Dy = {¢} and ¢ = b.

Now, let ug(z,y) € CZ(R% L;(Yy)) be an admissible function with compact support in
[0, T]xR%, and let f(t,z,y) € CX([0,T] x R% Lg°(Yy)) be an admissible function whose support
is contained in [0,7] x K, K being a compact set of R?.
Denote b.(x) := b(x/e) which is divergence free in R? and denote f.(t,x) := f(t,z,x/¢)
which is uniformly bounded in [0, 7] x R¢ and is compactly supported in [0, 7] x K. Formally,
multiplying (3.3) by u.(t, x), integrating by parts over R? and using Cauchy-Schwarz inequality,
we get that for any ¢ € (0,7),

L </R () dx) - (/R () dx) -3 /R div(b.)(2) 2(t, 2) do

1/2
:/ fe(t,z) u(t,z) de < Cf (/ uZ(t, x) dl’) 5
K R?

where C is a non negative constant only depending on f. This can be justified following the
proof of [10, Proposition II.1]. Hence, we deduce the estimate

o6 My < a0,y + G5 T et € (0,7). (3.6)

Therefore, estimate (3.6) combined with (recall that the admissible function ¥(¢, z,y) = uo(x,y)
satisfies (3.2))

ll_rf(l) lu< (0, ')”LZ(Rd) - HU0<I7?J))||L2(Rded),

implies that the sequence u. is bounded in L>((0,7); L*(R?)). Then, up to a subsequence,
uc(t, ) two-scale converges to some function U(t,z,y) € L*([0,T] x R% L}(Yy)), and u.(t, )
converges weakly in L2((0,T) x R?) to the mean

w(t,z) = T2 = /Y Ult,2,y)dy for ae. (t,2) € (0,T) x R (3.7)

Next, we follow the two-scale procedure of the proof of [15, Theorem 2.1]. Putting the test
function o(t,z) € CH[0,T) x R?) in the weak formulation of (3.3), and integrating by parts
we have

o
— —(t,x) u:(t,x) dtder — 0,z)up(x,x/c)dx
L e s [ o0 mue a2

,T) xRd at R4

+/ b(z/e) - Vap(t, x) us(t, x) dtdx :/ o(t,z) f(t,x,x/e) dtdx.
(0,T) xR Rd

Then, passing to the two-scale limit and using that ug(x,y) and f(¢,x,y) are admissible func-
tions for two-scale convergence, we get that

_/ a_(p(ta 33') U(t7$7y> dtdzdy — / 90(0,1’) Uo(fﬂ,y) dxdy

(OvT)XRdXYd at RdXYd

+/ Z@XVM@@U@@wﬁM@:/ﬁ o(t,z) f(t,z,y) dtdzdy,
(0,T)xRax Yy (0,T)xRIx Yy
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or, equivalently, by Fubini’s theorem

_/(0 8_90(t7x)u(t,a:) dx—/ (0, z) uo(x, ) d

,T)XRd 8t Rd (38)

—l—/ Ut,z,-)b- Vup(t,z) dtde = / o(t,x) f(t,x,-) dtdz.
(0,T)xRd RixYy

Similarly, passing to the two-scale limit with the admissible test function € p(t, z) ¥ (z/e) for
any ¢(t,z) € C1([0,T) x R?) and any 1 € C}(Yy), we get that

/ o(t,2) by) - V() U(t, 2, ) dtddy
(0,T)xRex Yy

_ /() et ([ Ult.0) M) - Vit dy ) dudz =0,

which by Proposition 1.1 implies that
div, (U(t,z,-)b) =0 in Z'(RY), a.e. (t,r) € (0,T) x R% (3.9)

Then, applying Lemma 2.1 with op = 1, for a.e. (¢t,z) € (0,7) x R?, the function U(t,z, ")
is an invariant function for the flow X associated with b related to Lebesgue’s measure, and
so are the positive and negative parts U% (¢, x,-) of U(t,x,-). Hence, again by Lemma 2.1 the
measures U= (t, z,y) dy are invariant for X, which by the definition (1.20) of Dy = {(}, implies
that

Ut(t,z, )b :/Y b(y) UE(t,z,y) dy = (/Y U*(t,z,y) dy) ¢ ae (t,7) € (0,7) x R (3.10)

From (3.10) and (3.7) we deduce that

Ult,z, )b=U(t,z,-) ¢ =u(t,x){ ae. (t,x) € (0,T) x R (3.11)

Putting this equality in the weak formulation (3.8) we get that for any ¢(¢,z) € C1([0,T) x R?),

_/(0 8_90(t7x)u(t,a:)dx—/ (0, ) uo(x, ) dz

,T) xRd 8t R4

# [ )¢ Vaplta) dtde = [ gt Fa ) dede
(0,T)xRd RixYy,

which is the weak formulation of the homogenized transport equation (3.5).

