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Abstract

The goal of this paper is to provide an algorithm that, for any sufficiently localised, divergence-
free small initial data, explicitly constructs a localised external force leading to a rapidly dissipative
solutions of the Navier–Stokes equations Rn: namely, the energy decay rate of the flow will be
forced to satisfy ‖u(t)‖22 = o(t−(n+2)/2) as t → ∞, which is beyond the usual optimal rate. An
important feature of our construction is that this force can always be taken compactly supported
in space-time, and its profile arbitrarily prescribed up to a spatial rescaling. Since the forcing term
vanishes after a finite time interval, our result suggests that nontrivial interactions between the linear
and nonlinear parts occur, annihilating all the slowly decaying terms contained in Miyakawa and
Schonbek’s asymptotic profiles.
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1 Introduction

Let n ≥ 2. We consider the incompressible Navier-Stokes equations in Rn:

(N-S)


∂tu−∆u+ u · ∇u+∇π = ∇ · f in Rn × (0,∞),

div u = 0 in Rn × (0,∞),

u(·, 0) = a in Rn,

where u = u(x, t) =
(
u1(x, t), . . . , un(x, t)

)
and π = π(x, t) denote the unknown velocity and the pressure

of the fluid at (x, t) ∈ Rn × (0,∞), respectively, while, f = f(x, t) =
(
fk`(x, t)

)
k,`=1,...,n

denotes the

external forcing tensor and a = a(x) =
(
a1(x), . . . , an(x)

)
denotes the given initial data.

Starting with the celebrated work of Leray [9], the time decay problem has been a major issue in the
mathematical study of fluid flows. Masuda [10], Schonbek [15], Kajikiya and Miyakawa [7] and Wiegner
[17], for instance, obtained pioneering contributions in this direction. Their results imply that, in the
absence of external forcing, the optimal decay rate for a weak solution is

(1.1) ‖u(t)‖2 ≤ C(1 + t)−
n+2
4 , t > 0,

for initial data a in L2
σ(Rn) under suitable additional conditions. To this purpose, the moment condition∫

Rn(1 + |x|)|a(x)| dx < ∞, for example, would be enough. Subsequently, Fujigaki-Miyakawa [5] clarified
that the decay rate in the right-hand side of (1.1) actually describes the decay rate of the nonlinear terms.
Indeed, they derived the asymptotic expansion of the linear part and of the nonlinear part as follows

lim
t→∞

t
1
2 + n

2 (1− 1
q )

∥∥∥∥∥∥uj(t) +

n∑
k=1

(∂kEt)(·)
∫
Rn

ykaj(y) dy +

n∑
`,k=1

F`k,j(·, t)
∫ ∞

0

∫
Rn

(u`uk)(y, s) dy ds

∥∥∥∥∥∥
q

= 0,
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for all j = 1, . . . , n and for all 1 ≤ q ≤ ∞, where Et(x) = (4πt)−n/2 exp
(
− |x|

2

4t

)
is the heat kernel and

F`k,j(x, t) = ∂`Et(x)δjk +

∫ ∞
t

∂`∂k∂jEs(x) ds,

where δjk is the Kronecker symbol.
Miyakawa and Schonbek [13] deduced from the above asymptotic profile necessary and sufficient

conditions ensuring that the flow is rapidly dissipative, in the sense that

lim
t→∞

t
1
2 + n

2 (1− 1
q ) ‖u(t)‖q = 0, 1 ≤ q ≤ ∞.

For initial data with finite moments up to the first order, these conditions read

(1.2a)

∫
Rn

ykaj(y) dy = 0 for j, k = 1, . . . , n,

and

(1.2b) ∃ c ∈ R such that

∫ ∞
0

∫
Rn

(uku`)(y, s) dy ds = c δk` for k, ` = 1, . . . , n.

Condition (1.2b) is difficult to check, as it requires information of the (unknown) flow over whole
space-time region. For this reason, it is usually not possible to predict whether or not a given flow
is rapidly dissipative. To overcome this difficulty, and to make evidence that condition (1.2b) is not
reduced to the identically zero solution, one could restrict the problem to flows invariant under the action
of suitable symmetry groups. For example, in 2D one could consider flows with radial vorticity, but this
idea is no longer effective in 3D because of topological obstructions. The first author, to circumvent this
difficulty, considered to this purpose cyclically symmetry of the flow, i.e.,

(a) uj(·, t) is odd in xj and even in each other variables,

(b) u1(x1, . . . , xn, t) = u2(xn, x1, . . . , xn−1, t) = · · · = un(x2, . . . , xn, x1, t).

These conditions are easier to check, as they are preserved during the evolution (for the unique strong
solution, if this is known to exist, but also for any Leray solutions constructed so far) if they are satisfied
for the initial data. In the class of flows satisfying (a) and (b), the first author [1], Miyakawa [11, 12]
made evidence of the existence of rapidly dissipative solutions. They also observed that the faster decay
of these solutions agrees with the rate of the second-order, or of the third order terms, in the asymptotic
expansion of the flow. Later, the second author and Tsutsui [14] gave a generalization of [2], [11, 12] with
weighted Hardy spaces. More general group actions were discussed by the first author [3].

However, symmetry conditions, like (a) and (b), look somewhat artificial. In particular, these sym-
metric flows are non-stable in the class of generic flows: to make them physically realistic, an additional
control f(x, t) acting in the whole time interval (0,+∞) should be required: it is therefore a natural
problem to see how a generic flow (featuring no special symmetry) could evolve into a rapidly dissipative
flow during the evolution, thanks to some other process, implying the annihilation of the slowly decaying
terms of its asymptotic profiles. The purpose of this paper is to address this issue.

As mentioned above, the essential difficulty will be the verification of (1.2b). Instead of the cyclic
symmetry, for any initial velocity which is small in a suitable sense, we construct an associated external
force and a rapidly dissipative solution of the forced Navier-Stokes equations.

This approach not only looks mathematically natural, but also realistic in physics or engineering, as
the flow will be forced to slow down in the large time at faster rates, through the introduction of a ad
hoc forcing term, depending on the given initial state, that will act only on a bounded region and over a
finite time interval, that can be taken arbitrarily short.

For a given initial velocity field a, our strategy will be to provide an algorithm, leading in the limit
to the construction of a force of divergence form ∇ · f , compactly supported in space-time, so that, for
j = 1, . . . , n,

(1.3)

∫ t

0

[e(t−s)∆P∇ · f ]j(s) ds ∼
n∑

k,`=1

F`k,j(·, t)
∫ ∞

0

∫
Rn

(u`uk)(y, s) dy ds for large t > 0.
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This force will counterbalance the slowly decaying nonlinear terms appearing in Fujigaki and Miyakawa’s
asympotic profile. Here P is the Leray-Hopf (also called after Weyl-Helmholtz or Fujita-Kato) projection
onto solenoidal vectors. For the realization of (1.3), we introduce the following computable procedure:

(1.4) u(m)(t) = et∆a+

∫ t

0

e(t−s)∆P∇ · f (m)(s) ds−
∫ t

0

e(t−s)∆P∇ · (u(m)⊗ u(m))(s) ds m = 1, 2, . . . .

Here, the forcing tensor f (m) = (f
(m)
k` ) is given by f (0) ≡ 0 and

(1.5) f
(m)
k` (x, t) =

{
c
(m−1)
k` φ(x, t), k 6= `,

(c
(m−1)
kk − c̄(m−1))φ(x, t), k = `,

for some function φ ∈ C∞0 (Rn × [0,∞)), where c
(m)
k` =

∫∞
0

∫
Rn(u

(m)
k u

(m)
` )(y, s) dy ds and c̄(m) = c

(m)
11 +

· · · + c
(m)
nn . We note that since we are able to take φ compactly supported in both space and time, in

order to control the flow, it is enough that the force is applied to finite time and bounded space region.
Remarkably, as we will see, the profile φ can be prescribed in an essentially arbitrary way.

For our approach to be effective, it will be crucial to derive a bound K, independent of m, such that

(1.6) |c(m)
k` | =

∣∣∣∣∫ ∞
0

∫
Rn

(u
(m)
k u

(m)
` )(y, s) dy ds

∣∣∣∣ ≤ ∫ ∞
0

‖u(m)(s)‖22 ds ≤ K.

