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Adaptive and Reinforcement Learning Approaches
for Online Network Monitoring and Analysis

Sarah Wassermann, Thibaut Cuvelier, Pavol Mulinka, Pedro Casas

Abstract—Network-monitoring data commonly arrives in the
form of fast and changing data streams. Continuous and dynamic
learning is an effective learning strategy when dealing with such
data, where concept drifts constantly occur. We propose different
stream-based, adaptive learning approaches to analyze network-
traffic streams on the fly. We address two major challenges
associated to stream-based machine learning and online network
monitoring: (i) how to dynamically learn from and adapt to
non-stationary data changing over time, and (ii) how to deal
with the limited availability of labeled data to continuously
tune a supervised-learning model. We introduce ADAM & RAL,
two stream-based machine-learning techniques to tackle these
challenges. ADAM relies on adaptive memory strategies to
dynamically tune stream-based learning models to changes in the
input data distribution. RAL combines reinforcement learning
with stream-based active-learning to reduce the amount of labeled
data needed for continual learning, dynamically deciding on the
most informative samples to learn from. We apply ADAM & RAL
to the real-time detection of network attacks in Internet network
traffic, and show that it is possible to continuously achieve high
detection accuracy even under the occurrence of concept drifts,
limiting the amount of labeled data needed for learning.

Index Terms—Stream-based Machine Learning; Active Learn-
ing; Reinforcement Learning; ADWIN; Network Attacks; MAW-
ILab.

I. INTRODUCTION

NETWORK-traffic monitoring and analysis is paramount
to understand the functioning of complex large-scale

networks, especially to get a broader and clearer visibility
of unexpected events. One of the major challenges faced by
online network-monitoring applications is the processing and
analysis of large amounts of heterogeneous and fast incoming
network-monitoring data. These data usually come in the
form of high-speed streams, which need to be rapidly and
continuously processed. In this context, detecting and adapting
to strong variations in the underlying statistical properties of
the modeled data makes data-stream analysis a challenging
task.

The application of machine-learning models to network-
security and anomaly-detection problems has largely increased
in the last decade. However, the general approach in the
literature still considers the analysis as an offline learning
problem, where models are trained once and then applied to
the incoming measurements. This approach is very restrictive
when dealing with highly dynamic environments, where con-
cept drifts – i.e., changes in the underlying properties of the
prediction target – occur often and previous knowledge rapidly
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becomes obsolete. Nevertheless, Li et al. demonstrate the
advantages and feasibility of online machine-learning applied
in industrial control systems to detect cyber-attacks in real-
time [1]. An additional challenge of learning in in-the-wild
networking scenarios is the lack or limited availability of
ground truth or labeled data for training purposes. Labeling
new incoming data is often an expensive and cumbersome
process – especially when done manually and in an online
fashion. Furthermore, not all data samples are equally valu-
able.

In this paper, we investigate stream-based approaches ap-
plied to machine-learning-based network security, using differ-
ent algorithms for the analysis of continuously evolving data.
Stream-based machine-learning analysis consists of processing
one data instance at a time, inspecting it only once, and as
such, using a limited amount of memory; stream approaches
work in a limited amount of time, and have the advantage to
perform predictions at any point in time during the stream.

We introduce novel stream-based, continuous learning
strategies to deal with the aforementioned challenges. We
conceive, describe, and evaluate ADAM & RAL, two stream-
based machine-learning approaches to deal with (i) concept
drifts in the stream of network measurements and (ii) limited
availability of labeled, ground-truth measurements. ADAM
relies on simple data-distribution change-detection algorithms
to dynamically adapt the learning memory of different stream-
based machine-learning models to the most recent data distri-
bution, triggering new learning steps when concept drifts are
detected. In the context of stream-based learning, the concept
of learning memory refers to the set of past measurements
which are kept by the system for the purpose of model
(re)training. All additional measurements not belonging to the
learning memory are discarded. In its simplest form, such a
learning memory is implemented as a sliding window of fixed
length Tm, which keeps the last m monitored measurements
available for further analysis. Naturally, the size m of the learn-
ing memory plays a key role, especially when the environment
evolves fast.

RAL consists of a stream-based active-learning strategy
to reduce the amount of labeled data needed for learning,
dynamically deciding on the most informative measurements
to integrate into the continuous learning scheme. The term
informative refers here to the novelty of the corresponding
measurement, as well as to its ability to improve the prediction
performance of the underlying learning model. For example,
if the system has already seen a very similar measurement
to the one under analysis, or if the model has already a
high prediction performance for the region of the input space
where the new measurement belongs to, then it is probably
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useless to use this new measurement for learning purposes,
as there would not be any gains from it. This is the rationale
behind active learning. Active learning aims at labeling only
the most informative samples to reduce the overall training
cost. There is a long list of data-querying strategies and
algorithms to decide which data samples should be labeled [2];
among them, the most popular strategy is based on uncertainty
sampling, which uses the model-prediction uncertainty for the
corresponding sample to decide whether to query its label
or not. The higher the uncertainty of the model for a given
sample, the more interesting the label of this sample becomes
for adapting the model. RAL improves model training and
prediction performance by additionally learning from the
relevance of its previous sample-selection decisions, using a
reinforcement-learning scheme.

We evaluate the performance of the proposed approaches
on the detection of different types of network attacks and
anomalies, using real network measurements collected at the
WIDE backbone network, relying on the well-known MAW-
ILab dataset for attack labeling [3]. Results not only show
that particular stream-based machine-learning models are able
to keep up with important concept drifts in the underlying
network data streams while keeping high detection accuracy,
but also that it is possible to drastically reduce the amount of
labeled data with stream-based active-learning approaches by
relying on reinforcement-learning principles. As an additional
contribution to the community, we make RAL freely available
on GitHub as a Python package1.

This paper builds on and extends our recent work on
adaptive learning for network monitoring [4], in multiple
directions. In particular: (i) it brings a more comprehensive
overview on the state of the art in adaptive learning; (ii)
it provides an extended evaluation of ADAM for different
types of attacks, as well as a comparative analysis against
other adaptation strategies, besides evaluating non-adaptive
learning approaches; (iii) it develops a theoretical analysis
on the expected performance of RAL, in particular with
respect to the implemented reinforcement-learning policy; (iv)
it further evaluates RAL in other datasets, to show the general
advantages of the proposal; (v) last but not least, it presents
(and evaluates) the integration of both ADAM and RAL into
a single, reinforcement-based, adaptive active-learning system,
adding explicit concept-drift detection into RAL.

The remainder of this paper is structured as follows. Sec-
tion II presents an overview on the related work. Sections III
and IV introduce the proposed ADAM and RAL approaches.
In the specific case of RAL, we additionally provide a theo-
retical analysis of the expected performance to be achieved by
the reinforcement-learning loop. Section V details evaluation
results on the continuous detection of network attacks and
anomalies on real network measurements, using both ADAM
and RAL with different machine-learning models. For the
sake of completeness, evaluations also consider the analysis
of other datasets not linked to network security, as well as
the integration of both ADAM and RAL approaches within a
single system. Finally, Section VI concludes the paper.

1https://github.com/SAWassermann/RAL

II. STATE OF THE ART

The application of machine learning to networking problems
has been largely explored in the literature [5]. There are a
couple of extensive surveys on any-domain anomaly-detection
techniques [6] as well as on network-oriented anomaly de-
tection [7], [8], including machine-learning-based approaches.
We refer the interested reader to [5] for a detailed survey on
the different machine-learning techniques commonly applied
to network-traffic analysis.

We have been recently working on the application of
machine-learning models to network anomaly-detection prob-
lems [9], [10], benchmarking the performance of standard
machine-learning models for network anomaly detection [9],
further studying more complex and robust models based on en-
semble machine-learning techniques [10]. The main limitation
of these approaches as compared to our proposals here is that
they consider the offline analysis of network measurements,
in batch mode.

The specific application of stream-based machine-learning
approaches to network security and anomaly detection is by
far more limited; a relevant and representative example linked
to current research is presented in [11], where Carela et al.
evaluate stream-based traffic-classification approaches based
on Hoeffding adaptive trees [12], using MAWILab data and
the MOA machine-learning toolkit, as we do in this work.

Naturally, the data-stream machine-learning domain has
a long-standing tradition and many interesting references
are worth mentioning when considering the application and
evaluation of stream-based machine-learning models; these
cover general problems related to the learning properties for
stream-based algorithms [13], [14], the mining and evalu-
ation processes when dealing with massive datasets [15],
the identification of model-evaluation issues [16], as well as
propositions of general frameworks for data streaming [17].
Recent work presents online-learning strategies dealing with
potentially problematic environments, i.e., environments that
might not represent the true context – for instance, a person
using an account who is not the usual one logging in with
these credentials [18].