(i4) = (i). First of all, note that the set D, contains the mean b, since by the free divergence
of b and by Proposition 1.1, Lebesgue’s measure is an invariant probability measure for the
flow X associated with b.

Now, let us prove that any invariant probability measure o(x)dz with o € Li(Yy), for the
flow X satisfies the equality o b = ¢, which will yield the desired equality D, = {¢}. To this
end, let us first show this for any invariant probability measure v(x)/v dx with v € L°(Yy). By
virtue of Proposition 1.1 such a function v is solution to the equation

div(vb) =b-Vu=0 in Z'(R%). (3.12)
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Let § € CHR?), and define for € > 0 the function u. € C*([0,T]; CL(R%)) by
u(t, ) = 0(x +t{)v(x/e) for (t,x) € [0,T] x RY,

where ( is the vector involving in the homogenized equation (3.5). By (3.12) we have

Ou,
E(t’ x) —b(x/e) - Vyuc(t, )

=v(x/e) ¢ Vabl(z +1¢) —v(z/e) b(x/e) - Vob(x + 1 () = 1/eb(x + 1) (b- Vyv)(z/e)
= (v(z/e) ¢ = (Vb)(x/e)) - Vub(z +1C) = f(t, 2, 2/e),

where
flt,z,y) = (v(y) ¢ — (vb)(y)) - Vob(z + () for (t,z,y) € [0,T] x R? x Yy,

is an admissible function in C2([0, T] x R%; Lg*(Yy)) with compact support in [0, 7] x R? x Y5,
Moreover, we have u.(0,z) = 6(x)v(z/e) for z € R? where 6(z)v(y) € CI(R% LF(Yy)) with
compact support in [0, 7] x R? is also an admissible function. Hence, by the homogenization
assumption the sequence u.(t,x) converges weakly in L2((0,7) x R?) to u(t,z) = 0(z +t{)v
solution to the homogenized equation (3.5), i.e.

Y (t,z) € [0,T] x RY, %(t,x) — (- Veu(t,z) = f(t,z,-) = (W¢—vb) - V0(z + Q).

But directly from the expression u(t,z) = 0(x + t () v, we also deduce that

Y (t,z) €[0,T] x RY, %(t,w) — (- Vu(t,z) =0.

Equating the two former equations we get that for any 0 € C}(R?),
V(t2) € [0,T] x RY, (3¢ —0b) - Vablz +t¢) =0,

which implies that o
vb=7vC(. (3.13)

Now, let o be a non negative function in L} (Yy) with @ = 1, such that () da is an invariant
measure for the flow X, or, equivalently, by Lemma 2.1 applied with oy = 1, the function o
is invariant for X with respect to Lebesgue’s measure. Hence, for any n € N, the truncated
function o A n is also invariant for X. Equality (3.13) applied with v = 0 An € L(Y;), yields

(cAn)b=0cAn( — 0 =a(=¢(.

Thus, we obtain the desired equality D, = {¢} = {b}, which owing to Theorem 2.1 concludes
the proof of Theorem 3.2. O

Remark 3.1 From equation (3.9) Hou and Xin [15] used the ergodicity of the flow X to deduce
that U(t,z,-) is constant a.e. (t,x) € (0,T) x RY. However, this condition is not necessary.
Indeed, the less restrictive condition used in the above proof is that Dy is reduced to the unit
set {C}. This combined with Lemma 2.1 on invariant measures and functions leads us to equality
(3.11), and allows us to conclude.
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4 Comparison between the seven conditions

In the sequel we denote:

Rec if there exist a C%-diffeomorphism ¥ on Y, and ¢ € R? such that VU b = ¢ in Y.

Erg if the ergodic condition (1.17) holds with an invariant probability measure for X,
which is absolutely continuous with respect to Lebesgue’s measure,

Asy-a.e. if there exist ¢ € R? such that tllglo X(t,x)/t=(, ae. z€Yy.
Asy-e.  if there exist ¢ € R? such that tllglo X(t,z)/t=(, VzeYy
#C,=1 if the unit set condition holds for Herman’s set C,.