Condition (1.6) would follow from suitable L2-decay estimates. A natural idea would consist in relying
on a Fourier splitting technique to get estimates for the L2-norm of u(m), with the needed rate. See
[15, 7, 17]. But in our context, the Fourier splitting method seems to have a slight drawback: in decay
estimates like (1.1), the constant C appearing in the right-hand side depends not only on the size of the
data, but also, in a quite complicated way, on the shape of the data and of the force. This is a serious
issue, as in our case we have to deal with a recursively defined sequence of forces: all the constants in L2

decay estimates a priori depend on m and this makes estimate (1.6) not so straightforward.
On the other hand, one could also apply a Fujita-Kato method, see Fujita and Kato [6] and Kato

[8]. In this case the difficulty is that the size of f (m), i.e., of the coefficients c
(m−1)
k` has a priori an

influence on the lifetime of the mild solutions u(m), so an important technical issue arises: to prove that
the recursively defined solutions u(m) are indeed global in time, for all natural integer m.

Due to the above difficulties, we need to develop an alternative approach and to establish time decay
estimates, as in (1.1), by carefully making explicit how the constants depend on the given data a, on φ
and on the dimension n. For this purpose, weighted Hardy spaces would be an effective tool. Indeed,
the second author and Tsutsui [14] introduced weighted Hardy spaces to derive higher order asymptotic
expansions: weighted Hardy spaces enable us to deal with higher order weights and to obtain more rapid
decay compared with the weighted Lebesgue spaces. With the aid of the weighted Hardy norm, we
could make a specific refinement of the Fujita-Kato iteration scheme, first giving bounds as in (1.6), next
ensuring the convergence of our procedure (1.4) toward an external force f and to a rapidly dissipative
solution u.

In this paper, however, we will adopt an alternative strategy: this will consist in the systematic
derivation of quantified scale-invariant decay estimates for the L2-norm of the solution. Let us illustrate
what we mean by a specific example: in the case n = 3, for well localised initial data a such that ‖a‖3 << 1
and in the case f ≡ 0, we will derive the estimate

(1.7) ‖u(t)‖2 ≤ min
{
‖a‖2 , cK(a)t−5/4

}
where c is an absolute constant and

K(a) =
∫
R3 |x| |a(x)|dx+ ‖a‖1/21 ‖a‖2

(∫
R3 |x| |a(x)|dx

)1/2

+ ‖a‖24/3‖a‖2.

Estimate (1.7) is what we call the “quantified scale-invariant” version of classical Wiegner’s estimate,
‖u(t)‖2 ≤ C(1+ t)−5/4. Its crucial advantage is that the dependence of the constant C on the initial data
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is made completely explicit. Notice that the three terms defining K(a) rescale in the same way, so (1.7)
is indeed scale-invariant. Uniform bounds of the form (1.6) will rely on such type of estimates.

This paper is organised as follows. We state our main result, Theorem 2.3, in Section 2. In Section 3
we recall some classical estimates. Section 4 is entirely devoted to the proof of our main result. We begin
in Subsection 4.1 with considering the case of a vanishing force f (0) = 0, and we present a slight refinement
of Fujita-Kato scheme, with the purpose of putting in evidence the dependance of all constants appearing
in the fixed point argument. Here we also establish a class of quantified scale invariant estimates, in
the same spirit as (1.7). In Subsection 4.2, we introduce the sequence of external tensors {f (m)} and
we construct the associated solutions u(m)(t) of (N-S), m = 0, 1, 2, . . . , of (1.4). The main step of this
section is the conclusion that these solutions u(m) are all global in time, under appropriate smallness
conditions on the data and that all the relevant estimates are independent on m. Finally, we complete
the proof of Theorem 2.3 by proving the convergence of u(m) and of f (m) and the decay estimate for the
limit solution.

2 The main result

Our starting point will be the following result of Fujigaki and Miyakawa [5].

Theorem 2.1. Let a ∈ L1(Rn) ∩ Lnσ(Rn) with
∫
Rn |x||a(x)| dx <∞ and f ∈ C∞c

(
Rn × [0,∞)

)
. Suppose

u ∈ BC
(
[0,∞);Lnσ(Rn)

)
is a global mild solution of (N-S). If n ≥ 5, assume also that lim inf

t→∞
‖u(t)‖n is

sufficiently small. Then it holds that

lim
t→∞

t
1
2 + n

2 (1− 1
q )
∥∥∥uj(t) +

n∑
k=1

(∂kEt)(·)
∫
Rn

ykaj(y) dy

−
n∑

k,`=1

F`k,j(·, t)
∫ ∞

0

∫
Rn

fk`(y, s) dy ds+

n∑
k,`=1

F`k,j(·, t)
∫ ∞

0

∫
Rn

(u`uk)(y, s) dy ds
∥∥∥
q

= 0

for 1 ≤ q ≤ ∞.

Though [5] dealt with only the case f ≡ 0, the proof is essentially same. The derivation of the leading
order term for the Duhamel term of f is just analogue to that for the nonlinear term. We omit the proof.
As an immediate consequence from Miyakawa and Schonbek [13], the condition associated with (1.2b) is
modified as follows:

Corollary 2.2. Let a, f and u be as in Theorem 2.1. It holds that,

lim
t→∞

t
1
2 + n

2 (1− 1
q )‖u(t)− et∆a‖q = 0, (1 ≤ q ≤ ∞)

if and only if there exists c ∈ R such that

(2.1)

∫ ∞
0

∫
Rn

fk`(y, s) dy ds−
∫ ∞

0

∫
Rn

(u`uk)(y, s) dy ds = c δk` (k, ` = 1, . . . , n).

Moreover,

lim
t→∞

t
1
2 + n

2 (1− 1
q )‖u(t)‖q = 0 (1 ≤ q ≤ ∞)

if and only if condition (2.1) holds and also
∫
Rn yka(y) dy = 0 for all k = 1, . . . , n.

Furthermore, if (2.1) does not hold, or if at least one of the first-order moments of a does not vanish,

then lim inf
t→∞

t
1
2 + n

2 (1− 1
q )‖u(t)‖q > 0 for 1 ≤ q ≤ ∞.

Remark 2.1. We note that if∫ ∞
0

∫
Rn

fk`(y, s) dy ds 6=
∫ ∞

0

∫
Rn

f`k(y, s) dy ds for some k and `,
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then the condition (2.1) does not hold. Hence, if the tensor f is not symmetric in the above sense, one
cannot expect rapid time decay, no matter how fast f decays at spatial infinity and time infinity. In this
case, by the last assertion of the corollary, we have

lim inf
t→∞

t
1
2 + n

2 (1− 1
q )‖u(t)‖q > 0, 1 ≤ q ≤ ∞.

Corollary 2.2 is the natural generalisation of [13], when an external force acts on the flow. It will be
our tool to show how to control the large time decay of the flow (obtaining rapidly dissipative solutions)
by forcing the fluid only during a short time interval. We now state our main result.

Theorem 2.3.

(i) Let n ≥ 2. There exists δ = δ(n) > 0 with the following property. If a ∈ Lnσ(Rn) satisfies∫
Rn(1 + |x|)|a(x)|dx <∞ and the smallness condition

(S) ‖a‖n ≤ δ,

then there exists a forcing term of divergence form ∇ · f , with compact support in space-time,
f ∈ C∞c

(
Rn × [0,∞)

)
, such that the unique global solution of the Navier–Stokes equations (N-S)

satisfies

lim
t→∞

t
1
2 + n

2 (1− 1
q )
∥∥u(t)− et∆a

∥∥
q

= 0, 1 ≤ q ≤ ∞.

In particular, if the n first-order moments of a all vanish, then u is rapidly dissipative:

(2.2) lim
t→∞

t
1
2 + n

2 (1− 1
q ) ‖u(t)‖q = 0, 1 ≤ q ≤ ∞.

(ii) Moreover, the shape of the above forcing term can be arbitrarily prescribed, in the following sense:
for any compactly supported scalar function Ψ ∈ L∞c (Rn × R+), such that

∫∞
0

∫
Rn Ψ(y, s) dy ds 6= 0,

there exist R > 0 and coefficients λ`k ∈ R such that, in Item (i), the forcing tensor f = (f`k) can
be taken of the form

f`k = λ`k Ψ(·/R, t), (`, k = 1, . . . , n).

