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Abstract. The work presented here focuses on probabilistic modelling at the secondary-

tertiary transition. Concerning the university level, I am interested in non-specialist 

students, more precisely first-year biology students. I have written and submitted a test 

on discrete probabilities to Grade 12 and to biology students. I present here the a priori 

and a posteriori analysis of one exercise of this test. The analysis of the students' 

responses to this exercise allowed me to establish initial results on possible difficulties 

in the secondary-tertiary transition. A first point is that students, in these modelling 

activities, have difficulty linking task and type of task. Another result is the very high 

use of probability trees by students in their modelling of the probabilistic situations 

proposed.  

Keywords: mathematics in other disciplines, modelling, probabilities, secondary-

tertiary transition, students’ activity 

INTRODUCTION 

The study of the secondary-tertiary transition is not new in mathematics education 

research (Gueudet & Thomas, 2019). Many authors have focused on the difficulties 

encountered by students in the fields of calculus or linear algebra (e.g. Vleeschouwer 

& Gueudet, 2011). There are fewer studies on the topic of probability. However, 

probabilities are taught in many university courses, particularly for non-specialists such 

as biology students. My study takes place in France and I have chosen to focus on 

biology students who study probability from the first year of university.  

In the following section, I present the context of my research and previous works about 

the teaching and learning of probabilities on which I based my study. Then in the third 

section I present my theoretical framework. In the fourth section I present the 

methodology I used in my research. In the fifth section I present my results. Finally, in 

the last section I present the conclusions of this study.  

RELATED WORKS  

I focus here on the secondary-tertiary transition in the particular context of mathematics 

in service courses, especially for biology students.   

The relationships between biology and mathematics have been studied extensively 

(Lange, 2000) because they are quite complex and important. Biology has long been a 

mainly descriptive science and the recent development of new mathematical modelling 

tools has had an impact on this science by making it highly mathematical, especially 
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giving to it a predictive and decision-making role. Mathematical modelling and 

probabilities are widely used by biologists (Duran and Marshall, 2019).  

The good mastery by biology students of these mathematical contents is an objective 

of the biology studies at university. That's why general probability courses are designed 

for biology students from the early years of university to allow them to take courses in 

statistics or biostatistics in subsequent years. 

Several issues are raised by the teaching of mathematics at university for non-specialist 

students. The difficulties encountered by non-specialist students in mathematics 

courses would be an important factor in dropping out of their programmes. Previous 

works have evidenced that the lack of links between these mathematics courses and the 

future professional practices of these non-specialist students. This lack of links leads 

them to consider mathematics as too abstract, and to have difficulties to mobilize 

mathematical tools (González-Martin, Gueudet, Barquero & Romo-Vazquez, to 

appear). 

Concerning more precisely biology students, Viirman and Nardi (2018) highlighted 

that their involvement in mathematical modelling activities is a motivating factor in 

their learning of general mathematics courses. 

I have therefore chosen to focus my work on mathematical modelling aspects and in 

particular the use of probability trees. In order to expose my analyses in the fourth part, 

I will present in the following my theoretical framework.   

THEORETICAL FRAME  

In this research, I choose an institutional perspective and consider that secondary 

school and university are two different institutions. 

I use the Anthropological Theory of Didactics (ATD, Chevallard, 2006) and more 

particularly the concept of praxeology.  A praxeology consists of four elements: a type 

of task; a technique to accomplish this type of task; a technology which is a discourse 

explaining and justifying the technique; and a theory. The comparison of praxeologies 

in secondary school and at university is very useful because it allows me to highlight 

possible difficulties for students during this transition. For example, it is interesting to 

consider the technique produced by the student when it is not explicitly requested; or 

to look at the technology used- or not- by the student in his/her solution of an exercise. 

I also use Activity Theory and its adaptation to mathematics education (Vandebrouck, 

2008) to allow me to look more closely at the complexity in the student’s activity for a 

given task. I use here the notion of task as described in the Theory of Activity, i.e. 

referring to the object of the activity and its description. This theory has allowed me to 

highlight that the complexity, for a student, of linking a task proposed to a type of task 

is a feature of the secondary-tertiary transition. In my analyses below, I will give 

examples of this process. 