#D,=1 if the unit set condition holds for the set Dy.

Hom if the homogenized equation (3.5) holds when b is divergence free in R?.

Theorem 4.1 Letb € Cﬁl(Yd)d be a non null but possibly vanishing vector field such that there
exists an invariant probability measure oo(x) dx with og € LT}(Yd), for the flow X associated
with b, or, equivalently, Dy, # . Then, we have a complete array (see Figure 1 below) of all
the logical connections between the above seven conditions, in which:

A grey square means a tautology.

- A square with <= means that the condition of the top line implies the condition of the left
column, but not the converse in general.

- A square with f} means that the condition of the left column implies the condition of the
top line, but not the converse in general.

- A square with < or {§ means that the conditions of the top line and of the left column are
equivalent.

- A dark square means that the conditions of the top line and the left column cannot be
compared in general.

- Finally, if a square involves condition Hom, then the other condition must be considered

under the assumption that b is divergence free in R,

Remark 4.1 We may have both #C, =1 and D, = O.

To this end, consider a gradient field b = Vu with u € C’f(Yd), such that Vu # 0 a.e. in Yy.
On the one hand, by virtue of [5, Proposition 2.4] we have C, = {0}. On the other hand,
assume that there exists an invariant probability measure o(x) dx with o € L; (Yy), for the flow
associated with Vu. Then, by virtue of Proposition 1.1 we have

/Y o(z) |Vu(x)|? de = / o(z) Vu(z) - Vu(z) dz = 0,

Yy
which implies that o0 = 0 a.e. in Yy, a contradiction with @ = 1. Therefore, we get that D, = O.

Proof of Theorem 4.1.

Condition Rec. By virtue of [0, Corollary 4.1] condition Rec implies condition #C, =1 which
by Proposition 1.2 is equivalent to condition Asy-e.. Moreover, condition Asy-e. clearly implies
condition Asy-a.e. which by Theorem 2.1 is equivalent to condition #D, =1, and by Theo-
rem 3.2 is equivalent to condition Hom. Therefore, condition Rec implies condition Asy-a.e.,
condition Asy-e., condition #C,=1, condition #D,=1, and condition Hom.

On the other hand, note that if the vector field b vanishes, then condition Rec cannot hold
true. Otherwise, in equality VW b = ( the constant vector ( is necessarily nul, hence due to the
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Rec Erg Asy-a.e. Asy-e. #Cp=1 | #D,=1 Hom
Rec f f 1) 1) r
Erg i f )
Asy-a.e. = = = = & &
Asy-e. = i < f f
#Cp=1 < T ) i) r
#Dp=1 = = iy = = &
Hom = = i ~= = )

Figure 1: Logical connections between the seven conditions

invertibility of VW, b is the nul vector field, which yields a contradiction. Therefore, since all
other conditions may be satisfied with a vanishing vector field b according to the examples of
[8, Section 4] combined with Theorem 2.1 and Theorem 3.2, condition Rec cannot be deduced
in general from any of the other six conditions.

Conditions Rec and Erg cannot be compared. [6, Corollary 4.1] provides a two-dimensional and
a three-dimensional example in which condition Rec holds true, but not condition E'rg.

Condition Erg. By virtue of Birkhoff’s theorem condition Ergimplies condition Asy-a.e. which
is equivalent to condition #D, =1 (by Theorem 2.1) and is equivalent to condition Hom (by
Theorem 3.2).

Conditions Erg and #C, =1 cannot be compared. Since condition Rec implies #C, = 1, but
condition Rec does not imply in general condition Erg (by [0, Corollary 4.1]), by a transitivity
argument condition #C,=1 does not imply in general condition Erg.