Of particular relevance for stream-based machine-learning-
model evaluation are the problems of class imbalance and
concept drift, which are extensively studied in [19]. The
problem of concept-drift detection has been largely addressed
in the literature. A very popular change detector in the stream-
learning domain is known as ADWIN (ADaptive WINdow-
ing), a dynamically adjusting window-based approach intro-
duced in [20]. In [21], Bifet et al. describe a stream-based
bagging algorithm using ADWIN for performance monitoring
to decide when to retrain a new model. Similarly, Bifet and
Gavaldà designed the Hoeffding adaptive tree (HAT) [22]
relying on ADWIN to monitor the prediction performance of
different branches, and to replace them with new ones in case
those are more accurate. Probabilistic Approximate Window
(PAW) [23] is another approach to adapt the training-sample
window: at every incoming data point, each element in the
window gets dropped with an equal probability. In [24], Gama
et al. present Drift Detection Method (DDM), a concept-drift
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detector which monitors the error rates of machine-learning
models. They rely on the assumption that the error rate
decreases over time as long as the samples of the stream are
drawn from a stationary distribution and thus issues a drift alert
as soon as the error rate increases significantly. An extension
to DDM, Early Drift Detection Method (EDDM), has been
proposed later in [25]; instead of looking only at the error rates
themselves, EDDM considers the distances (i.e., the number of
samples) between classification errors, which allows EDDM to
work well when facing gradual concept drifts. In [26], Losing
et al. present Self Adjusting Memory (SAM), a technique
using long-term and short-term memory models (LTM and
STM), as well as ensembles, to detect concept drifts. SAM
trains some models of the ensemble on LTM and others on
STM, combining them to maximize accuracy. In general and
in most of these models, the model accuracy is widely used
to detect drifts. Another example is FLORA2 [27], in which
Widmer et al. use two sliding windows, one for training the
model, the other one to compute its accuracy; as soon as the
accuracy drops significantly, FLORA2 detects a drift.

When it comes to active learning, there is a vast literature
in the field. For example, Žliobaitė et al. present in [28],
[29] three simple approaches for this learning paradigm.
Their proposed Randomized Variable Uncertainty approach
tackles the problem of stream-based active learning, using the
model’s prediction uncertainty to decide whether to query and
tries to overcome concept drifts by randomizing the certainty
threshold used for labeling decisions. In [30], Xu et al. develop
an active-learning algorithm with two different classifiers: one
“reactive” and one “stable”. The stable classifier is trained
on all available labeled instances, while the reactive one
is trained based on a window of recent instances. In [31],
Ienco et al. present an active-learning technique based on
clustering and prediction uncertainty. In [32], Krawczyk et
al. conceive an approach relying on a modification of the
Naı̈ve Bayes classifier to update the different learners through
the queried samples. In particular, they use one-versus-one
classifiers to tackle multiclass problems and update the weights
of the different classifiers by comparing their predictions to
the ground truth. Their technique behaves similarly to RAL.
However, the major difference is that [32] uses information
about the classifiers’ prediction certainty (without considering
the corresponding weights) to adapt the minimum threshold
for querying the oracle, while we rely on the usefulness of
the decisions taken by RAL to tune the system according to
the data stream. Sinha et al. [33] propose to use adversarial
machine-learning models: if the model cannot correctly infer
that the considered unlabeled sample has not yet been labeled,
then its label is unlikely to improve the model performance.

Finally, ideas from reinforcement learning have already
infused into the active-learning domain, but mostly into pool-
based approaches. In [34], [35], authors rely on the multi-
armed bandit paradigm. In [35], Hsu et al. develop ALBL,
which uses a modified version of EXP4 [36], a weight-
updating rule, to attribute adaptive weights to different learners
based on rewards; the learner to use is then determined through
these weights and uses its uncertainty measure to select the
samples in the pool to hand to the oracle. The approach

described in [34] is similar to the one in [35], except for the
reward-computation scheme. The algorithm presented in [37],
[38] relies on the same principles as the approach we are
proposing, but tackles a different problem: Song’s goal is
to introduce an active-learning component into a contextual-
bandit problem, while we are aiming at solving an active-
learning problem by using contextual bandits.

Other recent papers dealing with active learning and re-
inforcement learning include [39]–[42]. However, most of
them consider only one of the perspectives addressed by
RAL, namely the enhancement of pool-based active learning
through reinforcement learning [40]–[42], or the application
of active learning to the streaming setup [39]. Combining
active learning with reinforcement learning in a streaming,
adaptive learning context is the most important contribution
of RAL, a very timely yet vaguely addressed problem in the
literature. Last, the idea of learning to active learn, i.e., data-
driven active learning, is developed in [43], [44]. In particular,
Konyushkova et al. [43] propose this view on pool-based active
learning: the querying decision for a sample is based on an
estimation of the accuracy improvement. In [44], Woodward
et al. use reinforcement learning in stream-based active one-
shot learning, but this work is different from RAL on multiple
aspects: (i) it tackles a different learning task, as it aims
at detecting new classes instead of improving overall clas-
sification accuracy, (ii) their scheme relies on reinforcement
learning only during the training phase and is not updated
anymore once deployed, while RAL continuously adapts its
querying policy through this learning paradigm during the
whole incoming stream, and (iii) the system heavily relies
on deep recurrent networks, too cumbersome to use in real-
time resource-constrained scenarios, unlike RAL. Huang et
al. [45] extend this work in several aspects, for instance,
reducing the number of queries and increasing the convergence
speed by adding a cross-entropy term in the loss function
when training the underlying neural network. Puzanov et al.
introduce DeROL [46], a one-shot-learning framework based
on active learning and deep reinforcement learning designed to
optimize labeling-resource allocation in expert-based systems.

III. ADAM – LEARNING WITH ADAPTIVE MEMORY

We start by introducing ADAM, relying on an ADAptive
Memory strategy. Given that we are dealing with continuous
data analysis, the approach must be able to identify and adjust
to the variation of the statistical properties of the analyzed
data, detecting sudden statistical changes, namely concept
drifts. To do so, ADAM relies on ADWIN, an approach
which maintains a window of variable size containing training
samples. The algorithm automatically grows the window when
no change is apparent, and shrinks it when the statistical
properties of the stream change. ADWIN automatically adjusts
its window size to the optimum balance point between reaction
time and small variance. ADAM uses ADWIN on top of
four stream-based machine-learning algorithms popular in the
literature, including incremental k-NN, Hoeffding adaptive
trees (HAT), adaptive random forests (ARF) [47], and SVM
through stochastic gradient descent (SGD).
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Algorithm 1 ADWIN algorithm.
1: procedure ADWIN(ε)
2: initialize window W
3: for each n > 0 do
4: W ← W ∪ {xn} . add xn to the head of W
5: if | µ̂W0 − µ̂W1 | ≥ ε for some split of W = W0 ·W1 then
6: drop instances from the tail of W

A. Adaptation Strategy

Stream-based machine-learning models continuously adapt
to the changes of the underlying statistics describing the
current data under analysis, by periodically retraining. To deal
with evolving data, one needs to define strategies to: firstly,
detect when changes occur; secondly, decide which data to
use for a subsequent model retraining; and last, retraining or
recalibrating the model when a significant change has been
detected. There are multiple strategies to deal with concept
drift in practice. A trivial one is to periodically retrain the
learning model with the most recent historical data. Depending
on how dynamic the environment or problem under analysis
is, this retraining could be done on a monthly, weekly, or even
daily basis. When dealing with highly changing environments,
such as the case of network security, it seems appropriate
to only include a small portion of the most recent historical
data in the training set to best capture the new relationships
between inputs and outputs. This can be realized by using
sliding windows.

The most basic adaptation strategy for periodic retraining
consists of using a sliding window containing recent measure-
ments to retrain the model. At time t0, the model is trained on
the most recent data contained in a fixed-length window of size
Tm, and used to predict the label of a newly arrived sample.
From time t1 onwards, the sliding window gets new data and
triggers a retraining of the model. We refer to this approach as
FIXWIN (FIXed-length WINdowing). FIXWIN provides soft
adaptations of the learning model, as the memory Tm of the
system operates as a smoothing filter, and therefore usually
performs well under gradual or incremental drifts. However,
when abrupt changes occur, FIXWIN introduces a potentially
significant delay in the adaptation process.

A better way to deal with abrupt changes is through reactive
strategies. In a nutshell, a reactive learning strategy consists
also of a sliding window keeping the most recent historical
data for retraining, but additionally adds a change-detection
algorithm to rapidly and automatically identify concept drifts,
discarding all data belonging to the previous distribution.
ADWIN falls into this category. The ADWIN algorithm [20]
keeps a sliding window W with the most recently observed
measurements {xi, xi+1 . . . xn}, where xi is the first sample
included in the window at time n. Without loss of generality,
we assume that, at each time n, instance xn is generated
according to an unknown probability distribution Dn. Let µn
be the (unknown) expected value of xn. Let m be the length
of W , and µ̂W the (computed) average of the measurements
in W . The idea of ADWIN is straightforward: whenever
two large enough sub-windows of W exhibit distinct enough

averages, we conclude that the corresponding expected values
are different, and the older portion of the window is dropped.
Algorithm 1 briefly describes ADWIN; µ̂W0 and µ̂W1 are
the averages of the m0 and m1 instances in W0 and W1,
respectively, and ε is a threshold. It is not needed to define m0
and m1, as these are decided by the algorithm itself. ADWIN
is basically a statistical test for different distributions in W0
and W1, which checks whether the observed average in both
sub-windows differs by more than the threshold ε. For the
statistical test, the null hypothesis is the absence of change
(µn remains constant within W).