Remark 2.2. From the second assertion, it follows that one can force the flow to have a fast decay in
large time, by acting with an external force in a bounded region, during a time interval that can be taken
arbitrarily short.

Let us discuss the case of an initial data with first order vanishing moments, and let us apply a
forcing term to the flow, as described by our theorem. We thus get a rapidly dissipative flow. Moreover,
in Theorem 2.3, since f identically vanishes after a finite time interval, the solution eventually behaves
like a non-forced Navier–Stokes flow. More precisely, after some time t > t0, the flow is governed by

u(t) = e(t−t0)∆u(t0)−
∫ t

t0

e(t−s)∆P∇ · (u⊗ u)(s) ds, t > t0.

This does not mean that the effect of the force disappears for t > t0, as the new initial data u(t0) does
depend on the past action of f during the interval [0, t0].

So, due to the result of [13], we have two possibilities.

i) The first possible scenario is that the moment condition for u(t) breaks down at some times t1 ≥ t0,
i.e.,

∫
Rn(1 + |x|)|u(x, t1)|dx = ∞. At those time instants t1, the linear part t 7→ et∆u(t1) and the

nonlinear part t 7→
∫ t
t1
e(t−s)∆P∇ · (u⊗ u) ds, individually, may both decay slowly, but they feature

a nontrivial interaction annihilating the slowly decay terms, thus leading to a fast decay of solution
of the free Navier–Stokes equations starting from u(t1).
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ii) The second possible scenario is that the finiteness of first order moment of u(t) is preserved, i.e.,∫
Rn(1 + |x|)|u(x, t)|dx <∞ for all t ≥ t0. In this case, a much stronger condition than (1.2b) must

be true, namely:∫
Rn

(u`uk)(x, t) dx = 0 for k 6= `, and

∫
Rn

u1(x, t)2 dx = . . . =

∫
Rn

un(x, t)2 dx, for all t ≥ t0.

(See [1]). This second scenario looks non-generic as it contrasts with the general spatial spreading
phenomenon of the velocity field: the only known examples of flows satisfying the above orthogo-
nality relations are those constructed putting symmetries as in [1, 2, 12].

Let us stress the fact that, if one allows non-compactly supported external forces (not necessarily of
divergence form), then it would be a trivial task to achieve the goal of forcing the flow to be rapidly
dissipative, as in (2.2) (or even to bring it to rest in finite time). Indeed one could just first define any
divergence-free vector field v(x, t) which is equal to a(x) as t = 0 and equal to 0 for t ≥ t0, next define
the force to be the residual of the Navier–Stokes operator. But of course, such a force would be spread
out in the whole space because of the nonlocal nature of the pressure.

3 Notations and preliminary estimates

Let us introduce some notations and function spaces. Let C∞c (Ω) denote the set of all C∞-functions (or
vectors) with compact support in a connected set Ω. Let C∞c,σ(Rn) denote the set of all C∞-solenoidal
vectors ϕ with compact support in Rn, i.e., divϕ = 0 in Rn. The space Lrσ(Rn) is the closure of C∞c,σ(Rn)
with respect to the Lr-norm ‖ · ‖r, 1 < r < ∞; Lr(Rn) denote the usual (vector-valued) Lebesgue
space over Rn. Moreover, C(I;X), BC(I;X) and Lr(I;X) denote the X-valued continuous and bounded
continuous functions over the interval I ⊂ R, and X-valued Lr-functions, respectively.

In the estimates of this paper, we will mainly compare functions of the time variable. When we write

A(t) . B(t)

we mean that there exists a constant c > 0, only depending on the space dimension n, such that A(t) ≤
cB(t) for all t. In particular, when the functions A and B depend on other parameters (such as the initial
data a, the recursive parameter m, etc.), the constant c will be independent on these parameters.

When the constants in our estimates depend on parameters other than the space dimension (as in (3.1)
below), we will indicate this fact explicitly in our notations.

We start recalling some well-known Lp-Lq estimates, that play an important role through this paper.

Proposition 3.1. Let 1 ≤ p ≤ q ≤ ∞. Then there exists a constant Cq,p > 0 such that

‖et∆a‖q ≤ Cq,pt−
n
2 ( 1

p−
1
q )‖a‖p, t > 0,(3.1)

‖∇et∆a‖q ≤ Cq,pt−
n
2 ( 1

p−
1
q )− 1

2 ‖a‖p, t > 0(3.2)

for a function, velocity vector or tensor a ∈ Lp(Rn).

The proof of (3.1) and (3.2) are immediately derived from the Young inequality for the heat kernel
and a. For the Stokes semigroup on Lpσ(Rn), we exclude the case (p, q) = (∞,∞) and (p, q) = (1, 1). See,
for instance, [8], [16, Corollary 1.1].

We also recall a well known variant of the previous estimates, that we will use often for the L2-norm:

Lemma 3.1. If a ∈ L1(Rn) with
∫
Rn |x| |a(x)|dx <∞ and div a = 0, then

‖et∆a‖2 .
(∫

Rn |x||a(x)|dx
)
t−(n+2)/4.

For the proof, see [4]. We give a proof below for reader’s convenience:
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Proof. Since a ∈ L1(Rn) and div a = 0, we note that
∫
Rn a(y) dy = 0. Hence, we easily obtain

et∆a(x) =

∫
Rn

Et(x− y)a(y) dy =

∫
Rn

(
Et(x− y)− Et(x)

)
a(y) dy

= −
∫
Rn

∫ 1

0

∇Et(x− θy) · ya(y) dθ dy.

Then the Minkovski inequality (for integrals) implies that

‖et∆a‖2 ≤
∫
Rn

∫ 1

0

|y| |a(y)|
[∫

Rn

|∇Et(x− θy)|2 dx

]1/2

dθ dy = ‖∇Et‖2
∫
Rn

|y| |a(y)|dy.

Since ‖∇Et‖2 = t−
n+2
4 ‖∇E1‖2, the proof is completed.

For 1 < r < ∞, the Leray projection P : Lr(Rn) → Lrσ(Rn) satisfies ‖Pu‖r ≤ Ar‖u‖r for all
u ∈ Lr(Rn) with some constant Ar > 0.

We consider the integral formulation of (N-S), that can be written in the abstract form

(3.3) u(t) = et∆a+

∫ t

0

e(t−s)∆P∇ · f(s) ds+G(u, u)(s), ∇ · a = 0,

where

(3.4) G(u, v) = −
∫ t

0

e(t−s)∆P∇ · (u⊗ v)(s) ds.

We will systematically glue together the heat kernel, the Leray projector and the divergence operator,
obtaining in this way the convolution operator et∆Pdiv. The kernel of this operator is denoted by F . Its
components are given by F`k,j(x, t) = ∂`Et(x)δjk +

∫∞
t
∂`∂k∂jEs(x) ds, for `, k, j = 1, . . . , n. Such kernel

satisfies F ∈ C∞(Rn × (0,∞)) and the scaling relations F (x, t) = t−(n+1)/2F (x/
√
t, 1). Moreover, for all

t > 0,

(3.5) ‖F (·, t)‖p = cp t
−(n+1)/2+n/(2p), 1 ≤ p ≤ ∞,

for some constant cp > 0 depending only on n and p. See [5].

4 Proof of Theorem 2.3

4.1 The case of a vanishing external force

Construction of the solution of the free Navier–Stokes equations. In this paragraph we quickly
present a sightly simplified version of Kato’s method for the construction of mild solutions in Ln(Rn).
Let us make use of Kato’s space, defined for n ≤ p ≤ ∞ by,

Xp =
{
v ∈ L∞loc

(
R+;Lp(Rn)

)
: ‖v‖Xp = ess sup

t>0
t
1
2−

n
2p ‖v(t)‖p <∞

}
.

From now on we will abusively write supt>0 instead of ess supt>0 to simplify our notations. Notice that
Xn = L∞(R+;Ln(Rn)). By the standard heat-kernel estimate (3.1),

(4.1) ‖et∆a‖Xp
≤ Cp,n‖a‖n n ≤ p ≤ ∞.

It easily follows from (3.5) and the usual Hölder and Young estimates that

(4.2) ‖G(u, v)‖Xr
≤ κr,p‖u‖Xp

‖v‖Xp
, 1

r ≤
2
p <

1
n + 1

r , n < p <∞, n ≤ r ≤ ∞,

for some constant κr,p depending only on p, r and n. In particular, choosing, e.g., p = r = 2n in (4.2),

(4.3) ‖G(u, v)‖X2n
≤ κ2n,2n‖u‖X2n

‖v‖X2n
.
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On the other hand, by the usual heat-kernel estimate

‖et∆a‖X2n ≤ C2n,n‖a‖n.