On the other hand, extending the two-dimensional results of Oxtoby [20] and Marchetto [17]
to any dimension by a different approach, Example 4.1 and Proposition 4.1 below deal with a
d-dimensional Stepanoff flow [23, Section 4] defined by

08 1,2) = bs(S(1,2)) = ps(S(L,2)) €, 1€ R

S(0,z) =z € RY,

(4.1)
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where pg is a non negative function in Cj (Yy) with a finite positive number of roots in Y and
os :=1/ps € Li(Yy), and where ¢ is a constant vector of R? with incommensurable coordinates.
Under these conditions og(z)/as dz is the unique invariant probability measure on Y for the
flow S, which does not load the zero set of pg, and S is ergodic with respect to the measure
os(x)/ds dxr. Hence, condition Erg holds true with the probability measure og(x)/ds dx.
Moreover, Proposition 4.1 shows that Dy, = {¢} and C,, = [0,¢] with ( = (1/75)& # 0.
Therefore, condition Erg does not imply in general condition #C, =1, or, equivalently, condition
Asy-e..

Conditions #C, =1 and #D, =1. Since D, is assumed to be non empty, condition #C, =1
clearly implies condition #D,=1.

In contrast, as above mentioned the Stepanoff flow induces that D, = {¢} and Cp, = [0, (]
with ¢ € R4\ {0}. Alternatively, Example 4.2 below provides a different class of two-dimensional
vanishing vector fields b such that D, is a singleton, while C, is a closed line set not reduced to
a singleton. Therefore, condition #D, =1 does not imply in general #C,=1.

Condition #D,=1. Since condition #C, =1 implies condition #D, =1, but #C, =1 does not
imply in general condition FErg, by a transitivity argument condition #D;, =1 does not imply
in general condition Erg. Moreover, since condition #C, =1 is equivalent to condition Asy-e.,
but condition #D, =1 does not imply in general #C, =1, condition #D, =1 does not imply in
general condition Asy-e..

Condition Hom. Here, we assume that the vector field b is divergence free in R
On the one hand, consider the constant vector field b = e; in R?, which induces the flow

X(t,x)=x+te; for (t,z) € R x RY

Then, any function f € L}(Yy) independent of variable 2, is invariant for the flow X with respect
to any invariant probability measure which is absolutely continuous with respect to Lebesgue’s
measure. Hence, the flow X is not ergodic with respect to such an invariant probability measure.
Moreover, we have immediately C, = D, = {e;}. Therefore, condition Hom which is equivalent
to condition #D, = 1 (by Theorem 3.2), does not imply in general condition Erg.

On the other hand, the two-dimensional divergence free Oxtoby example [20, Section 2| com-
bined with the uniqueness result of [20, Theorem 1] (see Example 4.1) provides a flow which
is ergodic with respect to Lebesgue’s measure, and such that C, is not a unit set (see Proposi-
tion 4.1). Therefore, since condition Erg implies condition Hom (see, e.g., [15, Theorem 3.2])
condition Hom does not imply in general condition #C, = 1. Finally, condition Hom does not
imply in general either condition Erg, or condition #C,=1, or, equivalently, condition Asy-e..

The rest of the implications can be easily deduced from the former arguments. O

Exemple 4.1 Oxtoby [20] provided an example of a free divergence analytic two-dimensional
vector field b with (0,0) as unique stationary point in Y5, such that the associated flow X is
ergodic with respect to Lebesgue’s measure, and such that Lebesgue’s measure is the unique
invariant measure for the flow X among all the invariant probability measures which do not
load the point (0,0). Oxtoby’s example is actually based on a Stepanoff flow (4.1), where pg
is a non negative function in C’ﬁ1 (Y2) with (0,0) as unique stationary point, and where ¢ is
a constant vector of R? with incommensurable coordinates. Stepanoff [23, Section 4] proved
that Birkhoft’s theorem applies if og := 1/pg is in Li(Y3), which is not incompatible with the
analyticity for pg. A suitable candidate for pg is then the function (see [3, Example 4.2] for
another application)

Bo

ps(x) = (sin®(rz1) + sin®(7rz,)) for x € Yo, with fp € (1/2,1). (4.2)
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More generally, Oxtoby [20, Theorem 1] proved that any two-dimensional flow homeomorphic
to a Stepanoff flow with a unique stationary point x(, admits a unique invariant probability
measure p for the flow S (4.1) satisfying u({zo}) = 0, and that S is ergodic with respect
to p. Twenty five years later, Marchetto [17, Proposition 1.2] extended this result to any flow
homeomorphic to a Stepanoff flow with a finite number of stationary points in Y5.

In what follows, we extend the two-dimensional results of [20, 17] to any dimension d > 2,
using a non ergodic and elementary approach based on some classical tools of PDE’s anal-
ysis (mollification, truncation) combined with the characterization of invariant functions of
Lemma 2.1.