Let δ ∈ (0, 1) be a confidence value defined as input
to ADWIN, acting as an upper bound to the false positive
rate of the change detection – shrinking W , when µn was
actually constant within W . According to [20], the threshold
ε is defined based on the global error of the statistical test
(the false positive rate) and on the lengths m0 and m1 of the
corresponding sub-windows. More precisely, if we define q as
the harmonic mean of m0 and m1, and δ′ = δ/m, then:

ε =

√
1
2q
· log

4
δ′

The role of δ′ is to avoid problems with multiple hypothesis
testing, since ADWIN tests m different possibilities for W0 and
W1, and we want a global error below δ.

Following previous work on adaptive learning [21], [22],
ADAM uses ADWIN to detect drifts in the time series of the
model-prediction accuracy. More precisely, the drift detector
is fed with the performance of the ensemble model for each
sample in the stream (i.e., whether the ensemble provided
the right prediction or not). The rationale behind this is
straightforward: if the model is performing well, and the
accuracy starts dropping, then it makes sense to retrain the
model, as it is no longer accurate – meaning that the new
data is distributed according to an unseen process. On the
contrary, if the model is performing badly, and suddenly starts
performing better, then there are high chances of boosting the
performance by adapting to current data distribution. As soon
as a drift has been detected, ADAM retrains the underlying
model using only the most recent window W1.

B. Concept-Drift Detection

Concept drift happens when the statistical properties of
the analyzed dataset abruptly shift in time [48]. Different
change-detection algorithms can be applied to identify the
times when the probability distribution of a stochastic process
or time series changes. In our problem, such a detection has
to be performed in an online manner, i.e., without assuming
that the statistics of the complete time series are known
in advance. The ADWIN algorithm is by design an online
change-detection algorithm. In this paper, we consider an ad-
ditional change-detection algorithm to analyze the considered
dataset: the Page-Hinkley test (PHT) [49]. PHT is a standard
statistical test for change detection, commonly used in time-
series analysis. In a nutshell, this test is a sequential adaptation
of a simple change-detection test for an abrupt change of the
average of a Gaussian stochastic process, and it allows efficient
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detection of changes in the usual behavior of a process. Similar
to ADWIN, the null hypothesis corresponds to an absence of
change. We refer the reader to [49] for further details on the
PHT test.

IV. RAL – STREAM LEARNING WITH ACTIVE
REINFORCEMENT

RAL relies on reinforcement-learning principles, using re-
wards and contextual-bandit algorithms [36], as well as predic-
tion uncertainty. The overall idea is summarized in Figure 1.
The intuition behind the different reward values is that we
attribute a high (positive) reward in case the system behaves
as expected, and a low (negative) one otherwise, to penalize
it. RAL obtains rewards/penalties as soon as it is asking for
ground truth. In a nutshell, it earns a positive reward ρ+

in case it queries the oracle and would have predicted the
wrong label otherwise (the system made the right decision to
ask for the ground truth: the sample is deemed informative)
and a penalty ρ− (a negative reward) when it asks the oracle
even though the underlying classification model would have
predicted the correct label (querying was unnecessary). The
rationale for using reinforcement learning is that RAL learns
not only based on the queried samples themselves, but also
from the usefulness of its decisions. The objective function
to maximize is the total reward:

∑n
i=1 ri , where ri is the i-th

reward (ρ+ or ρ−) obtained by RAL.
The conceived system additionally makes use of the pre-

diction certainty of the underlying classification model(s).
The prediction certainty is defined as the highest posterior
classification probability among all possible labels for sample
x. More formally, the prediction certainty of a model is equal
to maxŷ P(ŷ |x), with ŷ being one of all the possible labels for
x. The rationale behind this design choice is that the model’s
prediction uncertainty is an appropriate proxy for assessing the
usefulness of a data point. Combining the reward mechanism
with the model’s uncertainty allows us to tune the sample-
informativeness heuristic to better guide the query decisions.

Also inspired by the bandit literature [50], to better deal
with concept drifts in the data, we implement an ε-greedy
policy, which improves the data-space exploration; we sample
a uniform probability distribution, and if this value is below
a certain threshold ε, the system queries the oracle, ignoring
the decision of RAL’s classification models. We refer to this
as the ε-scenario. This ensures that we have a good chance
of detecting potential concept drifts: without this policy, the
system could end up being too confident about its predictions,
and thus never ask the oracle again, even though its estimations
are wrong.

Next, we present the details of a committee or multiclassifier
version of RAL, relying on multiple models. Nevertheless, it is
very easy to use RAL with a single machine-learning model.
We provide some comments on this by the end of the section.

A. RAL Algorithmic Details

The algorithm behind RAL is summarized in Algorithm 2.
Our approach is inspired by contextual bandits [36]. We rely
on a set of experts (i.e., different machine-learning models),

Algorithm 2 RAL algorithm.
1: procedure RAL(x, E, α, θ, ε, η)
2: x: sample to treat
3: E: set of learners, members of the committee
4: α: vector of decision powers of learners in E
5: θ: certainty/querying threshold
6: ε: threshold for ε-greedy
7: η: learning rate
8: decisions← {} . will contain decisions of learners
9: for e ∈ E do

10: decisions[e] ← e.askCertainty(x) < θ

11: committeeDecision ← round(
∑

e∈E α[e] · decisions[e])
12: p←U[0,1] . random number drawn from a uniform

distribution
13: if p < ε or committeeDecision = 1 then
14: y ← acquireLabel(x)
15: if committeeDecision = 1 then
16: r ← getReward(x, y)
17: α ← updateDecisionPowers(r , E, decisions, commit-

teeDecision, α, η)
18: θ ← min

{
θ

[
1 + η ×

(
1 − 2

r
ρ−

)]
, 1

}
19: function UPDATEDECISIONPOWERS(r , E, decisions,

committeeDecision, α, η)
20: for e ∈ E do
21: if decisions[e] = committeeDecision then
22: α[e] ← α[e] × exp(η × r) . EXP4
23: return α/

∑
e∈E α[e] . normalize α

24: function GETREWARD(x, y)
25: return (ρ− if ŷ(x) = y else ρ+)

referred to as a committee. Each expert gives its opinion for
the sample to consider: should the system ask the oracle
for feedback or is the expert confident enough about its
prediction? To assess a model’s prediction certainty, we rely
on a certainty threshold θ: if the model’s certainty is below θ,
the expert is too uncertain about the prediction to make and
it thus advises that RAL asks for the ground truth. The query
decision of the committee takes into account the opinions of
the experts, but also their decision power: if the weighted
majority of the experts votes against querying, RAL will rely
on the label prediction provided by the committee, used in the
form of a voting classifier. The decision power of each expert
gets updated such that the experts which agree with the entire
committee are obtaining more power in case that particular de-
cision is rewarding, i.e., informative (otherwise, these experts
get penalized). These weights are updated through the EXP4
rule [36], with a learning rate η. RAL does not update the
decision powers of the different learners in the ε-scenario: the
committee did not take the querying decision and therefore the
weights of the models should not be impacted by this querying
action. Thus, RAL is a model-free system: it does not build a
model of its environment; it primarily relies on learning from
its interactions with the data stream as opposed to planning.

The computation of the reward is carried out every time
the committee decided to query (i.e., not in the ε-scenario).
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RAL therefore gets rewarded when it queried the oracle and
asking was informative (i.e., the voting classifier would have
predicted the wrong label). Conversely, RAL is penalized if
the system used the oracle because the committee decided
to do so, even though the underlying classifier would have
predicted the correct class. More formally, the reward function
rn of RAL for its n-th query is the following:

rn =

{
ρ+ > 0, if asking was informative
ρ− < 0, if asking was unnecessary

As an additional step, to ensure that RAL adapts in the
best possible way to the data stream, we do not only tune
the weights of the committee members based on rewards, but
also the uncertainty threshold θ, denoted in the remainder of
this section as θn to stress that it is influenced by the n − 1
samples observed so far. Again, as for the decision powers,
θn is not updated in the ε-scenario. The update rule of θn we
implemented for our tool is written as follows:

θn ← min
{
θn−1 ×

[
1 + η ×

(
1 − 2

rn
ρ−

)]
, 1

}
We now detail the reasoning behind the selection of the

update policy used by RAL. We are looking for an update
rule of the form

θn ← min {θn−1 × [1 + f (rn)] , 1}

where f (rn) = 1 − exp (a × rn). The threshold should increase
slightly when the reward is positive, conversely when the
reward is negative. More formally, the update policy should
satisfy the following properties:
1 – θn should decrease fast in case rn is negative, as
this indicates the system queries too often, thus is doing
poorly. Therefore, θn should be adapted fast to improve RAL’s
performance.
2 – θn should slightly increase when rn is positive, so that
the system does not always keep decreasing the threshold and
avoids that θn drops to 0. The model was right to ask for
more samples, and thus the threshold should be increased.
Nevertheless, as the system is currently doing well, we do not
want the threshold to be too reactive to the queries.
3 – f must have two extrema: a minimum at ρ− < 0 and a
maximum at ρ+ > 0.
4 – θn represents a probability. θn = 0 is not acceptable due
to the product form of the update policy, thus the values of θn
must be in the interval (0, 1].
5 – f (rn) must be in the interval (−1, 1] to ensure that θn
takes values corresponding to a probability. We exclude −1
from the allowed range of values to avoid that θn drops to 0.