In this subsection we just consider (N-S) in the case f ≡ 0. In this case, by an appropriate choice of
δ > 0, namely, choosing

(D1) 0 < δ < 1/(4C2n,nκ2n,2n),

from the smallness assumption (S) we can ensure that

(4.4) ‖a‖n < 1/(4C2n,nκ2n,2n).

So the usual fixed point Lemma, applied to the equation u = et∆a + G(u, u) in the space X2n, implies
that a mild solution u ∈ X2n to (N-S) (with identically zero external force) does exist. Moreover,

‖u‖X2n
≤ 2C2n,n‖a‖n . ‖a‖n

and this condition uniquely defines u. Such solution is obtained as the limit, in the X2n-norm, of the
sequence of approximate solutions

(4.5) uk+1 = et∆a+G(uk, uk), k ∈ N, with u0 = et∆a.

Here are some further estimates on u, that directly follow from the equation

u = et∆a+G(u, u)

and the application of (4.1) and (4.2) with different choice of the parameters (we also use (4.4) for the
right inequalities below):

‖u‖Xn ≤ Cn,n‖a‖n + κn,2n‖u‖2X2n
. ‖a‖n,

‖u‖X3n
≤ C3n,n‖a‖n + κ3n,2n‖u‖2X2n

. ‖a‖n,
‖u‖X∞ ≤ C∞,n‖a‖n + κ∞,3n‖u‖2X3n

. ‖a‖n.
(4.6)

In particular, as all previous norms are finite,

u ∈ Xn ∩X∞.

First quantified L2-decay estimates. The goal of this and next paragraph is to provide some quan-
tified versions of L2-decay rate estimates. At the end of next paragraph we will be able to quantify
Wiegner’s fundamental estimate (1.1). More precisely, our goal will be to make explicit how the constant
C, in the right-hand side of the optimal decay result

‖u(t)‖2 ≤ C(1 + t)−(n+2)/4,

depends on a. In fact, we will do more than this. A drawback of the above estimate is that it is not
scale-invariant under the usual scaling a 7→ λa(λ·) and u 7→ λu(λ·, λ2·). A better way of estimating the
L2-norm, respecting the natural scaling of the Navier–Stokes equations, would be to look for an estimate
of the form

(4.7) ‖u(t)‖2 ≤ ‖a‖2 ∧K(a)t−(n+2)/4

(the wedge symbol stands for the minimum), for some functional K = K(a), independent on t, and
satisfying the scaling relations

(4.8) K(a) = λnK
(
λ a(λ·)

)
, for all λ > 0.

We will achieve this at the end of next paragraph, by making explicit the expression of K(a).
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We start with estimating the L2-norm of the approximate solutions uk defined in (4.5). We have
‖u0(t)‖2 ≤ ‖a‖2. Next, applying (3.5) with p = 1, and using that a ∈ L1(Rn) ∩ Ln(Rn) ⊂ L2(Rn), we
get, for k ∈ N,

‖uk+1(t)‖2 ≤ ‖a‖2 + c1

∫ t

0

(t− s)−1/2‖uk(s)‖2‖uk(s)‖∞ ds

≤ ‖a‖2 + πc1‖uk‖X∞ sup
s>0
‖uk(s)‖2.

But the approximate solutions uk satisfy the same estimates as (4.6), uniformly with respect to k ∈ N.
In particular, ‖uk‖X∞ . ‖a‖n. Hence, by our smallness condition (S) and appropriate choice of δ > 01,
we can ensure that

πc1‖uk‖X∞ ≤ 1/2 < 1

and, by iteration, that sup
t>0
‖uk(t)‖2 ≤ 2‖a‖2 for all k ∈ N. So, by Fatou’s Lemma,

(4.9) sup
t>0
‖u(t)‖2 ≤ 2‖a‖2.

(Notice that this argument does not require the use of the energy inequality. One could remove the
factor 2 by using the energy inequality. In the sequel, throughout the paper, we will avoid the use of the
energy inequality to make evidence that Theorem 2.3 remains true for simpler toy models that share the
same scaling as Navier–Stokes.)

Let us go further with L2-decay estimates. To start with, we begin by obtaining the quantified
version of the (non-optimal) decay ‖u(t)‖2 = O(t−3/8). We have, by interpolation, a ∈ L4n/(3+2n)(Rn) ⊂
L1(Rn) ∩ L2(Rn). Moreover, ‖u0(t)‖2 . ‖a‖4n/(3+2n)t

−3/8. For k ∈ N we have,

‖uk+1(t)‖2 ≤ ‖u0(t)‖2 + c1

∫ t

0

(t− s)−1/2‖uk(s)‖2‖uk(s)‖∞ ds

. ‖u0(t)‖2 + c1

∫ t

0

(t− s)−1/2s−7/8 ds ‖uk‖X∞ sup
s>0

s3/8‖uk(s)‖2

. t−3/8
(
‖a‖4n/(3+2n) + ‖a‖n sup

s>0
s3/8‖uk(s)‖2

)
.

(4.10)

With an appropriate choice of δ > 0, (D3), by (S), iterating the above estimate we obtain

(4.11) sup
k∈N,t>0

t3/8‖uk(t)‖2 . ‖a‖4n/(3+2n).

Hence,

sup
t>0

t3/8‖u(t)‖2 . ‖a‖4n/(3+2n).(4.12)

Next we establish the quantified version of the improved, but still non-optimal, decay ‖u(t)‖2 =
O(t−(n+1)/4). Combining the standard estimate ‖et∆a‖2 . t−n/4‖a‖1 with Lemma 3.1, we get the
estimate

(4.13) sup
t>0

t(n+1)/4‖et∆a‖2 . ‖a‖1/21

(∫
Rn |x| |a(x)|dx

)1/2

.

1This requires to replace our previous condition (D1) on δ by a more restrictive condition of the form

(D2) 0 < δ < δ2,

where δ2 is not made explicit for sake of conciseness. In fact, in the subsequent steps of the proof, we will need to further
strengthen condition (D2) by more restrictive ones:

0 < δ < δ3 (cf. (4.11) below),(D3)

. . .

0 < δ < δ9 (cf. the end of the proof of Lemma 4.1).(D9)

All these constants δ2, . . . , δ9 just depend on the space dimension.
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On the other hand, applying (3.5), (4.12), (4.13), and that ‖uk‖X∞ . ‖a‖n (see (4.6)), we get

‖uk+1(t)‖2 ≤ ‖u0(t)‖2 + c2

∫ t/2

0

(t− s)−(n+2)/4‖uk(s)‖22 ds+ c1

∫ t

t/2

(t− s)−1/2‖uk(s)‖2‖uk(s)‖∞ ds

. ‖u0(t)‖2 + ‖a‖24n/(3+2n)

∫ t/2

0

(t− s)−(n+2)/4s−3/4 ds+ ‖uk‖X∞

∫ t

t/2

(t− s)−1/2s−1/2‖uk(s)‖2 ds

. t−(n+1)/4

(
‖a‖1/21

(∫
Rn |x| |a(x)|dx

)1/2

+ ‖a‖24n/(3+2n) + ‖a‖n sup
s>0

s(n+1)/4‖uk(s)‖2
)
.

(4.14)

With an appropriate choice of δ > 0, (D4), by (S), iterating the above estimate and taking k → ∞ we
obtain

sup
t>0

t(n+1)/4‖u(t)‖2 . ‖a‖1/21

(∫
Rn |x| |a(x)|dx

)1/2

+ ‖a‖24n/(3+2n) =: J(a).(4.15)

Of course we also have, because of (4.9),

‖u(t)‖2 . ‖a‖2 ∧ J(a)t−(n+1)/4,(4.16)

where the notation α ∧ β stands for min{α, β}. The two terms defining J(a) rescale in the same way:
if λ > 0 and aλ = λ a(λ·), then we see that λn−1/2J(aλ) = J(a). This makes (4.16) a scale invariant
estimate.