  

MATHEMATICAL MODELLING IN PROBABILITY  

I consider here the activity of mathematical modelling in general for the theme of 

probabilities (it can be the activity expected by the text of an exercise or the actual 

activity of students). This is what I call "mathematical modelling in probability". 

Usually it starts with a random situation described in natural language. It is then 

necessary to identify the events at stake, name them and determine their probabilities. 

According to the situation, the use of a probability tree can be relevant or not. 

Mathematical probability modelling mixes recognition activity (recognizing the task 

to be accomplished and linking it to a certain type of task for which a technique is 

known), changes of register (moving from natural language to probability formalism) 

and entanglements of techniques (I will illustrate this probabilistic modelling activity 

later on).  

I claim that associating concepts from the Activity Theory and the Anthropological 

Theory of Didactics contributes to a precise understanding of this mathematical 

modelling in probabilities and will illustrate it below. 

Based on the theoretical tools developed above, I present as follows my research 

questions: 

How do students build a probabilistic model for a situation from a biological context? 

How to describe these probabilistic modelling activities using praxeologies?  

METHODOLOGY OF THE RESEARCH  

My research takes place in France, in secondary school in a rural environment and in a 

middle-sized university. Mathematics courses are offered to biology students from the 

first year, including a course entirely devoted to probabilities (14 hours of lectures with 

about 300 students and 14 hours of tutorials, which are sessions dedicated to exercises 

in groups of 30 students).  

For this research, I was particularly interested in this course and attended two lectures 

and two tutorial sessions on the following probability topics: "independence and 

conditioning" and "continuous random variables". I also observed a class of Grade 12 

in the science section of the secondary school (called "scientific section") for seven 

one-hour sessions on these same probabilities’ themes.   

I chose these two probability themes because they are part of the Grade 12 curriculum 

and are taught again at the university for biology students. Probabilities are present in 

the secondary school curriculum (there are discrete random variables in the Grade 11 

curriculum, conditioning and independence in Grade 12 and continuous random 

variables in Grade 12 as well) (Ministère de l'Education Nationale, 2011). The 

probability course in biology at the university is quite general, it includes notions seen 

in secondary school (conditional probabilities and independence, discrete random 

variables, continuous random variables) but it also contains chapters devoted to new 



  

concepts (such as probabilistic model and probabilized space, independence of random 

variables, limit theorems and their applications, law approximation). 

I have chosen to study the secondary-tertiary transition through the chapter of discrete 

probabilities "independence and conditioning" common to both curricula. In a previous 

study (Doukhan & Gueudet, 2019), I have evidenced through textbooks analyses that 

the same probability content (discrete random variables in this study) can lead to very 

different praxeologies in secondary school and at university. Applying similar methods 

here (analysis of the resources collected during my observations, such as films of the 

course, course handouts and textbooks) evidenced the interest of a focus on modelling 

and probability trees.  

I designed a test and submitted it to secondary school students and to first-year biology 

students. This test (see Appendix) consists of three exercises on the theme 

"Independence and conditioning".  

The test was administered to all the students (29) from the class of Grade 12 observed, 

during the fifth session on the topic of "Independence and conditioning", students had 

half an hour to do the test. The test was also offered to first-year biology students prior 

to their probabilities course of the second semester, with 25 of them participating for a 

similar duration.  

I carried out a quantitative analysis of all the students’ productions, which allowed me 

to highlight first results concerning mathematical modelling in probability at the 

secondary-tertiary transition, I also analysed students’ answers. I have chosen here to 

focus only on the analysis of the second exercise, which reads as follows: "You are the 

director of the Minister's Office of Health. A disease is present in the population, in the 

proportion of one sick person out of 10,000. The manager of a major pharmaceutical 

company comes to you to tell you about his new screening test: if a person is sick, the 

test is positive at 99%; if a person is not sick, the test is negative at 98%. Do you 

authorize the marketing of this test?". This exercise is a classic application of the 

Bayes’ Theorem with an important modelling work left to the student: statement is in 

natural language, events to be identified, etc. (more details in the a priori analysis in 

the following section) 

I have chosen this exercise because it requires an important probabilistic modelling 

work, and then because is linked with a biology context.  