Properties 1 and 2 lead us to choose the family of functions
f : x 7→ 1 − exp (a × x) parameterized by a. Property 5 can
be translated into an equation to determine this parameter by
imposing the range constraint:

lim
r→ρ−

f (r) = 1 − exp (a × ρ−) = −1

After solving this equation, we get a = ln 2
ρ− . As f is strictly

increasing, and because a is nonpositive, f will have a
maximum when rn = ρ+ (thus satisfying property 3). Note

ŷ

Oracley

x

ρ
±

reward / penalty

Committee
learners

Single
learner

Committee
learners

Single
learner

ε-greedy?

query?

no

yes

Figure 1: Overall idea of the system.

that, in order to satisfy property 5, ρ+ must be chosen such
that f (ρ+) ≤ 1.

As a final step, we introduce an additional hyper parameter
to the update rule, namely the learning rate η. This rate aims
at smoothing the evolution of the threshold θn, i.e., avoiding
that θn changes too dramatically with a single query. We thus
have the following update rule:

θn ← min
{
θn−1 ×

[
1 + η ×

(
1 − 2

rn
ρ−

)]
, 1

}
We restrict the values of η to the range (0, 1). Indeed, we

still must satisfy property 5 (a value of 1 would violate this
one) and η = 0 would lead to a nonreactive system, as the
threshold would never adapt.

We acknowledge that RAL includes a non-negligible num-
ber of hyperparameters which should be well chosen in order
to obtain the best results. While we do not have any rule of
thumb on how to define exact values, the following guidelines
help RAL learn from the streaming data:
1 – The initial value of θ should be set to a high one (i.e.,
close to 1) when the number of possible labels is low, to avoid
that the model is always too certain about its prediction for
the encountered samples.
2 – ε should be higher when dealing with more dynamic
datasets, to increase the probability of accurately grasping
concept drifts; in general, we would advise using values in
the range of 1 to 5%.
3 – η should be small to avoid changing the decision powers
of the different learners, i.e., α, and θn too abruptly; we would
advise values below 0.1.
4 – There is no specific range of values for ρ± which
works better than others and these values should be picked
considering the situation in which RAL is used: if unnecessary
queries are a major issue, one should set ρ− such that its
absolute value is much higher than the one of ρ+.

To conclude, and as we said before, RAL can also easily be
used with a single classifier instead of a committee of learners.
Transforming the committee version into a single-classifier one
is straightforward. In that case, RAL becomes very lightweight
and the only element of the system that allows it to efficiently
adapt to and learn from the data stream is the variation of the
uncertainty threshold θ, by relying on the rewards.
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B. Expected Total Reward Analysis

As the main novelty of RAL lies in the introduction of a
reinforcement-learning loop to improve querying effectiveness
and the data exploration-exploitation trade-off, we devote this
section to the study of the reward properties in RAL. We rely
on concepts from the bandit theory to understand its expected
behavior. In the general case of a multiclass classification
problem, under the assumptions that ρ+ ± ρ− ≥ 0, we prove
the following bounds for the expected total reward of RAL,
T being the number of samples in an active-learning session
(see Appendix VII for proof details):

T
(
ρ+ − ρ−

)
β ≤ E

{
T∑
n=1

rn

}
≤ T

(
ρ+ + ρ−

)
+ T

(
ρ+ − ρ−

)
β′,

where β and β′ are functional parameters characterizing the
performance of the underlying machine-learning models [51],
[52]. For instance, if the models perform poorly, β is close
to zero and β′ is close to one. Conversely, if the models are
excellent, β ≈ 1 and β′ ≈ 0. This gives some intuition into the
meaning of this result. At the beginning of an active-learning
session, models perform poorly, but at least the expected total
reward is at least zero.

Furthermore, it is more beneficial to choose the rewards
such that ρ+ + ρ− ≥ 0. In this case, the upper bound is higher
– we add a term T(ρ++ ρ−) with respect to the scenario where
the rewards are not chosen in this manner –, as well as the
lower bound – we add a term T(ρ+ − ρ−). This means that,
for a promising behavior of RAL, good decisions should be
more rewarded than bad ones are penalized. At last, results
also show that the expected total reward is significantly higher
than T ρ−, whatever the values of ρ±: RAL usually takes the
appropriate decision, and thus mostly queries when necessary.
Conversely, the upper bound is always nonnegative.

V. CONTINUOUS DETECTION OF NETWORK ATTACKS

To evaluate the performance of the proposed algorithms
and adaptation strategies, we consider the detection of diverse
types of network attacks in real network-traffic measurements
collected at the WIDE backbone network, using the well-
known MAWILab dataset for attack labeling. MAWILab is a
public collection of 15-minute network-traffic traces [3] cap-
tured every day on a backbone link between Japan and the US
since 2001. Building on this repository, the MAWILab project
uses a combination of four traditional anomaly detectors (PCA,
KL, Hough, and Gamma) to partially label the collected traffic.

The evaluations provided in this section are broad and com-
prehensive, covering the overall picture addressed by ADAM
and RAL. Given the different nature and goals of ADAM
and RAL, we rely on two different evaluation strategies, each
of them adapted to the specific challenges tackled. Next, we
describe the dataset used in the evaluations in Section V-A,
as well as the employed evaluation strategies, along with the
obtained results in Sections V-C and V-D. To better under-
stand the properties and advantages of stream-based adaptive
learning in practice, we also evaluate the performance of the
proposed models in an offline-learning scenario, and show
how this approach leads to poor performance when concept

Table I: Input features for detection of attacks.

Field Feature Description

Tot. volume
# pkts num. packets
# bytes num. bytes

PKT size
pkt h H(PKT)

pkt {min,avg,max,std} min/max/std, PKT
pkt p{1,2,5,...95,97,99} percentiles

IP proto

# ip protocols num. diff. IP protocols
ipp h H(IPP)

ipp {min,avg,max,std} min/max/std, IPP
ipp p{1,2,5,...95,97,99} percentiles

% icmp/tcp/udp share of IP protocols

IP TTL
pkt h H(TTL)

ttl {min,avg,max,std} min/max/std, TTL
ttl p{1,2,5,...95,97,99} percentiles

IPv4/IPv6
% IPv4/IPv6 share of IPv4/IPv6 pkts.
# IP src/dst num. unique IPs

top ip src/dst most used IPs

TCP/UDP ports

# port src/dst num. unique ports
top port src/dst most used ports

port h H(PORT)
port {min,avg,max,std} min/max/std, PORT
port p{1,2,5,...95,97,99} percentiles

TCP flags (byte)

flags h H(TCPF)
flags {min,avg,max,std} min/max/std, TCPF
flags p{1,2,5,...95,97,99} percentiles

% SYN/ACK/PSH/... share of TCP flags

TCP WIN size
win h H(WIN)

win {min,avg,max,std} min/max/std, TCPF
win p{1,2,5,...95,97,99} percentiles

drifts occur in Section V-B. Finally, we evaluate a natural
extension of ADAM and RAL, by integrating the ADWIN
change detector within the RAL approach in Section V-E.

A. Data Description

The traffic studied in this paper spans two weeks of packet
traces collected in late 2015. From the labeled anomalies and
attacks, we specifically focus on those which are detected
simultaneously by all four MAWILab detectors. We consider
five types of attacks/anomalies: (1) DDoS attacks (DDoS),
(2) HTTP flashcrowds (mptp-la), (3) flooding attacks (ping
flood), and two different flavors of distributed network scans
(netscan) using (4) UDP and (5) TCP-ACK probing traffic. We
train different models to (binary) detect each of these attack
types separately. To perform the analysis in a stream-based
manner, we consider a slotted, time-based approach: we split
the traffic traces in consecutive time slots of ∆T seconds each,
and compute a set of features describing the traffic in each
of these slots. In addition, each slot i is assigned a label li ,
consisting of a 5-dimensional binary vector which indicates
at each position j if anomaly of type j = 1..5 is present or
not in the current time slot. We compute a large number of
features describing a time slot, using traditional packet-level
measurements including traffic throughput, packet sizes, IP
addresses and ports, transport protocols, flags, etc. The total set
accounts for 245 features, which are computed for every time
slot i. Besides using traditional features such as min/avg/max
values of some of the input measurements, we also consider
the empirical distribution of some of them, sampling it at many



8

0 10 20 30 40 50 60 70 80 90 100
FPR (%)

0

10

20

30

40

50

60

70

80

90

100

T
P

R
 (

%
)

DDoS
mptp-la
ping flood
netscan-UDP
netscan-ACK

0 10 20 30 40 50 60 70 80 90 100
FPR (%)

0

10

20

30

40

50

60

70

80

90

100

T
P

R
 (

%
)

DDoS
mptp-la
ping flood
netscan-UDP
netscan-ACK

0 10 20 30 40 50 60 70 80 90 100
FPR (%)

0

10

20

30

40

50

60

70

80

90

100

T
P

R
 (

%
)

DDoS
mptp-la
ping flood
netscan-UDP
netscan-ACK

(a) CART model. (b) NN model. (c) NB model.
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Figure 2: Detection performance (ROC curves) achieved by different models for (offline) detection of network attacks.

different percentiles. This provides much richer information,
as the complete distribution is taken into account. We also
compute the empirical entropy H(·) of these distributions,
reflecting the feature dispersion. Table I describes the full set
of 245 features.

