Progressive failure of ductile metals: Description via a three-dimensional coupled CZM-XFEM based approach - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Engineering Fracture Mechanics Année : 2021

Progressive failure of ductile metals: Description via a three-dimensional coupled CZM-XFEM based approach

Résumé

The present work pertains to the numerical prediction of the current residual strength of large metallic engineering structures when submitted to accidental overloads. In this context, is developed a unified 3D numerical methodology reproducing the successive stages of the progressive failure of structures made of ductile metals, viz. (i) more or less diffuse micro-voiding induced damage, (ii) strain/damage localization in a narrow band, and (iii) macro-crack formation and propagation. This is notably realized via a combination of the GTN model and an XFEM/CZM coupling. Localization is addressed here as a phenomenon driven either by plastic instability or void coalescence. In the latter case an original transition criterion is proposed, accounting for the competition between Mode I/II type localization, utilizing the local triaxiality as a mode indicator. The methodology is implemented as a user element subroutine (UEL) within the commercial finite element computation code ABAQUS and its performance is assessed considering 3D numerical simulations of various loading cases. The proposed methodology is shown to be mesh objective and able to fairly reproduce ductile crack patterns, while it gives promising results regarding global specimen responses.
Fichier principal
Vignette du fichier
S0013794420310584.pdf (6.04 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03110423 , version 1 (03-02-2023)

Licence

Paternité - Pas d'utilisation commerciale

Identifiants

Citer

Konstantinos Nikolakopoulos, Jean-Philippe Crété, Patrice Longère. Progressive failure of ductile metals: Description via a three-dimensional coupled CZM-XFEM based approach. Engineering Fracture Mechanics, 2021, 243, pp.107498. ⟨10.1016/j.engfracmech.2020.107498⟩. ⟨hal-03110423⟩
81 Consultations
10 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More