Proposition 4.1 Consider a d-dimensional, d > 2, Stepanoff flow S (4.1) where ps € C§ (Ya)
is mon negative with a finite positive number of roots (the stationary points for S) in Yy and
og:=1/ps € L;(Yd), and where ¢ € R? has incommensurable coordinates. Then, the measure
os(x)/Ts dx is the unique invariant probability measure on Yy for the flow S, which does not

load the zero set of ps. The flow S is also ergodic with respect to the measure og(x)/dg dx.
Moreover, we have Dy, = {(} and Cypy = [0,(], where ¢ :=1/75 €.

Remark 4.2 Similarly to [20, 17] the result of Proposition 4.1 actually extends to any flow
which is homeomorphic to a Stepanoff flow.

Indeed, let U be a C2-diffeomorphism on Yy (see [S, Remark 2.1]). Define the flow X obtained
through the homeomorphism ¥ from the flow X associated with a vector field b € Cﬁl (V)2 by

X(tz) = V(X (t, V¥ (2) for(t,r) € R x Yy (4.3)
According to [, Remark 2.1] the homeomorphic flow X s the flow associated with the vector

field b € C (Ya)* defined by

~

b(x) = VU (U H2))b(¥ ! (z)) forx €Yy (4.4)

Now, let . be a probability mesure on Yy, and let ji be the image measure of p by ¥ defined by

AM@@@=/@@@M@)%WEWW&

Yq

By (4.3) we have

quwaléwmmwwm:/¢@mwmwmm

Ype CYYa). il{p=0}) = pu({pow =0}), (45)
Ve Li(Yy), fi=foU ! VteR, [f(X(t2)=/Ff(XtT ' (2) ae z€Y,

Also note that, if p is invariant for X, so is ji for X. Therefore, if the homeomorphic flow Xisa
Stepanoff flow S satisfying the assumptions of Proposition 4.1, we easily deduce from (4.5) that
Proposition 4.1 holds true for the flow X. Namely, there exists a unique invariant probability
measure |1 on Yy for the flow X, which does not load the zero set of ps o W. Moreover, the
measure [t s absolutely continuous with respect to Lebesque’s measure with an a.e. positive
density, and the flow X s ergodic with respect to .

Remark 4.3 Assuming the uniqueness result of Proposition 4.1, the ergodicity of os(x)/as dx
and equality Cpq = [0, (] can also be proved using standard arguments of ergodic theory. Indeed,
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let &, be the set of all the ergodic invariant probability measures for the flow S. Recall (see, e.g.,
[9, Theorem 2, Chapter 1]) that %, = conv (&,4), and that two elements in &, are either equal,
or mutually singular. Now, if i1 € &, satisfies pu({xo}) > 0 for some zero of ps, then p = 0y,
due to 6, € &y,. Neat, since og(x)/ds dx is the unique invariant probability measure on Yy
for the flow S, which does not load the zero set of pgs, it follows from equality #, = conv (&)
that the flow S is ergodic with respect to os(x)/s dx. Hence, &4 is the finite set

& = {os(x) /75 dz} U {4, : ps(x) =0}, (4.6)

Therefore, 05 bs/ads = ¢ provides the unique non zero contribution in Cyy through &, which
by convex combination implies that Cpy = [0,(]. Equality F, = conv (&) and property (4.6)
also give Dy, = {(}.

Proof of Proposition 4.1. Assume that y is an invariant probability measure for the flow S (4.1),
which does not load the zero set of pg. Then, by virtue of Proposition 1.1 the Borel measure [
on R? defined by (1.21) is solution to the equation

div(fibg) = div(pg i€) =0 in Z'(RY).

Hence, applying Lemma 4.2 below with the measure v = pg u which is connected to the measure
v = ps fu by (1.21), there exists a constant ¢ € R such that pg(z) du(z) = cdz on Yy, i.e.