Naturally, the length of a time slot ∆T influences the
computation of the proposed features, and therefore the per-
formance of the detection models. While the analysis of such
an impact is out of the scope of this paper – the analysis
of streaming networking data under the presence of concept
drifts, independently of the input features’ definition –, we
have tried different values for ∆T and adopted ∆T = 5 seconds
for the computation of features, which provides a good trade-
off between low temporal resolution and model performance.

B. Offline Training and Online Performance Degradation

To understand the limitations of offline-learning approaches
and the advantages of stream-based ones, we begin the anal-
ysis by treating the detection problem as an offline-training
problem. We consider six standard machine-learning models
previously used in the literature for the offline analysis,
including: (i) decision trees (CART), (ii) naı̈ve Bayes (NB),
(iii) multi-layer neural networks (NN), (iv) support vector
machines (SVM), (v) random forest (RF), and (vi) nearest
neighbors (k-NN). We test the detection capabilities of the
six supervised approaches by computing the true and false
positive rates (TPR/FPR) for each of the attack types, using as
input the full set of 245 features. Figure 2 depicts the receiver-
operating-characteristic (ROC) curves obtained with each de-
tector, for the proposed attack classes. To reduce over-fitting,
all presented results correspond to 10-fold cross-validation
(CV). We use standard Java Weka machine-learning libraries

for the analysis, including parameter calibration (grid-based
search), model training, and validation. All the attack-detection
problems presented next are treated as binary classification
tasks; as a consequence, when we refer to the term detection
accuracy, we shall always refer to the recall of the attack class,
and not to the global accuracy of the model.

Figure 2 provides the comparative results obtained for the
selected supervised detectors. Besides the NB and the k-
NN models, the tested approaches provide all highly accurate
results for the five types of attacks. In general, detection
performance is worse for DDoS attacks for all the evaluated
models, suggesting that its fingerprint in the considered set of
features is less marked than for the other attacks. Both the NN
and RF models achieve the best performance, detecting around
80% of the attacks without false alarms. The proposed models
are very accurate to detect the different types of attacks. The
NN and the RF models are the best ones, detecting more than
90% of the attacks with a false alarm rate below 1%. These
initial results suggest that offline approaches are in principle
highly accurate; however, these results correspond to 10-fold
cross-validation, using the full dataset. In practice, one would
normally train the models with some time-bounded dataset,
and then apply the resulting detectors to the subsequently in-
coming measurements. To better understand how well it could
work in a real deployment, Figure 3 reports the performance
of some of the aforementioned models, when trained over the
first day of data, and tested on the following days.

Figure 3(a) considers the performance of the CART model
– similar results are observed for the other models, for all
the five attack types. While detection accuracy remains high
during the first couple of days, there is a major performance
degradation over time when models are not retrained. The
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Figure 3: Performance drift for the offline trained models along
time. Training is done on the first day of data.

same is observed for other models in Figure 3(b), where
detection performance for DDoS attacks is reported – we
consider the DDoS attack, as it is the most difficult one to
detect in the dataset. This simple example serves as basis
to explain the paramount relevance of adaptive learning for
network security, particularly in practice, where machine-
learning based detectors are generally mistrusted by network
operators.

C. ADAM Evaluation Strategy and Performance

We now proceed to the evaluation of the four implemented
learning algorithms (incremental k-NN, HAT, ARF, and SGD)
and adaptation strategies in ADAM. We firstly study the sta-
tistical changes on the input data over the complete evaluation
period by detecting the concept drifts. Then, we evaluate the
different adaptive learning algorithms using ADWIN, and, for
the sake of completeness, complement the analysis when using
ADAM with the FIXWIN approach.

To evaluate the performance of stream-based algorithms,
the standard approach in the literature is to benchmark them
against their corresponding offline, batch implementations (cf.
Figure 2). We use as baseline the results obtained for the
matching offline algorithms, including k-NN, decision tree,
random forest, and SVM, subtracting the batch results from
the corresponding stream-learning results.

A commonly used evaluation scheme in the data-stream-
mining domain is the well-known prequential approach. Each
instance is first used to test a model, and then to update it.
Prequential evaluation can be used to measure the accuracy
of a model since the start of the evaluation, by keeping in
memory the complete history of instances and evaluating the
model on each new instance, but it is generally applied using
sliding windows – as we do in ADAM –, which forgets
previously seen instances in the model-update process and
focuses on those instances in the current sliding window or
learning memory. As opposed to more traditional k-fold cross-
validation, which is generally used in the evaluation of offline
machine-learning models based on k shuffles of the complete
dataset, prequential cross-validation works on a single stream
of data using only one model: consequently, its assessment of
the stream-based model tends to be weaker.

To avoid this weakness, we evaluate ADAM following a
new strategy to evaluate stream-based algorithms [53], using
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Figure 4: PHT detection; dashed lines indicate changes.

prequential k-fold cross-validation. This strategy is basically
an adaptation of k-fold cross-validation to the streaming
setting, and assumes we have k different models derived from
the algorithm we want to evaluate, running in parallel. Each
time a new sample arrives, it is used for testing one of the
k models selected randomly, and is then used for training by
all the other models. As evaluation metric, we take the attack-
detection accuracy (ACC) – i.e., the recall for the attack class.

For completeness, we also consider the area under the ROC
curve (AUC) as evaluation metric, on its prequential version.
The machine-learning community often uses the AUC statis-
tic for model comparison, which is simple and informative,
and provides more reliable comparisons when dealing with
imbalanced data. To explain the AUC, let us consider a 2-
class classification model f that first estimates a probability
of a sample x belonging to the class +, denoted by f (x), then
uses this probability to make a decision. If x+ is a random
sample of the class + and x− another random sample of the
class −, the AUC is the probability that f (x+) > f (x−). The
higher the AUC, the better the discrimination of the model.
The AUC also reveals how good are the recall and precision of
a model for a specific target class: higher AUC values reflect
higher TPR values and lower FPR values. Similar to 2, the
AUC values correspond to the ROC curves for the attack class.
To calculate the AUC in a continuous fashion, one needs to
sort a given dataset by class probability and iterate through
each observation. Because the sorted order of observations
defines the resulting value of AUC, adding a new observation
to the dataset forces the procedure to be repeated. As such,
AUC cannot be directly computed on data streams, given the
associated time and memory requirements. In [54], authors
propose an efficient incremental algorithm that uses a sorted
tree structure with a sliding window to compute the AUC using
constant time and memory.

We use the MOA machine-learning library [55] to perform
the analysis, including both the hyperparameter calibration
(using a grid-search procedure) and the model training and
evaluation. MOA is specifically designed for stream-based
machine-learning approaches. Finally, to limit redundancy, we
evaluate ADAM using ADWIN through prequential k-fold
cross-validation, and ADAM using FIXWIN through AUC
prequential evaluation. Nevertheless, drawn conclusions are
the same as those obtained by running the full benchmark
with all models and both evaluation strategies.
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Figure 5: Prequential 10-fold cross-validation accuracy evaluation. Diagrams show prequential 10-fold CV results for each
algorithm for each attack type. Concept drifts detected by the Page-Hinkley test are marked with dashed lines.

1) Concept-Drift Detection: We first study the variation of
the statistical properties of the considered dataset, in particular
detecting concept drifts with the Page-Hinkley test. Figure 4
depicts the cumulative number of changes observed in the
dataset, as well as the times when those changes are detected.
The test detects 14 abrupt changes during the total mea-
surement time span. The frequency of changes significantly
increases in the last third of the dataset, with more than 10
changes detected in the last four days. Concept drifts occur
from modifications of the underlying characteristics of the
prediction target. Concept drifts can be used to explain sudden
shifts in the performance of algorithms as depicted in Figure 4.

2) Performance Evaluation – ADWIN: We evaluate the
performance of ADAM using ADWIN on top of the learning
algorithms in five binary-classification scenarios, one for each

attack type, resulting in five sets of results for each tested
algorithm. Figure 5 reports the performance results for each
attack type, considering detection accuracy as performance
metric – i.e., recall for the attack class – and using the batch-
algorithm accuracy as baseline. The prequential 10-fold-CV
performance evaluation shows that both the ARF and SGD
models rapidly converge to the batch-based accuracy results,
with minimum performance variations under concept drifts,
and with a slightly better performance for the SGD model,
this one even outperforming the batch-based performance.