MAIN RESULTS 

A priori analysis   

I present here the a priori analysis of the second exercise of the test.  

The main types of tasks I have identified for this exercise are, first, to perform 

probabilistic modelling based on a natural language statement; second, to calculate a 

conditional probability; and finally, to interpret the numerical result in order to answer 

the question in natural language.  



  

Each of these types of tasks contains several subtypes of tasks with which particular 

techniques are associated. The difficulty of each subtype of task depends on the precise 

teaching context. In order to analyse how students will link tasks and types of tasks, I 

have to associate AT and ATD because an analysis in terms of ATD would be 

insufficient for my purpose, for this reason I also use task analyses developed in 

Activity Theory.  

The associated subtypes of tasks for the first type of task: "perform probabilistic 

modeling of a natural language statement", are as follows: identify probabilistic events, 

associate their probabilities to each of the events, identify contrary events and calculate 

their probabilities. All these types of tasks entirely within the scope of a probabilistic 

modelling activities as defined in a previous section. 

For the second type of task "calculate the probability of being sick knowing that the 

test is positive", the associated subtypes of tasks are as follows: interpret the question 

in terms of probability, calculate the corresponding conditional probability. 

The task is complex, as there are many subtypes of tasks for each of the task types 

identified above. In this exercise, identifying all these subtypes of tasks and organizing 

their reasoning are the student's responsibility. Here the combination of AT and ATD 

allows me to see how the complexity of the task impacts the praxeological organization 

and in particular the complexity of the technique to be implemented. 

The techniques associated with these types of tasks are as follows: identify the events 

involved, associate the numerical data of the statement with events, calculate the 

missing probabilities (use of the probability of the complementary), identify the 

probability that must be calculated in order to respond, calculate this probability (for 

this it is necessary to calculate an intersection and use the Bayes formula); finally, 

interpret the result. The technique of representing the situation by a probability tree is 

a technique expected in secondary school but is no longer part of the praxeology at 

university. Here is a representation of the situation by a tree: 

 

Table 1: probability tree 



  

Here are some technological elements that justify the choice of the probability to be 

calculated, PT(M). What I am interested in here is whether the test is effective from the 

point of view of a caregiver. A patient comes for a test to find out if he/ she is sick or 

not. If his/her test is positive (respectively negative), it is important to know if he is 

really sick (respectively not sick), i.e. if the test is reliable. The test is reliable if the 

probability, knowing that the test is positive, that a person is indeed sick, is  close to 1. 

The goal is therefore to calculate PT(M), for this it is necessary to calculate an 

intersection and use the Bayes formula, their uses can be justified by the associated 

theory or by the use of a probability tree. These technological elements go beyond 

mathematics, the fact of calculating PT(M) is entirely at the students' expense and is 

based on technological elements linked with a socio-medical context.   

The context of the exercise, which is the study of the effectiveness of tests on sick and 

non-ill populations, is rather a context that is familiar to students. Indeed, there are 

many exercises in this context in secondary school textbooks. In this exercise they have 

to interpret the question by proposing the probability of an event themselves, then 

interpreting the numerical result obtained. In secondary school textbooks it is rather 

common to have in the first question "calculate the probability of such an event" and 

in the second question "interpret the result". Here, therefore, calculating PT(M) requires 

an important initiative from the student.  

The techniques to be used by the students are all based on knowledge being acquired 

and already applied in other situations encountered in secondary school. On the other 

hand, recognizing this complex praxeological structure and organizing oneself 

accordingly is entirely at the student's expense because there is no intermediate 

subquestion associated with each of the subtypes of tasks described above. The very 

strong modelling activity left to the student is not something usual for them, so I expect 

to find difficulties for this exercise in the a posteriori analysis.  

A posteriori analysis 

I present here the a posteriori analysis of the second exercise of the test.  