Vo e CY(Ya), /Y o(x) ps(x) du(z) = /Y co(x)d.
Then, we get that for any n > 1,
Ve CE(Rd), /Yd % ps(z)dp(z) = /Yd C[)s(ig(—i)lm dzx. (4.7)

However, since measure p does not load the finite zero set of pgs in Yy (at this point this
assumption is crucial), we have

¥ Ps . . Y Ps L
— du(xr)-a.e. in Yy, with | ———— | < o € LYy,
et 1m ot @) ! ‘ps+1/n < el ¢ (Ya, p)
— L i - ¥ [ [

— — dz-a.e. in Yy, with < c LYY,).
ps+1/n n—oo pg d ps+1/n Py ﬁ( )

Therefore, passing to the limit as n — oo owing to Lebesgue’s theorem in (4.7), we get that

Vo Qo). [ pla)dute) = [ cplw)asta)do
Yy Yy

We thus obtain the equality du(x) = 0s(z)/ds dx, which shows the uniqueness of an invariant
probability measure for the flow S, which does not load the zero set of pg. Conversely, ogbg = &
is clearly divergence free, which by Proposition 1.1 implies that p is an invariant probability
measure for the flow S. We have just proved that p is the unique invariant probability measure
for the flow S, which does not load the zero set of pg.

Now, let us prove that the flow S is ergodic with respect to the measure du(z) = og(x) /s dz.
To this end, let f € L;(Yd) be an invariant function for the flow S with respect to measure .
Let T be the truncation functions at level n € N, defined by

TEW) == ((£H)VO)) An forteR.
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Then, the functions T, (f) € Lg°(Yq) are also invariant functions for the flow S with respect to
measure p. We know that og(z)dx is an invariant measure for the flow S. Hence, by virtue
of Lemma 2.1 the Radon measures du:(z) := (TE(f)os)(x)dzx are invariant for S, which by
relation (1.21) and Proposition 1.1 implies that

[Ebs = pEbs = (T(f) 05 bs)(2) de = TE(f)(z) € da

are divergence free in R?. Therefore, applying Lemma 4.2 with measures dv(y) = T=(f)(y) dy
which satisfy 7 = v, the functions TX(f) agree with constants ¢t € R a.e. in Y;. However, since
the sequences T (f) converge strongly in L} (Yy) to the non negative and the non positive parts
f* of f, the sequences ¢ converge to some constants cx in R. Hence, the function f = f*— f~
agrees with the constant ¢, — c_ a.e. in Y;. This proves the desired property.

Next, since og(x)/dg dx is the unique invariant probability measure on Yy for the flow S,
among the invariant probability measures which are absolutely continuous with respect to
Lebesgue’s measure, we have

Dy, = { | nstoéastafms dx} — {1/o5 €}

Note that the former equality can be alternatively deduced from the ergodicity of the flow S
combined with Theorem 4.1.

On the other hand, set b, := bs+ 1/n for n > 1. Since £ has incommensurable coordinates, we
have (see [, Example 4.1])

dx -
Cbn = {Cn} where Cn = (/Yd m dl’) C

Finally, since the function pg vanishes in Yy, by virtue of [8, Theorem 3.1] we obtain that
Cpy =[0,¢], where (= lim ¢, =1/a5¢.
n—oo

Note that the ergodic approach of Remark 4.3 alternatively shows that C,, = [0,(]. The proof
of Proposition 4.1 is now complete. O

Lemma 4.2 Let v € #;(Yy), let U € Moc(R?) be the Borel measure on R? connected to the
measure v by relation (1.21), and let ¢ € RY be a vector with incommensurable coordinates.
Assume that U € is divergence free in R?, i.e.

Vo € C(RY), / ¢ Volz) dir(z) = 0. (4.8)
Rd
Then, there exists a constant ¢ € R such that dv(y) = cdy on Yy.
Remark 4.4 In Lemma 4.2 the incommensurability of £'s coordinates is also a necessary con-

dition to get (4.8). Indeed, assume that there exists a mon nul integer vector k € Z%\ {0}
such that k- & = 0. Then, for any non constant Z-periodic function 0 € C'ﬁl (Y1), the function

(12— 0(k-x)) belongs to C{(Yy), 7(x) dx = 7(x) dx, and
VeeRY div(ré)(z)=0(k-z)k-£=0,
so that the conclusion of Lemma 4.2 does not hold true.
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Proof of Lemma 4.2. Let (¢, )nen be a sequence of mollifiers in C°(R?) with ¢,, = 1. Applying
successively Fubini’s theorem twice and (4.8), the convolution ¢, * 7 € C*(R?) satisfies for any
n € N and for any ¢ € C%°(RY),