On the other hand, both the k-NN and HAT models do not
show any apparent convergence and results tend to oscillate
around the batch-algorithm baseline. In the case of HAT, we
can appreciate the correlation between the detected concept
drifts and the performance variations of the model. Interest-
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Figure 6: Prequential 10-fold cross-validation recall (detection accuracy) and precision evaluation. Diagrams show prequential
10-fold CV results for the best algorithm (SGD) for each attack type.
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Figure 7: Prequential AUC evaluation. Diagrams show the dependency of the prequential AUC results on the evaluation-window
size, for each attack type. Concept drifts are marked with dashed lines.

ingly, the HAT model is the one achieving the highest accuracy
of the four models – up to an improvement of 40 percentage
points with respect to the baseline –, but cannot maintain
such a performance constantly in time, with significant deteri-
oration. This scenario shows the delicate challenge to handle

trade-off between model performance, learning frequency, and
forgetting of past measurements.

To complement the evaluation, Figure 6 re-evaluates the
best performing model (i.e., SGD), on the five attack types,
additionally evaluating the precision of the model for the attack
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dataset ε η initial θ budget ρ+ ρ−

MAWI 2.5% 0.01 0.9 0.05 1 −1

Woodcover 5% 0.02 0.9 0.01 1 −1

Table II: RAL hyperparameters, selected by grid search.

class. As before, values are normalized to the batch/offline
performance (cf. Figure 2(e)). Recall results match those
presented in Figure 5 for SGD, confirming a sustained high
detection accuracy over time. In addition, the sustained high
precision for all attack types also confirms the low false-
alarm rates achieved by the streaming model, observed in
Figure 2(e). As we show next in Figure 7, the area under
the ROC curve (AUC), both SGD and ARF maintain a high
detection accuracy and low false-alarm rate, with a consis-
tent and sustained-over-time AUC matching the one achieved
offline (cf. Figure 2).

3) Performance Evaluation - FIXWIN: We now take the
FIXWIN strategy as basis for the analysis, using prequential-
AUC evaluation. We evaluate different sliding-window sizes,
by setting them to a fraction of the total dataset size:
{10%,20%,...,100%}, i.e., {270,540,...,2700} samples, consid-
ering 10 independent runs. Figure 7 shows the prequential-
AUC values along time (number of samples), with the batch-
based AUC values as baseline (cf. Figure 2), for the 10 tested
window sizes. Recall that a high AUC value shows that the
underlying model achieves high detection accuracy and low
false-alarm rates. For all four models, we first observe how
increasing the window size smooths performance variations
along time. However, as observed before in the case of
ADWIN, using smaller or more fine-tuned window sizes can
translate into better performance; for example, the HAT model
achieves a performance gain of up to 40 percentage points
(with respect to the baseline) when using 10%-dataset window
size. The window size allows to track long or short-term
changes better, depending on the tuning.

As before, we see how both ARF and SGD are highly
robust to concept drifts and converge for almost all window
sizes; this also happens, to a lesser extent, for the k-NN
model, which finds convergence and robustness for window
sizes above 40% of the dataset size. The performance of
HAT also starts converging for longer window sizes, but with
an important performance degradation for some attack types,
directly implying that keeping past history under concept drifts
might negatively impact results.

D. RAL Evaluation Strategy and Performance

To showcase the performance of RAL, we evaluate and
compare it to a state-of-the-art algorithm for stream-based
active learning, as well as against a very basic random-
sampling approach (RS). We compare RAL to the Randomized
Variable Uncertainty (RVU) technique proposed in [28], [29],
as this approach also heavily relies on the uncertainty of
the underlying machine-learning models to take the querying
decisions. Besides the MAWI datasets, we also use a subset of
the widely used Forest Covertype data (https://archive.ics.uci.

edu/ml/datasets/Covertype) to showcase RAL’s generalization
properties in a wider range of application domains. This
dataset contains samples labeled with different forest cover
types, represented by cartographic variables. Different from
MAWI, where datasets have a binary label and the analysis
focuses on the accuracy for the attack class (i.e., recall), the
Woodcover dataset consists of seven different classes reflecting
the different wood cover types; therefore, accuracy evaluations
for this dataset do not correspond to a specific class, but rather
to the overall accuracy across all seven classes. As the data
is perfectly balanced among classes, results are comparable
and not biased. We use the term prediction accuracy when
referring to Woodcover results.

For each benchmarked algorithm, we proceed as follows:
first, we subdivide the datasets into three consecutive, disjoint
parts, i.e., the initial training set, the streaming set, and the
validation set. The validation set consists of the last 30% of
the dataset, the initial training set is a variable fraction of the
first samples (varying between the first 0.5%, 1%, 2%, 5%,
10%, and 15%), and the streaming set includes the remaining
samples. We train a model on the initial training set and check
its detection accuracy on the validation set – we refer to this as
the initial accuracy. Next, we run the specific active-learning
algorithm on the streaming set and let it pick the samples it
decides to learn from. To emulate a stream-learning scenario,
we retrain the model each time a new label is queried. Finally,
the reported accuracy for each algorithm corresponds to the
application of a final model, trained on the initial training set
plus the selected samples, on the validation set.

We implement the budget mechanism presented in [28] for
both RAL and RVU, based on the ratio between the number
of queries and the total number of samples observed so far;
the system can issue queries to the oracle as long as this ratio
is below a certain budget. For RS, we use a budget indicating
the exact number of samples to ask feedback for. For each
attack type, we set it to the highest average number of queried
samples by either RAL or RVU among all the tests with all
the considered initial-training-set sizes.

Similarly to ADAM’s evaluation, all tests are repeated 10
times, and we report both average detection accuracy and
standard errors. For RAL, we indicate the average number
of queries performed due to the uncertainty of the underlying
model, as well as those issued through the ε-greedy mech-
anism. For comparison purposes, we also report the average
number of queries issued by RVU. The hyperparameter values
of RAL are chosen by grid search on the corresponding train-
ing sets, within the ranges prescribed in Section IV. The used
values are indicated in Table II. RAL’s and RVU’s budgets are
set to the same value of 0.05 for all the experiments. In the case
of RVU, we set its parameters based on those recommended
in [29]. We limit the set of results in MAWI to only two attack
types, namely ping flood and UDP netscan.

Figures 8 and 9 show the obtained results in terms of
detection accuracy and number of queries, respectively, for
(a) ping-flood, (b) UDP-netscan, and (c) Woodcover datasets.
In Figure 8, the reported all-streaming accuracy (gray line)
refers to the detection accuracy obtained by the model in case
it queries all the samples seen in the stream. We apply the
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Figure 8: Detection accuracy for RAL, RVU, and RS. For each of the tested datasets, RAL outperforms both techniques.
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Figure 9: Number of queries issued by RAL (top) and RVU (bottom). RAL achieves better accuracy, querying fewer samples.

committee version of RAL on the detection of attacks, and the
single classifier version of RAL in the wood-covertype set. The
committee is a voting classifier composed of a k-NN model
with k = 5, a decision tree, and a random forest with 10 trees,
whereas the single classifier is a 10-tree random forest. We
use the same models for RVU and RS in the corresponding
datasets, i.e., committee for attacks and single classifier for
Woodcover, relying on the same machine-learning algorithms
as RAL. The accuracy plots show that RAL outperforms both
RVU and RS on average, in all the datasets. A striking example
is the result for the UDP-netscan detection, where RAL obtains
accuracies which are almost 10 percentage points higher than
the ones of RVU and RS for the two smallest initial-training-
set sizes. In the case of Woodcover, RAL still yields better
accuracies than both RVU and RS, even though this prediction
task seems very challenging, as accuracy values are very low.
To our surprise, RVU is often outperformed by RS. Finally, the
ping-flood detection analysis shows that the three approaches
often yield an accuracy higher than the all-streaming one,
underlining that learning from the entire data stream does not

necessarily translate into better performance. This could be
explained by the high number of concept drifts in the data.
The initial accuracy is constant for the two different MAWI
attack subsets. This is due to the fact that the first 15% of these
datasets consist of points with the same label (more precisely,
they represent an attack).

When it comes to the number of queried samples, Figure 9
shows that RAL queries, on average, significantly less often
than RVU, and especially for the detection of networks attacks
(where more concept drifts occur) – between 20% and 25%
fewer queries. A non-negligible part of these queries are due
to the model’s uncertainty, suggesting that the samples picked
by RAL are wisely chosen. The results also highlight that the
ε-greedy policy is very useful, as the additional exploration
capability helps better deal with the concept drifts in the data,
contributing to the better results showed in Figure 8. Finally,
the number of samples/labels queried by RAL represents less
than 4% of the total number of streaming samples, also
showing how much one can save in terms of required labeling
for training.
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Figure 10: RAL’s detection accuracy temporal convergence.

