Skip to Main content Skip to Navigation
Journal articles

A Fully Noncommutative Painlevé II Hierarchy: Lax Pair and Solutions Related to Fredholm Determinants

Abstract : We consider Fredholm determinants of matrix convolution operators associated to matrix versions of the $n - $th Airy functions. Using the theory of integrable operators, we relate them to a fully noncommutative Painlev\'e II hierarchy, defined through a matrix valued version of the Lenard operators. In particular, the Riemann-Hilbert technique used to study these integrable operators allows to find a Lax pair for each member of the hierarchy. Finally, the coefficients of the Lax matrices are explicitely written in terms of these matrix valued Lenard operators and some solution of the hierarchy are written in terms of Fredholm determinants of the square of the matrix Airy convolution operators.
Document type :
Journal articles
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03115034
Contributor : Sofia Tarricone Connect in order to contact the contributor
Submitted on : Tuesday, January 19, 2021 - 1:11:36 PM
Last modification on : Wednesday, October 20, 2021 - 3:19:02 AM

Links full text

Identifiers

Collections

Citation

Sofia Tarricone. A Fully Noncommutative Painlevé II Hierarchy: Lax Pair and Solutions Related to Fredholm Determinants. Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2021, ⟨10.3842/SIGMA.2021.002⟩. ⟨hal-03115034⟩

Share

Metrics

Les métriques sont temporairement indisponibles