Estimate (4.16) implies that u ∈ L2
(
R+;L2(Rn)

)
. More precisely, for any τ > 0,∫ ∞

0

‖u(s)‖22 ds .
∫ ∞

0

(
‖a‖22 ∧ J(a)2s−(n+1)/2

)
ds

≤
∫ τ

0

‖a‖22 ds+

∫ ∞
τ

J(a)2s−(n+1)/2 ds

. τ‖a‖22 + J(a)2τ−(n−1)/2.

Equalising the two last terms in the right-hand side leads to the choice τ = (J(a)/‖a‖2)4/(n+1). Then we
get the quantified scale-invariant L2

(
R+;L2(Rn)

)
estimate

(4.17)

∫ ∞
0

‖u(s)‖22 ds . J(a)4/(n+1)‖a‖2(n−1)/(n+1)
2 .

The optimal, scale invariant and quantified L2-decay estimate. We are now in the position of
obtaining the quantified version of the optimal decay ‖u(t)‖2 = O(t−(n+2)/4). Indeed, applying Lemma 3.1
we get ‖u0(t)‖2 . t−(n+2)/4

∫
Rn |x| |a(x)|dx. Moreover, by (4.16), (4.17), that by construction hold true

for the approximate solutions uk, uniformly with respect to k ∈ N, we obtain,

‖uk+1(t)‖2 ≤ ‖u0(t)‖2 + c2

∫ t/2

0

(t− s)−(n+2)/4‖uk(s)‖22 ds+ c1

∫ t

t/2

(t− s)−1/2‖uk(s)‖2‖uk(s)‖∞ ds

. ‖u0(t)‖2 + t−(n+2)/4

∫ ∞
0

‖uk(s)‖22 ds+ ‖uk‖X∞

∫ t

t/2

(t− s)−1/2s−1/2‖uk(s)‖2 ds

. t−(n+2)/4
(∫

Rn |x| |a(x)|dx+ J(a)4/(n+1)‖a‖2(n−1)/(n+1)
2 + ‖a‖n sup

s>0
s(n+2)/4‖uk(s)‖2

)
.

(4.18)

Once more, provided we make an appropriate choice of δ > 0, from the smallness condition (S) we obtain,
by iteration,

sup
t>0

t(n+2)/4‖u(t)‖2 .
∫
Rn |x| |a(x)|dx+ J(a)4/(n+1)‖a‖2(n−1)/(n+1)

2 =: K(a).
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This estimate, combined with (4.9) gives the quantified, scale-invariant, optimal estimate

(4.19) ‖u(t)‖2 . ‖a‖2 ∧K(a)t−(n+2)/4,

where

K(a) =
∫
Rn |x| |a(x)|dx+ J(a)4/(n+1)‖a‖2(n−1)/(n+1)

2

'
∫
Rn |x| |a(x)|dx+ ‖a‖2/(n+1)

1 ‖a‖2(n−1)/(n+1)
2

(∫
Rn |x| |a(x)|dx

)2/(n+1)

+ ‖a‖8/(n+1)
4n/(3+2n)‖a‖

2(n−1)/(n+1)
2

(4.20)

Observe that the functional K satisfies the scaling property (4.8). In 2D, K(a) can be rewritten as:

K(a) '
∫
Rn |x| |a(x)|dx+ ‖a‖2/32

(
‖a‖1

(∫
Rn |x| |a(x)|dx

)
+ ‖a‖48/7

)2/3

(n = 2).

4.2 The inductive procedure for the construction of {f (m)}m∈N and {u(m)}m∈N.

We now generalise the procedure of the previous subsection, by first recursively generating a sequence of
external forces f (m), next constructing the corresponding solutions u(m) of the Navier-Stokes equations:

(N-Sm) u(m)(t) = et∆a+

∫ t

0

e(t−s)∆P∇ · f (m)(s) ds−
∫ t

0

e(t−s)∆P∇ · (u(m) ⊗ u(m))(s) ds,

for m ∈ N by Fujita–Kato’s method.
First of all we set

f (0) ≡ 0,

so that u(0) is just the Navier-Stokes flow with vanishing external force constructed before. Next, let φ
be any compactly supported measurable function in Rn × [0,∞), such that

(4.21) φ ∈ L∞c (Rn × R+) and

∫ ∞
0

∫
Rn

φ(x, t) dx dt = 1.

Moreover, we set, for m ∈ N,

c
(m)
k` =

∫ ∞
0

∫
Rn

u
(m)
k u

(m)
` dy ds, k, ` = 1, . . . , n,

c̄(m) = c
(m)
11 + · · ·+ c(m)

nn ,

(4.22)

where u(m) = (u
(m)
1 , . . . , u

(m)
n ), and, for m = 1, 2 . . .,

(4.23) f
(m)
k` (x, t) =

{
c
(m−1)
k` φ(x, t) k 6= `,

(c
(m−1)
kk − c̄(m−1))φ(x, t) k = `.

Moreover, we denote

(4.24) I(m) =

∫ ∞
0

∫
Rn

|u(m)(x, s)|2 dxds.

At this stage, the definition of f (m), u(m) and I(m), for m ≥ 1, is only formal. For the solutions u(m) to
be well-defined and global-in-time (it is a priori not obvious that the lifetime of the solution of (N-Sm)
is indeed infinite), we need to ensure that the external force f (m) does satisfy an appropriate smallness
condition. We will specify this condition below, by prescribing an additional smallness condition on the
function φ. To make our definitions of f (m), u(m) and I(m) rigorous for all natural number m, we will
proceed by induction.
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Notice first that our estimates in the previous subsection imply

u(0) ∈ X2n and u(0) ∈ L2
(
R+;L2(Rn)

)
.

The latter ensures that I(0) < ∞, hence c
(0)
k` , c̄(0), and so f (1), are all well defined for k, ` ∈ {1, . . . , n}.

More precisely (see (4.17)):

(4.25) I(0) . J(a)4/(n+1)‖a‖2(n−1)/(n+1)
2 ,

where J(a) was defined in (4.15).
Let m ∈ {1, 2, . . . }. Let us make the inductive assumptions (IA1)-(IA3) that a global mild solution

u(m−1) of (N-Sm−1) does exist, such that

u(m−1) ∈ X2n,(IA1)

u(m−1) ∈ L2
(
R+;L2(Rn)

)
(IA2)

and that

(IA3) I(m−1) ≤ L(a).

Here,

(4.27) L(a) := γnJ(a)4/(n+1)‖a‖2(n−1)/(n+1)
2 ,

where the constant γn > 0 (depending only on the space dimension) will be specified below. The first
condition to be imposed on γn is the compatibility with (4.25), which is of course possible.

By (IA3), I(m−1) < ∞ and so f (m) is well defined by (4.23). Our next goal is to show that a global
solution u(m) of (N-Sm) does exist, satisfying (IA1)–(IA3) with the integer m instead of m− 1.

We note that∥∥∥∥∫ t

0

e(t−s)∆P∇ · f (m)(s) ds

∥∥∥∥
2n

.
∫ t

0

(t− s)−1/2s−3/4 ds sup
s>0

s3/4‖f (m)(s)‖2n

. t−1/4 sup
s>0

s3/4‖f (m)(s)‖2n.

Moreover, by the definition of f (m), we see that

‖f (m)(s)‖p . I(m−1)‖φ(s)‖p,

for 1 ≤ p ≤ ∞. So we obtain that∥∥∥∥et∆a+

∫ t

0

e(t−s)∆P∇ · f (m)(s) ds

∥∥∥∥
X2n

. ‖a‖n + I(m−1) sup
0<s<∞

s3/4‖φ(s)‖2n

. ‖a‖n + L(a) sup
0<s<∞

s3/4‖φ(s)‖2n.

The first condition that we need to put on φ is

(A1) L(a) sup
0<s<∞

s3/4‖φ(s)‖2n ≤ ‖a‖n.

Under condition (A1), we deduce∥∥∥∥et∆a+

∫ t

0

e(t−s)∆P∇ · f (m)(s) ds

∥∥∥∥
X2n

. ‖a‖n.

We can now deduce from the usual fixed point method and assumption (S) that, choosing δ > 0 small
enough, (D5), a solution u(m) of (N-Sm) does exist, such that

u(m) ∈ X2n and ‖u(m)‖X2n
. ‖a‖n.
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Such solution u(m) can be obtained as the limit for k → ∞, in the X2n-norm, of the sequence of

approximate solutions2 u
(m)
k (k = 0, 1, . . .)