We also study the convergence of RAL’s attack-detection
performance with respect to the evolution of the streaming
samples (i.e., time), for the two MAWI attack datasets. More
precisely, we evaluate RAL on the validation set after a new
sample is queried. We set the initial training-set size to the
first 0.5% of the data: according to Figure 8, such a small
initial training-set provides the best results. Figure 10 reports
the accuracy convergence for the ping-flood and netscan
detection, along with the temporal evolution of the number
of queried samples. We observe that the detection accuracy
is not clearly converging in the two scenarios: the ping-
flood-detection performance seems to converge to 90%, while
there does not seem to be any convergence for the netscan
case. This is not surprising, considering that these datasets
present multiple concepts drifts and are very dynamic. We
investigated the reasons behind the sharp accuracy increase in
both evaluations, and found that they are highly correlated with
queries issued by the committee – not the ε-greedy scenario.
This analysis confirms that acquiring the labels for which the
models have a low confidence in their prediction is indeed a
good strategy for active learning, and in particular also for
RAL. The degradation of the detection performance is likely
due to the acquisition of noisy points in the dataset and to the
concept drifts. The significant decrease in accuracy is mostly
caused by samples queried by random exploration (ε-greedy)
and not by RAL’s committee, even though this mechanism also
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Figure 11: Proportion of obtained rewards vs. obtained penal-
ties by RAL – wood-covertype dataset.

often provides performance boost by forcing RAL to explore
the data space.

Finally, Figure 11 reports the fraction of positive and
negative rewards obtained by the reinforcement-learning loop,
in this case for the woodcover set. Results show that, for each
different initial-training-set size, the fraction of useful queries
is above 60%, further confirming the expected theoretical
results regarding the total reward, cf. Section IV-B.

Based on these results, one could wonder whether the per-
formance gain by RAL is worth the complexity of the system.
Even though the accuracy gain might not be very significant,
RAL’s querying strategy has additional advantages over the
two other techniques. For instance, RS does not consider the
uncertainty of the model nor the usefulness of the queries,
meaning that there is a risk to miss interesting samples. Indeed,
querying the ground truth when the model is uncertain helps
discover under-explored regions where to learn from, and RAL
is additionally guided by its reward mechanism. In the specific
case of the MAWI dataset, RS would probably miss interesting
attack samples, while RAL has a higher chance of querying
the ground truth for these data samples and better learn how to
detect attacks. When it comes to RVU, another advantage of
RAL over that algorithm, besides its better performance shown
above, is that the querying decisions are also influenced by
the informativeness of all past queries, not only by their sheer
execution; RVU does not take that information into account at
all, and thus it risks querying unnecessary samples too often.
This is especially problematic if querying is very expensive,
or if the oracle has only limited budget/availability.

E. Integrating ADAM & RAL

To conclude the study, we evaluate whether extending RAL
with explicit concept-drift detection, as ADAM, could provide
further improvements in terms of performance and adaptabil-
ity. Inspired by ADAM and based on previous work [21],
[22], we use ADWIN to detect shifts in the reward signal
of RAL, which is a good proxy for detection of concept drifts
in the input data. The reasoning behind this is simple: in case
RAL’s querying behavior starts to deteriorate by accumulating
penalties, i.e., a series of ρ−, we need to retrain the underlying
models with only the most recent data to eliminate the outdated
data points from the training set; conversely, if RAL starts
to perform well by accumulating a series of ρ+, we might
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Figure 12: Detection-accuracy comparison between RAL and RAL with explicit Concept-Drift detection (RAL-CD).

improve and strengthen this behavior by removing older data.
We rely on the scikit-multiflow library [56] to implement
ADWIN into RAL. We refer to this approach as RAL-CD
– RAL with explicit Concept-Drift detection.

We evaluate RAL-CD by proceeding in the same way as
for the evaluation of RAL. In particular, we compare RAL-
CD against RAL on the same three datasets. Figure 12 reports
the obtained results. The number of concept drifts detected
by ADWIN in RAL is generally very low: in fact, in most
of the repetitions, ADWIN detected only one change in the
reward pattern for the whole MAWI streams, and almost
no changes when it comes to the Woodcover dataset. RAL-
CD’s detection accuracy is slightly worse than that of RAL.
Intuitively, this shows that the former version of RAL, i.e.,
without any explicit drift detection, already selects the best
samples that yield high accuracy. Results reveal that using
smaller training sets with RAL-CD yields worse performance
than with RAL. As an overall conclusion, the outcomes of
this evaluation show that the drift detector does not improve
RAL’s predictive performance, underlining that the samples
selected by RAL are already wisely chosen. However, we
hypothesize that RAL-CD might actually prove useful in the
case of longer and even more dynamic streams, with more
pronounced drifts: learning an accurate model on both pre-
and post-drift data might not be feasible, and removing the
pre-drift data could bring a distinctive advantage to RAL. We
are currently considering a more comprehensive evaluation of
RAL-CD on other datasets.

VI. CONCLUDING REMARKS

Dynamic and adaptive-memory-based learning seems to
be a promising learning strategy to adapt to very dynamic
environments, where concept drifts occur often. This is a
common scenario when dealing with online network-traffic-
monitoring applications. We have introduced and evaluated
ADAM and RAL, two stream-based machine-learning ap-
proaches to tackle important challenges when dealing with
data streams. We have shown that ADAM allows to track
transient changes and concept drifts along time. Indeed, using
ADAM, adaptive learning algorithms can continuously achieve
high detection accuracy over dynamic network data streams,
when dynamically adapting their learning pace and memory
to changes in the underlying statistics of the samples. We have
confirmed that both adaptive random forests and SVM through

stochastic gradient descent are better suited for the studied
problem, especially in terms of robustness to concept drifts and
convergence of results. We have also introduced RAL, a novel
Reinforced stream-based Active-Learning approach to tackle
the challenges of stream-based active learning, i.e., selecting
the most valuable sequentially incoming samples to reduce the
amount of learning data to label, using reinforcement-learning
principles. RAL does not only learn from the data stream, but
also from the relevance of its own querying decisions. RAL
provides a completely different exploration-exploitation trade-
off than existing algorithms. Evaluations have shown that RAL
provides very promising results, outperforming state-of-the-art
techniques, providing higher accuracies with less ground truth.
As an additional contribution, we make RAL freely available
on GitHub.

REFERENCES

[1] G. Li et al., “Detecting cyberattacks in industrial control systems using online
learning algorithms,” in Neurocomputing, vol. 364, pp. 338–348, 2019.

[2] B. Settles, “Active learning literature survey,” University of Wisconsin-Madison,
Tech. Rep., 2010.

[3] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab : Combining
Diverse Anomaly Detectors for Automated Anomaly Labeling and Performance
Benchmarking,” in 6th ACM CoNEXT Conference, 2010.

[4] S. Wassermann, T. Cuvelier, P. Mulinka, and P. Casas, “ADAM & RAL: Adaptive
Memory Learning and Reinforcement Active Learning for Network Monitoring,”
in 15th International Conference on Network and Service Management (CNSM),
2019.

[5] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F. E. Solano,
and O. M. C. Rendon, “A Comprehensive Survey on Machine Learning for
Networking: Evolution, Applications and Research Opportunities,” Journal of
Internet Services and Applications, vol. 9, no. 1, pp. 16:1–16:99, 2018.

[6] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM
Computing Surveys, vol. 41, no. 3, pp. 15:1–15:58, jul 2009.

[7] M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network anomaly
detection techniques,” Journal of Network and Computer Applications, vol. 60,
no. C, pp. 19–31, 2016.

[8] W. Zhang, Q. Yang, and Y. Geng, “A survey of anomaly detection methods in
networks,” in Computer Network and Multimedia Technology CNMT, 2009.

[9] J. Vanerio and P. Casas, “Ensemble-learning approaches for network security and
anomaly detection,” in ACM SIGCOMM Big-DAMA Workshop, 2017.

[10] P. Casas, J. Vanerio, and K. Fukuda, “Gml learning, a generic machine learning
model for network measurements analysis,” in 13th International Conference on
Network and Service Management (CNSM), 2017.
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VII. APPENDIX – RAL BOUNDS PROOF

In this section, we provide a formal proof for the bounds on
the expected total reward as presented in Section IV-B. The
specific bounds are as follows:

E

{
T∑
n=1

rn

}
≤ T

(
ρ+ + ρ−

)
+ T

(
ρ+ − ρ−

)
β′

E

{
T∑
n=1

rn

}
≥ T

(
ρ+ − ρ−

)
β

where β and β′ are parameters defined later in this appendix;
they depend on the prediction performance of the machine-
learning models.

The proof is done in three consecutive steps, going from the
simple version of a single binary classifier (Section VII-A), to
a single multiclass classifier (Section VII-B), to a multiclass
voting classifier (Section VII-C), the latter corresponding to
the committee version of RAL. These three cases all have the
same generic bound, with slightly different definitions of β
and β′.

A. Expected Reward Analysis – Single Classifier

Let us analyze the expected total reward obtained by using
RAL, i.e., E

{∑T
n=1 rn

}
, where T denotes the number of sam-

ples in the considered data stream and rn indicates the reward
obtained for the n-th sample. In the following developments,
we use these notations:

• ŷn – n-th predicted value
• p̂n – certainty of the model for the n-th prediction
• ρ± – reward and penalty obtained by RAL respectively;

the reward ρ+ must be nonnegative and the penalty ρ−

nonpositive
• VC – Vapnik-Chervonenkis dimension of the learner [51]
• θn – uncertainty threshold before having observed the n-

th sample
• errn – error rate of our classifier before having observed

the n-th sample
• errn – training error of model before having observed the

n-th sample

The expected total reward writes E
{∑T

n=1 rn
}
=

∑T
n=1 E {rn}.