/Rd ( g dn(z —Y) dﬂ(y)> §-Vo(r)dr = /Rd ( 5 bn(z —1y) € Vo(x) dx) dir(y)
= /R ( y $n(7) & - Vap(z +y) dw) di(y) = /R ( " Vyo(z +y) dﬁ(y)) ¢n(r) dz = 0,

or, equivalently,

div((¢p *7)€) = V(g * ) - £=0 in R% (4.9)
Now, consider £!,...,£€%71 (d—1) vectors in R? such that (£%,...,£971 &) is an orthogonal basis
of R?, and let A be the matrix in R(¢~D*? whose lines are the vectors &', ..., %71, i.e. its entries

are given by Ay = & for (4,5) € {1,...,d—1} x {1,...,d}. Then, make the linear change of
variables
R — R
r o~ y=Ar¢-2)= (& x, ... 7 x & n).
Since (4.9) means that (¢, * 7)(x) is independent of the variable y; = £ -z, it follows that there
exists a function 6,, € C*°(R?"!) such that

Vo eRY (¢, *0)(z) = 0,(Ax).

Moreover, due to (1.21) and the Z%periodicity of (¢,);, we have for any x € R? and k € Z¢,

G D)@t k)= [ oule+k—y)diy) = /Y (bu)s( + k — ) du(y)

Rd

= [ @it =) vts) = [ onla =) dito) = (00 +9)(a).

Yy

which implies that the function ¢, *7 is also Z?-periodic. As a consequence, the regular function
0,, satisfies the periodicity condition

VkeZ' Yo e R 0,(x+ Ak) = 0,(z).

Hence, by virtue of the density Lemma 4.3 below we get that 6, is a constant ¢, € R, and thus
¢ * U = ¢, in RY. Therefore, by Fubini’s theorem we have for any ¢ € C>°(R?),

/Rd Cn () dr = /Rd ( » on(z —y) dﬂ(y)> p(x)dr = /Rd ( 5 bn( — 1) () dx) dir(y),

where the function (y — [p. ¢n(2 — y) @(2) dz) converges uniformly to ¢ on R? as n — oo,
whose support is included in a fixed compact set of R?, and which is bounded uniformly by
|¢llco- Therefore, passing to the limit as n — oo thanks to Lebesgue’s theorem with respect to
measure 7, we get that the sequence (¢, )n,en converges to some ¢ € R, and that

voeCx®), [ cola)di= [ carty)

Hence, we deduce the equality di(z) = cdz on R% or, equivalently, dv(y) = cdy on Y, by
virtue of Remark 1.1. This concludes the proof of Lemma 4.2. 0
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Lemma 4.3 Let ¢ be a vector inR? for d > 2, with incommensurable coordinates, let ', ... 31

be (d—1) vectors in R? such that (€',...,6971 &) is an orthogonal basis of R, and let A be
the matriz in RU=D*4 whose lines are the vectors €', ..., 641, Then, the lattice AZ% is dense
in R4~1,

Proof. Lemma 4.3 follows easily from [3, Proposition 6 & Corollary, Section VIL.7] which leads
one to Kronecker’s approximation theorem [3, Proposition 7, Section VIL.7]. For the reader’s
convenience we propose a more direct proof.

Since matrix A has rank (d—1) and Ker(A) = R¢&, we may assume, up to reorder the vectors,

that the vectors Aeq, ..., Aey_1 are linearly independent and that there exist d real numbers
aq, ..., Qg 1, a satisfying
d—1 d—1
Aey = Z a; Ne; and ey — Z aje; = af. (4.10)
i=1 i=1

Replacing the vector e4 in the first equality of (4.10) and using that A = 0, we get that

d d—1
AZY =" ZAe; = (Z+ 0;Z) Ae.
=1 =1

Assume that there exists j € {1,...,d — 1} such that the set (Z + «; Z) is not dense in R, or,
equivalently, a; € Q. Taking the j-th and d-th coordinates in the second equality of (4.10),
it follows that &; + o;&; = 0, which contradicts the incommensurability of £’s coordinates.
Therefore, the set A Z¢ is dense in R, which concludes the proof. O

Exemple 4.2 Consider a two-dimensional vector field b = py R; Vu such that py € Cﬁl(}/g) is
a.e. positive in Y5 and does vanish in Y5, and such that Vu € Cﬁl(}/g)2 does not vanish in Y5
and Vu has incommensurable coordinates. Also assume that oy := 1/p, € L;(Yz). An example
of such a function is given by (4.2). Note that, by virtue of Proposition 1.1 the probability
measure oo(x)/dg dz is invariant for the flow X associated with b.