(4.28) u
(m)
k+1(t) = et∆a+

∫ t

0

e(t−s)∆P∇ · f (m)(s) ds+G(u
(m)
k , u

(m)
k )(t),

with

u
(m)
0 (t) = et∆a+

∫ t

0

e(t−s)∆P∇ · f (m)(s) ds.

Similarly as we did in subsection 4.1, we now verify that u(m) ∈ Xn ∩ X∞. For this, we recall that
(N-Sm) reads u(m)(t) = et∆a+

∫ t
0
e(t−s)∆P∇ · f(s) ds+G(u(m), u(m)). Recalling the arguments in (4.6)

we only have to check that the forcing term
∫ t

0
e(t−s)∆P∇ · f (m)(s) ds does belong to Xn ∩X∞. But this

is immediate, as one can see applying twice (3.5) with p = 1 and p = (2n)′, to get∥∥∥∥∫ t

0

e(t−s)∆P∇ · f (m)(s) ds

∥∥∥∥
Xn

. sup
s>0

s1/2‖f (m)(s)‖n

. L(a) sup
s>0

s1/2‖φ(s)‖n.

and ∥∥∥∥∫ t

0

e(t−s)∆P∇ · f (m)(s) ds

∥∥∥∥
X∞

. sup
s>0

s3/4‖f (m)(s)‖2n

. L(a) sup
s>0

s3/4‖φ(s)‖2n.

We now choose φ such that, in addition to (A1), it satisfies

(A2) L(a) sup
s>0

s1/2‖φ(s)‖n ≤ ‖a‖n.

Then, just like we did in (4.6), we get

‖u(m)‖Xn
. ‖a‖n(4.29)

‖u(m)‖X∞ . ‖a‖n.(4.30)

Let us go further with the relevant L2-estimates for u: observe that, from (3.5),∥∥∥∥∫ t

0

e(t−s)∆P∇ · f (m)(s) ds

∥∥∥∥
2

≤ πc1 sup
s>0

s1/2‖f (m)(s)‖2

≤ πc1I(m−1) sup
s>0

s1/2‖φ(s)‖2

≤ πc1L(a) sup
s>0

s1/2‖φ(s)‖2.

(4.31)

We now choose φ in a such way that it satisfies also

(A3) πc1L(a) sup
s>0

s1/2‖φ(s)‖2 ≤ ‖a‖2.

Then, estimating the approximate solutions u
(m)
k for k ∈ N, in the same way as we argued to obtain (4.9),

from (4.28), we obtain

‖u(m)
k+1(t)‖2 ≤ 2‖a‖2 + c1

∫ t

0

(t− s)−1/2‖u(m)
k (s)‖2‖u(m)

k (s)‖∞ ds

≤ 2‖a‖2 + πc1‖u(m)
k ‖X∞ sup

s>0
‖u(m)

k (s)‖2.

2If necessary, we should put the vector symbol ~u
(m)
k just because we already used with a different meaning u

(m)
k (=the

k component of the vector u(m), in (4.22). For the simplicity, we omit the vector symbol since we can distinguish them
from the context.
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As πc1‖u(m)
k ‖X∞ . ‖a‖n, from (S), by an appropriate choice of δ > 0, (D6), we can ensure that

πc1‖u(m)
k ‖X∞ ≤ 1/2 < 1

and by iteration

sup
t>0
‖u(m)(t)‖2 ≤ 4‖a‖2.(4.32)

Next step consists in proving decay estimates for ‖u(m)(t)‖2. As in the previous section, we begin
establishing a (uniform-in-m) quantified version of the decay estimate ‖u(m)(t)‖2 = O(t−3/8). Let us
recall that ‖et∆a‖2 . ‖a‖4n/(3+2n)t

−3/8. Concerning the forcing term, we have∥∥∥∥∫ t

0

e(t−s)∆P∇ · f (m)(s) ds

∥∥∥∥
2

.
(∫ t

0

(t− s)−1/2s−7/8 ds
)

sup
s>0

s7/8‖f (m)(s)‖2

. t−3/8L(a) sup
s>0

s7/8‖φ(s)‖2.
(4.33)

This leads us to add another condition to φ, namely

(A4) L(a) sup
s>0

s7/8‖φ(s)‖2 ≤ ‖a‖4n/(3+2n).

Therefore

(4.34) sup
t>0

t3/8
∥∥∥∥et∆a+

∫ t

0

e(t−s)∆P∇ · f (m)(s) ds

∥∥∥∥
2

. ‖a‖4n/(3+2n).

We can now reproduce the same calculations as in (4.10)-(4.12) with an appropriate choice of δ > 0,
(D7), by (S) and we obtain

(4.35) sup
t>0

t3/8‖u(m)(t)‖2 . ‖a‖4n/(3+2n).

Next, let us prescribe the conditions on φ in order to obtain a (uniform-in-m) quantified version of
the estimate ‖u(m)(t)‖2 = O(t−(n+1)/4). First of all, let us recall estimate (4.13), that reads

‖et∆a‖2 .
(∫

Rn

|x| |a(x)|dx
)1/2

‖a‖1/21 t−(n+1)/4.

To get the same decay rate for the forcing term, we set 1
q = 1− 1

2n . Using (3.5) with p = 2n/(n+ 1), we
obtain∥∥∥∥∫ t

0

e(t−s)∆P∇ · f (m)(s) ds

∥∥∥∥
2

. t−(n+1)/4

∫ t/2

0

‖f (m)(s)‖q ds+

∫ t

t/2

(t− s)−1/2‖f (m)(s)‖2 ds

. t−(n+1)/4L(a)
(∫ ∞

0

‖φ(s)‖q ds+ sup
s>0

s(n+3)/4‖φ(s)‖2
)
.

We then choose φ in such a way that

(A5) L(a)
(∫ ∞

0

‖φ(s)‖2n/(2n−1) ds+ sup
s>0

s(n+3)/4‖φ(s)‖2
)
≤
(∫

Rn

|x| |a(x)|dx
)1/2

‖a‖1/21 .

Then we get

(4.36) sup
t>0

t(n+1)/4

∥∥∥∥et∆a+

∫ t

0

e(t−s)∆P∇ · f (m)(s) ds

∥∥∥∥
2

.
(∫

Rn

|x| |a(x)|dx
)1/2

‖a‖1/21 .
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Then, reproducing the same computations as in (4.14)-(4.15) with an appropriate choice of δ > 0, (D8),
by (S), we get

sup
t>0

t(n+1)/4‖u(m)(t)‖2 . ‖a‖1/21

(∫
Rn |x| |a(x)|dx

)1/2

+ ‖a‖24n/(3+2n)

= J(a).

(4.37)

¿From the latter estimate, and the already established uniform bound ‖u(m)(t)‖2 . ‖a‖2, arguing as we
did before in (4.17), we get

(4.38)

∫ ∞
0

‖u(m)(s)‖22 ds . J(a)4/(n+1)‖a‖2(n−1)/(n+1)
2 .

Now, let us be more explicit with the constants that appear in two of the estimates obtained before:
From (4.25), we infer that there exists Kn > 0 (independent a) such that

(4.39) I(0) ≤ KnJ(a)4/(n+1)‖a‖2(n−1)/(n+1)
2 .

From (4.38), we deduce the existence of K ′n > 0 (independent on m and a) such that

(4.40) I(m) ≤ K ′nJ(a)4/(n+1)‖a‖2(n−1)/(n+1)
2 (m = 1, 2, . . .).

This leads us to choose, in (4.27), γn = max{Kn,K
′
n}. It then follows that I(0) ≤ L(a) and that

I(m) ≤ L(a). This allows to close the inductive argument (IA3).
Summarising, we proved the existence of δ > 0 (depending only on the space dimension, in agreement

with conditions (D1)–(D8)) such that, under the smallness assumption ‖a‖n ≤ δ and the smallness
conditions (A1)–(A5) on φ, there exists a sequence of global solutions u(m) (m = 0, 1, 2, . . .) of (N-Sm),
which is bounded in X2n, and also bounded in Xn ∩X∞, in L∞

(
R+;L2(Rn)

)
, and in L2

(
R+;L2(Rn)

)
.

Strengthening a little bit the smallness conditions on φ, it would be possible in the same way to get also
the boundedness of u(m) under the stronger norm v 7→ sup

t>0
(1 + t)(n+2)/4‖v(t)‖2.