Based on the classical result of [51], we have the following
bound:

fn(α) = errn +

√
1

Nn

[
VC

(
log

2Nn

VC
+ 1

)
− log

α

4

]
P (errn ≤ fn(α)) = 1 − α

where Nn denotes the training-set size for the underlying
classifier at the n-th round (before observing the n-th sample)
and α is a confidence level whose value lies in the interval
[0, 1]. We can therefore write this probabilistic bound as:

P
[
P(ŷn , yn) ≤ fn (α)

]
= 1 − α

This means that the probability of making a mistake can be
written as:

P [ŷn , yn] = P [ŷn , yn |P(ŷn , yn) ≤ fn (α)]

× P [P(ŷn , yn) ≤ fn (α)]

+ P [ŷn , yn |P(ŷn , yn) > fn (α)]

× P [P(ŷn , yn) > fn (α)]

= P [ŷn , yn |P(ŷn , yn) ≤ fn (α)] (1 − α)
+ P [ŷn , yn |P(ŷn , yn) > fn (α)] α

Its upper and lower bounds are thus:

0 + α fn (α) ≤ P [ŷn , yn] ≤ (1 − α) fn (α) + α × 1

For the next proofs, we will require bounds on the proba-
bility of the certainty of the model being less than a threshold.
Unfortunately, to the best of our knowledge, no generic result
exists for the probability distribution of these certainties, which
leads to very loose bounds:

0 ≤ P [p̂n ≤ θn] ≤ 1

For the following steps, we rely on classical results in
probability theory, namely the union bound and Fréchet’s
inequality. For two probabilistic events A and B, be they
independent or not, the following bounds hold:

P(A ∧ B) ≤ P(A) + P(B)

P(A ∧ B) ≥ max {0, P(A) + P(B) − 1}

We have that E {rn} =
∑

r ∈R r×P(rn = r) with R = {ρ+, ρ−}
being the set of all possible reward values. As RAL does not
obtain any reward in the ε-scenario, it can be ignored. There-
fore, we have the following decomposition of the expectation
and a generic upper bound:

E {rn} = ρ+︸︷︷︸
≥0

P [p̂n ≤ θn ∧ ŷn , yn]︸                      ︷︷                      ︸
≤(P[p̂n≤θn]+P[ŷn,yn])

+ ρ−︸︷︷︸
≤0

P [p̂n ≤ θn ∧ ŷn = yn]︸                      ︷︷                      ︸
≥(P[p̂n≤θn]+P[ŷn=yn]−1)

≤ P [p̂n ≤ θn]
(
ρ+ + ρ−

)
+ P [ŷn , yn] ρ

+

+ [1 − P [ŷn , yn]] ρ
− − ρ−

≤ P [p̂n ≤ θn]
(
ρ+ + ρ−

)
+ P [ŷn , yn]

(
ρ+ − ρ−

)
Finally, the upper bound on the expected total reward,

under the assumption that both (ρ+ + ρ−) and (ρ+ − ρ−) are
nonnegative, is:

E

{
T∑
n=1

rn

}
≤ T

(
ρ+ + ρ−

)
+ T

(
ρ+ − ρ−

)
[(1 − α) fn (α) + α]︸                   ︷︷                   ︸

β′

If these two assumptions do not hold, a similar bound can still
be achieved:
First, suppose that ρ+ + ρ− ≥ 0 and ρ+ − ρ− ≤ 0. In this
case, the only solution is to have ρ+ = ρ− = 0, thus trivially
E{

∑T
n=1 rn} = 0.
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Second, suppose that, conversely, ρ++ρ− ≤ 0 and ρ+−ρ− ≥ 0.
These assumptions lead to:

E

{
T∑
n=1

rn

}
≤ T

(
ρ+ − ρ−

)
[(1 − α) fn (α) + α]︸                   ︷︷                   ︸

β′

Third, the case where both ρ+ + ρ− ≤ 0 and ρ+ − ρ− ≤ 0
should not be studied further, because that would imply that
ρ+ ≤ 0, which violates the defined range of allowed values
for ρ+ (in case ρ+ = 0, we must have ρ− = 0).

As a next step, we derive a lower bound of the expected
total reward, with a very similar reasoning. First, the expected
reward can be decomposed as:

E {rn} = ρ+︸︷︷︸
≥0

P [p̂n ≤ θn ∧ ŷn , yn]︸                      ︷︷                      ︸
≥(P[p̂n≤θn]+P[ŷn,yn]−1)

+ ρ−︸︷︷︸
≤0

P [p̂n ≤ θn ∧ ŷn = yn]︸                      ︷︷                      ︸
≤(P[p̂n≤θn]+P[ŷn=yn])

≥ P [p̂n ≤ θn]
(
ρ+ + ρ−

)
+ (P [ŷn , yn] − 1)

(
ρ+ − ρ−

)
Eventually, if ρ+± ρ− ≥ 0, the expected total reward is at least
T (ρ+ − ρ−) [α fn (α) − 1], i.e., β = α fn (α) − 1. Conversely,
if ρ+ + ρ− ≤ 0 and ρ+ − ρ− ≥ 0, the lower bound is
T (ρ+ − ρ−) [α fn (α) − 2], i.e., β = α fn (α) − 2.

B. Generalization to the Multiclass Case

The VC dimension makes no more sense when the clas-
sification problem includes multiple classes. There have been
several generalizations thereof, for instance the covering num-
ber N (p)

(
γ/4,∆γG, 2 Nn

)
[52], where ∆γG is the set of clas-

sification margins obtained by any classifier of the family G
in the known Nn data points (if a margin is larger than γ, it
is clipped to γ). errγ,n is the number of misclassifications,
where an element is misclassified if its margin is less than γ.
With a margin γ ∈ R+0 , a real number Γ ∈ R+0 (γ ≤ Γ), and
the previously defined notations, the following bound on the
generalization error holds:

fn (α, γ) = errγ,n +
1

Nn

+

√
2

Nn

[
log

(
2N (p)

(γ
4
,∆γG, 2 Nn

))
− log

2 Γ
α γ

]
P (errn ≤ fn (α, γ)) = 1 − α

Notation is taken directly as defined in [52].
Considering that ρ+ + ρ− ≥ 0, the upper bound of the

expected total reward can be computed as in the binary-
classification problem:

E

{
T∑
n=1

rn

}
≤ T

(
ρ+ + ρ−

)
+T

(
ρ+ − ρ−

)
[(1 − α) fn (α, γ) + α]︸                      ︷︷                      ︸

β′

Similarly, the lower bound for a multiclass problem can be
expressed as:

E

{
T∑
n=1

rn

}
≥ T

(
ρ+ − ρ−

)
[α fn (α, γ) − 1]︸              ︷︷              ︸

β

C. Committee Version

The mathematical developments for the committee version
are very similar to the single classifier ones. First of all,
the committee is still a classifier, and thus the same kind of
bound applies on the probability of misclassifying. The only
difference is that we have to take the VC dimension of the
stacked classifiers instead of the one of the single classifier.

RAL asks the oracle for a label (and obtains the corre-
sponding reward) if the weighted average of the decisions
encourages it to query. We denote by di,n the random variable
indicating whether the i-th classifier decides to query the oracle
or not, i.e., whether its certainty p̂i,n for the n-th prediction
is below the threshold θn (in case of querying, di,n = 1;
otherwise, di,n = 0). αi,n is the weight of the i-th classifier
for the n-th sample; we have previously imposed that the sum
of the weights must be one (

∑C
i=1 αi,n = 1 for each sample n).

Thus, RAL asks when:
C∑
i=1

αi,n di,n ≥
1
2

For the upper bound, the previous developments still hold:

E {rn} ≤ P

[
C∑
i=1

αi,n di,n ≥
1
2

] (
ρ+ + ρ−

)
+P [ŷn , yn]

(
ρ+ − ρ−

)
Again, to the best of our knowledge, no generic result exists
for a probability distribution of the querying decisions; we
therefore have to resort to a very broad bound:

0 ≤ P

[
C∑
i=1

αi,n di,n ≥
1
2

]
≤ 1

Finally, the expected total reward is, if ρ+ ± ρ− ≥ 0, at most:

E

{
T∑
n=1

rn

}
≤ T

(
ρ+ + ρ−

)
+T

(
ρ+ − ρ−

)
[(1 − α) fn (α, γ) + α]︸                      ︷︷                      ︸

β′

Similarly, concerning the lower bound, we obtain, for the
same reasons, the same lower bound as in the single classifier
case. Specifically, if ρ+ ± ρ− ≥ 0,

E

{
T∑
n=1

rn

}
≥ T

(
ρ+ − ρ−

)
[α fn (α, γ) − 1]︸             ︷︷             ︸

β