Now, let o € Lj(Y3) be a non negative function with 7 = 1, such that div(sb) = 0 in R*. By
Proposition 1.1 o(x) dx is an invariant probability measure for the flow X. Hence, by Fubini’s
theorem we have for any 7" > 0,

|RELCEES- /OT ([ etwxieanas)a= [ (KL= owan @y

On the other hand, since the function py does vanish in Y5 together with py > 0 a.e. in Y5,
from [8, Lemma 3.1] applied with the invariant probability measure du(z) := o¢(z) /7o dz, we
deduce that

X(T oob  RiVu
m 250 20b _RVU ) e ey
T—00 T 09 90

Therefore, passing to the limit 7" — oo in equality (4.11) thanks to Lebesgue’s theorem, we get
that for any invariant probability measure o(x)dx with o € Lj(Y2),

/Y o(x) b(z) dx = € # (0,0),

which thus implies that D, = {(}. However, by virtue of [8, Corollary 3.4] we obtain that
Cy, = [0, (]. Therefore, we have #Cj, = 0o, while #D, = 1.
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Remark 4.5 The result of Fxample 4.2 can be deduced from the Proposition 4.1 combined
with Remark 4.2, using Kolmogorov’s theorem [10] (see, e.g., [22, Lecture 11], and see also [/,
Theorem 2.1] for an elementary proof when one of the coordinates of the vector field does not
vanish). Indeed, since the divergence free field R, Vu of Example 4.2 does not vanish in Ys,
by virtue of Kolmogorov’s theorem there exists a C'-diffeomorphism on Yo which transforms
the flow X associated with the vector field b = py Ry Vu, to a Stepanoff flow satisfying the
assumptions of Proposition 4.1 provided the zero set of pg is finite. Therefore, Remark 4.2
allows us to conclude.

We can extend Example 4.2 to the following variant of [3, Corollary 3.4, which provides a
general framework where the sets C, and D, may differ.

Proposition 4.4 Let b= p® € C}(Y2)* be a vector field, where p € C}(Y3) is a non negative
function with a positive finite number of roots, and where ® € Cﬁl(Yg)2 18 a non vanishing vector
field. Also assume that there exists a function u € C'(Ya) with Vu € C)(Y2)?, such that Vu
has incommensurable coordinates and ® - Vu = 0 in Y. Then, the exists a vector ( € R? such
that C, = [0, (], together with D, = @ or D, = {(}.

Proof. First of all, define for n > 1, the function p, := p + 1/n > 0, and the vector field
b, == pp,®. By the equality ® - Vu = 0 in Y5, we get that u is an invariant function for
the flow X, associated with the vector field b,, with respect to Lebesgue’s measure. Then,
following the proof of [3, Corollary 3.4], from the ergodic case of [21, Theorem 3.1] and the
incommensurability of Vu’s coordinates, we deduce that there exists a vector ¢, € R? such that
Cbn = {Cn} :

On the one hand, since the function p vanishes in Y5, by the second case of [, Theorem 3.1]
it turns out that the sequence ((,),>1 converges to some ¢ € R?, and that C, = [0, ¢].

On the other hand, assume that the set D, is non empty. Then, there exists an invariant
probability measure o(z) dz with o € Lj(Y3), for the flow X associated with the vector field b,
i.e. o(x)/gdx € F,. Following the proof of [, Corollary 3.3] define the probability measure

fn by

= p<I> o\xr)axr where = p<I> o -
Bpn7) = G pu() ()de where C: (/yd Pu(y) ) dy) '

Note that C,, < oo, since po is non negative and not nul a.e. in Y. Due to o(x)/adzx € %,
by Proposition 1.1 we have

Ve e CL0R), [ bu(o): Viola) duala) = Co [ W) Viplo) ola) dz =0

Yq

which again by Proposition 1.1 implies that p, € .#, . This combined with C,, = {(,} yields

G = /Y b () dpin (1) — cn/ b@)o(x)de = C, o

Yy

which is actually independent of 0. Due p > 0 a.e. in Y5, by Lebesgue’s theorem we get that
the sequence (C,,),>1 converges to @ = 1. Hence, we deduce that

(=1lim ¢, =0b
n—0o0

which is also independent of o. Therefore, we obtain that D, = {(}, which concludes the proof
of Proposition 4.4. O
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