4.3 Convergence of {u(m)}m∈N.

In this section we study the convergence of u(m) in the space

(4.41) Y = {v ∈ L∞
(
R+;L2(Rn)

)
: ‖v‖Y := sup

s>0
(1 + s)(n+1)/4‖v(s)‖2 <∞}.

This is not a scale invariant space: what it does matter here is that Y is imbedded in L2
(
R+;L2(Rn)

)
.

This non-invariance explains why an additional artificial smallness assumption on a appears in the next
Lemma. In any case, this artificial assumption will be removed at the end of the proof of our theorem.

Lemma 4.1. Let u(m) be the of solution of (N-Sm) constructed in the previous section. There exist two
constants δ, δ′ > 0, depending only on the space dimension, such that if ‖a‖n ≤ δ and

(S′) ‖a‖1/nn (J(a)1−1/n + ‖a‖1−1/n
2 ) ≤ δ′,

where J(a) was defined in (4.15), then, for m ∈ N,

(4.42) ‖u(m+1) − u(m)‖Y .
∥∥∥∫ t

0

e(t−s)∆P∇ · [f (m+1) − f (m)](s) ds
∥∥∥
Y
.

Proof. We note that

u(m+1)(t)− u(m)(t) =

∫ t

0

e(t−s)∆P∇ · [f (m+1) − f (m)](s) ds

+

∫ t

0

e(t−s)∆P∇ ·
[
(u(m+1) − u(m))⊗ u(m+1)

]
(s) ds

+

∫ t

0

e(t−s)∆P∇ ·
[
u(m) ⊗ (u(m+1) − u(m))

]
(s) ds

=: I(m)
1 (t) + I(m)

2 (t) + I(m)
3 (t).
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We make two separate estimates for I(m)
2 . The first one will be useful for 0 ≤ t ≤ 1 and relies on (4.30):

‖I2(t)‖2 ≤ c1
∫ t

0

(t− s)−1/2‖u(m+1)(s)− u(m)(s)‖2 ‖u(m+1)(s)‖∞ ds

. ‖u(m+1) − u(m)‖Y ‖u(m+1)‖X∞

∫ t

0

(t− s)−1/2(1 + s)−(n+1)/4s−1/2 ds

. ‖u(m+1) − u(m)‖Y ‖a‖n.

The second estimate of I(m)
2 (t) will be useful for t ≥ 1. It is obtained using (3.5) in the first inequality,

interpolation in the second, (4.30), (4.32) and (4.37) in the third inequality below:

‖I2(t)‖2 ≤ c2n/(n+1)

∫ t/2

0

(t− s)−(n+1)/4‖u(m+1)(s)− u(m)(s)‖2 ‖u(m+1)(s)‖2n/(n−1) ds

+ c1

∫ t

t/2

(t− s)−1/2‖u(m+1)(s)− u(m)(s)‖2 ‖u(m+1)(s)‖∞ ds

. t−(n+1)/4‖u(m+1) − u(m)‖Y
∫ t/2

0

(1 + s)−(n+1)/4‖u(m+1)(s)‖1−1/n
2 ‖u(m+1)(s)‖1/n∞ ds

+ (1 + t)−(n+1)/4‖u(m+1) − u(m)‖Y ‖u(m)‖X∞

. t−(n+1)/4‖a‖1/nn ‖u(m+1) − u(m)‖Y
(∫ t/2

0

(1 + s)−(n+1)/4
(
J(a)s−(n+1)/4 ∧ ‖a‖2

)(1−1/n)
s−1/(2n) ds+ ‖a‖1−1/n

n

)
. t−(n+1)/4‖a‖1/nn ‖u(m+1) − u(m)‖Y

(
J(a)1−1/n + ‖a‖1−1/n

2 + ‖a‖1−1/n
n

)
.

Combining the two previous estimates for I(m)
2 (t), we deduce

(4.43) ‖I(m)
2 ‖Y . ‖a‖1/nn

(
J(a)1−1/n + ‖a‖1−1/n

2 + ‖a‖1−1/n
n

)
‖u(m+1) − u(m)‖Y .

In the same manner, we have

(4.44) ‖I(m)
3 ‖Y . ‖a‖1/nn

(
J(a)1−1/n + ‖a‖1−1/n

2 + ‖a‖1−1/n
n

)
‖u(m+1) − u(m)‖Y .

Now, if δ > 0, is small enough, (D9), and δ′ > 0 is suitably small as well, then we deduce (4.42)
from (4.43)-(4.44).

Throughout the remaining part of this subsection, we assume that a fulfils the smallness condition (S′),
along with (S). For the convergence of {u(m)}, we choose δ > 0 in a such way that conditions (D1)-(D9)
are fulfilled. This ensures that all our previous estimates hold true.

Next, we estimate I(m)
1 (t): for 0 < t ≤ 1, we have

‖I(m)
1 (t)‖2 ≤ c1

∫ t

0

(t− s)−1/2‖f (m+1)(s)− f (m)(s)‖2 ds

. sup
s>0

s1/2‖f (m+1)(s)− f (m)(s)‖2.

But

‖f (m+1)(s)− f (m)(s)‖2 ≤
n∑

k,`=1

‖f (m+1)
k` (s)− f (m)

k` (s)‖2

=
∑
k 6=`

∣∣c(m)
k` − c

(m−1)
k`

∣∣‖φ(s)‖2 +

n∑
k=1

∣∣(c(m)
kk − c̄

(m))− (c
(m−1)
kk − c̄(m−1))

∣∣‖φ(s)‖2
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For the case k 6= `, applying (4.35) in the last inequality, and the fact that
∫∞

0
(1+s)−(n+1)/4s−3/8 ds <∞,

we have: ∣∣c(m)
k` − c

(m−1)
k`

∣∣ =

∣∣∣∣∫ ∞
0

∫
Rn

u
(m)
k u

(m)
` − u(m−1)

k u
(m−1)
` dy ds

∣∣∣∣
.
∫ ∞

0

‖u(m)(s)− u(m−1)(s)‖2
(
‖u(m)(s)‖2 + ‖u(m−1)‖2

)
ds

. ‖u(m) − u(m−1)‖Y ‖a‖4n/(3+2n).

For the case k = ` we have∣∣(c(m)
kk − c̄

(m))− (c
(m−1)
kk − c̄(m−1))

∣∣ =
∑
i 6=k

∣∣(c(m)
ii − c

(m−1)
ii )

∣∣,
so that the same estimates as before applies. Therefore,

‖f (m+1)(s)− f (m)(s)‖2 . ‖φ(s)‖2‖a‖4n/(3+2n)‖u(m) − u(m−1)‖Y .

Therefore we obtain that for 0 < t < 1

‖I(m)
1 (t)‖2 .

(
sup
s<1

s1/2‖φ(s)‖2
)
‖a‖4n/(3+2n)‖u(m) − u(m−1)‖Y .

For t > 1, by similar way, we have with 1
q = 1− 1

2n

‖I(m)
1 (t)‖2 .

∫ t/2

0

(t− s)−
n+1
4 ‖f (m+1)(s)− f (m)(s)‖q ds+

∫ t

t/2

(t− s)−1/2‖f (m+1)(s)− f (m)(s)‖2 ds

. t−
n+1
4

(∫ ∞
0

‖φ(s)‖q ds+ sup
s>0

s
n+3
4 ‖φ(s)‖2

)
‖a‖4n/(3+2n)‖u(m) − u(m−1)‖Y .

Then we obtain

‖I(m)
1 ‖Y .

(
sup
s<1

s1/2‖φ(s)‖2 +

∫ ∞
0

‖φ(s)‖2n/(2n−1) ds+ sup
s>0

s
n+3
4 ‖φ(s)‖2

)
‖a‖4n/(3+2n)‖u(m)−u(m−1)‖Y .

By Lemma 4.1, there exists a constant δ′′ > 0, only depending on the space dimension, such that if

(A6)
(

sup
s<1

s1/2‖φ(s)‖2 +

∫ ∞
0

‖φ(s)‖2n/(2n−1) ds+ sup
s>0

s
n+3
4 ‖φ(s)‖2

)
‖a‖4n/(3+2n) ≤ δ′′,

then
‖u(m+1) − u(m)‖Y ≤ 1

2‖u
(m) − u(m−1)‖Y .