This exercise was tackled by 91% (49 students) of the students who answered the test 

(54 students). Both Grade 12 students and biology students encountered a lot of 

difficulties and proposed erroneous solutions. I expected these results from my a priori 

analysis above. The diversity of responses is very high, the probability most often 

calculated by Grade 12 students is P(M and T) (5 responses); there is no dominant 

answer among biology students. An example is presented in Figure 2. 

 

 

 



  

Figure 2: Example of a student’s production. “The probability that the test goes wrong 

is of 0.019, meaning 19%. We do not authorize the test” 

Even if the students did not answer correctly many of them have correctly identified 

the events at stake (32 of them, or about 65%). A slightly fewer amount  of them 

represent the situation with a probability tree (26 of them, or about 53%). On the other 

hand, all the students who chose to represent the situation by a tree correctly identified 

the numerical values of the statement with the corresponding events and correctly 

calculated the probabilities of the complementary events. Considering here that 

correctly modelling the situation means identifying all the events at stake and 

associating their probabilities to them; therefore, in this exercise, only half of the 

students who responded did a correct modelling of the situation. 

Concerning the interpretation of the question and the answer given by the students, 41 

of them (or about 84%) have formulated a response in natural language. Of these, 17 

relied on their previous probability calculations to answer. In contrast, 8 students 

answered the question in natural language based solely on their representation of the 

situation through a probability tree. Sixteen of them (about 33%), 10 Grade 12 students 

and 6 biology students answered the question without having previously made any 

probability calculations or probabilistic modelling (like probability tree). These 

students were unable to identify in the task prescribed to them the different subtypes 

of tasks to be performed. Here is an example of such a response:  

"No, because the margin of error is enormous for a population of 10,000. Out of 10000 

there could be 200 people who are reported as sick when not at all. This is related to the 

98%. If the disease was 1 in 100 people, it would have been more interesting." 



  

More specifically, with regard to probabilistic modelling activities, students highly use 

probability trees in this exercise while there is  no indication anywhere in the statement 

that a tree could be used to answer as can be seen on the student copy excerpt (see 

"table2"). This is an important observation which is linked with a secondary-tertiary 

transition issue.  

Indeed, since secondary school, students have become accustomed to use this type of 

representation. The construction and use of a probability tree are skills that are widely 

developed in the official mathematics curriculum of the Grade 12 class (Ministère de 

l'Education Nationale, 2011). 

Probability trees also play a very important role in the Grade 12 course I observed, the 

outline of the course handout distributed by the teacher for the chapter "Conditional 

Probabilities", consists of three main parts: "Conditional Probabilities", "Probability 

Trees" and "Independence of Two Events". The rules for building the tree are detailed 

with technological elements, here is an example: "Rule 3 (total probability formula): 

the probability of an event is equal to the sum of the probabilities of each of the paths 

leading to it". Moreover, the official Grade 12 mathematics curriculum states that: "a 

properly constructed probability tree is a proof", which is no longer conceivable at the 

university. 

CONCLUSION 

I have seen through the analysis of students’ answers of this exercise that probabilistic 

modelling is an important issue in the secondary-tertiary transition.  

First, it should be noted that students seem to have appropriated the use of probability 

trees. Indeed, through the analysis of this exercise and the two other exercises of the 

test that I have not developed here, I saw that the use of trees allowed students to 

respond better afterwards. The non-use of probability trees at university in appropriate 

situations could therefore prove to be one of the causes of the difficulty of students in 

the secondary-tertiary transition.   

Through this example of exercise, I have seen that the recognition of the task by 

students as part of a succession of types of tasks is complex and not always immediate.  

Here are the two main results that I can draw from this analysis. First, during the 

secondary-tertiary transition, the greater the complexity of linking the task to a type of 

task, the more difficult it is for students. 

Second, the probabilistic interpretation of natural language statements poses 

difficulties for students, in particular when it comes to identifying the events at stake. 

In my future research, I will design and evaluate a teaching aiming to overcome these 

difficulties.  
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Appendix: English version of the test given to the students 

 

 


