Skip to Main content Skip to Navigation
Journal articles

Cosmic shear cosmology beyond two-point statistics: a combined peak count and correlation function analysis of DES-Y1

Abstract : We constrain cosmological parameters from a joint cosmic shear analysis of peak-counts and the two-point shear correlation functions, as measured from the Dark Energy Survey (DES-Y1). We find the structure growth parameter |$S_8\equiv \sigma _8\sqrt{\Omega _{\rm m}/0.3} = 0.766^{+0.033}_{-0.038}$| which, at 4.8 per cent precision, provides one of the tightest constraints on S_8 from the DES-Y1 weak lensing data. In our simulation-based method we determine the expected DES-Y1 peak-count signal for a range of cosmologies sampled in four w cold dark matter parameters (Ω_m, σ_8, h, w_0). We also determine the joint covariance matrix with over 1000 realizations at our fiducial cosmology. With mock DES-Y1 data we calibrate the impact of photometric redshift and shear calibration uncertainty on the peak-count, marginalizing over these uncertainties in our cosmological analysis. Using dedicated training samples we show that our measurements are unaffected by mass resolution limits in the simulation, and that our constraints are robust against uncertainty in the effect of baryon feedback. Accurate modelling for the impact of intrinsic alignments on the tomographic peak-count remains a challenge, currently limiting our exploitation of cross-correlated peak counts between high and low redshift bins. We demonstrate that once calibrated, a fully tomographic joint peak-count and correlation functions analysis has the potential to reach a 3 per cent precision on S_8 for DES-Y1. Our methodology can be adopted to model any statistic that is sensitive to the non-Gaussian information encoded in the shear field. In order to accelerate the development of these beyond-two-point cosmic shear studies, our simulations are made available to the community upon request.
Document type :
Journal articles
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03115833
Contributor : INSPIRE HEP Connect in order to contact the contributor
Submitted on : Friday, August 12, 2022 - 12:13:38 PM
Last modification on : Friday, August 12, 2022 - 12:13:40 PM

File

stab1623.pdf
Publisher files allowed on an open archive

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Collections

Citation

Joachim Harnois-Déraps, Nicolas Martinet, Tiago Castro, Klaus Dolag, Benjamin Giblin, et al.. Cosmic shear cosmology beyond two-point statistics: a combined peak count and correlation function analysis of DES-Y1. Mon.Not.Roy.Astron.Soc., 2021, 506 (2), pp.1623-1650. ⟨10.1093/mnras/stab1623⟩. ⟨hal-03115833⟩

Share

Metrics

Record views

70

Files downloads

3