This implies that u(m) converges in the Y -norm to some limit v ∈ Y .
The convergence u(m) → v in Y implies that u(m) → v in L2

(
R+;L2(Rn)

)
. The fact that v ∈

L2
(
R+;L2(Rn)

)
allows us to define

f
(∞)
k` (x, t) =

{
c
(∞)
k` φ(x, t) k 6= `,

(c
(∞)
kk − c̄(∞))φ(x, t) k = `,

c
(∞)
k` =

∫ ∞
0

∫
Rn

vkv` dy ds, k, ` = 1, . . . , n,

c̄(∞) = c
(∞)
11 + · · ·+ c(∞)

nn .

In particular, we see that c
(m)
k` → c

(∞)
k` and c̄(m) → c̄(∞) as m → ∞. Moreover, it holds that

‖f (m)
k` (t)− f (∞)

k` (t)‖p → 0 as m→∞ for all t ≥ 0 and for all 1 ≤ p ≤ ∞.
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Hence,
∫ t

0
e(t−s)∆P∇ · f (m)(s) ds→

∫ t
0
e(t−s)∆P∇ · f (∞)(s) ds for all t > 0. The strong convergence of

u(m) to v in Y allows to pass to the limit in the nonlinear term of (N-Sm). This implies that the limit v
satisfies the Navier–Stokes equations, with force ∇ · f (∞), and initial data a, in its integral form:

v(t) = et∆a+

∫ t

0

e(t−s)∆P∇ · f (∞)(s) ds−
∫ t

0

e(t−s)∆P∇ · (v ⊗ v)(s) ds,

for all t > 0.
Now that we know that v and f (∞) are well defined, one can easily prove, in a similar way, that

u(m) → v in X2n, then, in other spaces, e.g., in BC
(
R+;Ln(Rn)

)
by (S), (S′) and (A1)–(A6). The

convergence u(m) → v could be proved to be true also in L2 with the optimal time-weight, i.e., sup
t>0

(1 +

t)(n+2)/2‖u(m)(t)−v(t)‖2 → 0, if we suitable strengthen the smallness conditions, but this will not needed
to prove our theorem.

4.4 Asymptotic behavior of v(t) as t→∞
As before, we work in this section under the smallness assumptions on a (S)-(S′) and all the smallness
conditions on φ previously specified.

In this subsection, we discuss the large time decay rate of the Lebesgue norms of v(t), by applying
the asymptotic profiles of Miyakawa and Schonbek [13]. We put

βk,` =

∫ ∞
0

∫
Rn

vkv` dy ds−
∫ ∞

0

∫
Rn

f
(∞)
k` dy ds

Here, when k 6= `, we see that

βk,` =

∫ ∞
0

∫
Rn

vkv` dy ds− c(∞)
k`

∫ ∞
0

∫
Rn

φ(y, s) dy ds = 0.

When k = `, we see that

βk,k =

∫ ∞
0

∫
Rn

v2
k dy ds− (c

(∞)
kk − c̄

(∞))

∫ ∞
0

∫
Rn

φ(y, s) dy ds = c̄(∞).

Therefore,
βk,` = cδk` for some c ∈ R, and k, ` = 1, . . . , n.

Now, the application of Corollary 2.2 gives the desired conclusions for v, namely:

lim
t→∞

t
1
2 + n

2 (1− 1
q )
∥∥v(t)− et∆a

∥∥
q

= 0, 1 ≤ q ≤ ∞

and, under the additional moment condition
∫
Rn ykaj(y) dy = 0 for all j, k = 1, . . . , n,

lim
t→∞

t
1
2 + n

2 (1− 1
q ) ‖v(t)‖q = 0, 1 ≤ q ≤ ∞.

4.5 Completion of proof of Theorem 2.3

Let us first complete the proof under the additional artificial smallness assumption (S′) on a. To finish
the proof in this case, we only have to collect all the previous needed conditions on φ (namely, (A1),
(A2), (A3), (A4), (A5) and (A6)) and to ensure their compatibility.

Let us recall that J(a) and L(a) were defined by (4.15) and (4.27):

J(a) = ‖a‖1/21

(∫
Rn |x| |a(x)|dx

)1/2

+ ‖a‖24n/(3+2n)

and
L(a) = γnJ(a)4/(n+1)‖a‖2(n−1)/(n+1)

2 ,
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where γn only depends on n. So, the conditions to be imposed on φ are:

φ ∈ L∞c (Rn × R+),

∫ ∞
0

∫
Rn

φ(x, t) dx dt = 1,

and

L(a) sup
0<s<∞

s3/4‖φ(s)‖2n ≤ ‖a‖n,

L(a) sup
0<s<∞

s1/2‖φ(s)‖n ≤ ‖a‖n,

c1L(a) sup
s>0

s1/2‖φ(s)‖2 ≤ ‖a‖2,

L(a) sup
s>0

s7/8‖φ(s)‖2 ≤ ‖a‖4n/(3+2n)

L(a)
(∫∞

0
‖φ(s)‖2n/(n−1) ds+ sups>0 s

(n+3)/4‖φ(s)‖2
)
≤
(∫

Rn |x| |a(x)|dx
)1/2

‖a‖1/21 ,(
sup
s<1

s1/2‖φ(s)‖2 +

∫ ∞
0

‖φ(s)‖2n/(2n−1) ds+ sup
s>0

s
n+3
4 ‖φ(s)‖2

)
‖a‖4n/(3+2n) ≤ δ′′,

(A 1–6)

Recall that δ′′ > 0 is some constant depending only on n. In fact, nowhere we really needed that
φ ∈ L∞c (Rn × R+): the more general condition φ ∈ L1(Rn × R+), together with (A 1–6) would have
been enough. In any case, the most obvious way to construct such a function φ is to start from a
compacly supported and essentially bounded function Φ ∈ L∞c (Rn × R+), supported in a cube K =
[−M,M ]n × [0, T0] for some M > 0 and T0 > 0, such that

∫∞
0

∫
Rn Φ(x, t) dx dt = 1. But, for any

1 < p ≤ ∞, we have ‖R−nΦ(·/R, t)‖p → 0 as R→ +∞. Therefore, there exists

R0 = R0

(
n,M, T0, ‖a‖1, ‖a‖n,

∫
Rn |x| |a(x)|dx

)
,

(with R0 depending only on the above mentioned parameters), such that, if we take R ≥ R0 and

φ(x, t) = R−nΦ(x/R, t),

then the function φ satisfies all the required conditions (A 1–6).
This completes the proof of Theorem 2.3, at least under the additional smallness condition (S′) for a,

that was needed in Lemma 4.1. So, it now remains to show that this smallness condition (S′) can be
removed.

This can be done via a standard scaling argument. Indeed, assuming (according with the assumptions
of Theorem 2.3) that

∫
|a(x)|(1 + |x|) dx < ∞, and that ‖a‖n < δ, we consider the rescaled data aλ =

λa(λ·). We have ‖aλ‖n = ‖a‖n, ‖aλ‖2 = λ1−n/2‖a‖2 and J(aλ) = λ−(n−1/2)J(a).
So condition (S′) is fulfilled for the rescaled initial data aλ, provided we choose λ ≥ λ0 for some

λ0 = λ0(n) depending only on the space-dimension. This is true also when n = 2, as in this case ‖a‖2 is
itself assumed to be small. By what we proved so far, we can construct an external force ∇ · fλ as above
(with fλ with compact support in space-time) and a solution uλ of the Navier–Stokes equation arising

from aλ with force ∇ · fλ, that satisfies ‖uλ(t)− et∆aλ‖q = o(t−
1
2−

n
2 (1− 1

q )) as t→∞ for all 1 ≤ q ≤ ∞.
Now, let us set u(x, t) = λ−1uλ(λ−1x, λ−2t) and f(x, t) = λ−2fλ(λ−1x, λ−2t). Then f is compactly

supported in space-time and u solves (N-S). Moreover, ‖u(t)− et∆a‖q = o(t−
1
2−

n
2 (1− 1

q )) as t→∞.
Moreover, a has vanishing first-order moments if and only if the same is true for aλ. Therefore, we

get under this moment condition the rapid dissipation property ‖u(t)‖q = o(t−
1
2−

n
2 (1− 1

q )) as t→∞.
This fully establishes Theorem 2.3.
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