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Robust Variational-Based Kalman Filter for Outlier
Rejection With Correlated Measurements

Haoqing Li , Daniel Medina , Student Member, IEEE, Jordi Vilà-Valls , Senior Member, IEEE,
and Pau Closas , Senior Member, IEEE

Abstract—State estimation is a fundamental task in many engi-
neering fields, and therefore robust nonlinear filtering techniques
able to cope with misspecified, uncertain and/or corrupted models
must be designed for real-life applicability. In this contribution
we explore nonlinear Gaussian filtering problems where measure-
ments may be corrupted by outliers, and propose a new robust
variational-based filtering methodology able to detect and mitigate
their impact. This method generalizes previous contributions to
the case of multiple outlier indicators for both independent and
dependent observation models. An illustrative example is provided
to support the discussion and show the performance improvement.

Index Terms—Robust filtering, variational Bayes, outliers,
heavy-tailed noise, correlated measurements.

I. INTRODUCTION

S TATE estimation is a fundamental task in a plethora of
engineering fields, ranging from robotics, guidance and

navigation systems, to information fusion or time-series anal-
ysis [1]–[3]. For linear dynamic state-space models, the linear
minimum mean square error (MSE) estimate is given by the
well known Kalman filter (KF), which is optimal under nom-
inal conditions, that is, known system matrices, known noise
statistics and perfect initialization [4]. For nonlinear systems,
the most popular approaches are the family of sigma-point
Gaussian filters (SPGF) under the Gaussian assumption [5],
[6] and sequential Monte Carlo (SMC) methods [7], [8] for
general non-Gaussian models. A fundamental problem of all
these well established techniques is their lack of robustness
in case of model mismatch (i.e., misspecified noise statistics
parameters, unexpected impulsive/heavy-tailed behaviours, or
different types of outliers in the state and/or observations), which
induces a bias and MSE degradation [9], or in high dimensional
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systems [10]. For the latter, a possible solution is to resort to
marginalization strategies (i.e., Rao-Blackwellization) to reduce
the dimension of the space to be explored by the nonlinear
filter [11]. That is the main reason why there is a continued
effort and an actual need to develop robust filtering techniques
for real-life applicability.

To counteract the lack of knowledge for a correct filter ini-
tialization one can set a distortionless constraint, leading to the
minimum variance distortionless response estimator [12], [13].
In the context of constrained filtering, a linearly constrained KF
has been recently proposed to cope with process and measure-
ment matrices model mismatch [14]. Regarding the problems
related to high-dimensional spaces, a possible solution is to use
a divide and conquer strategy, concept which has been applied
to both SPGF [15] and SMC methods [16], or the use of Rao-
Blackwellization techniques in case of mixed linear/nonlinear
systems [11].

In this contribution, we are interested in nonlinear/Gaussian
filtering problems with outlier (correlated) measurements. That
is, state-space models involving Gaussian distributions with
known parameters under nominal situations (M0) and with
additional outliers under non-nominal conditions (M). More
precisely, we consider models of the form of

xt = f (xt−1) + εt (1)

yt =

{
h (xt) + ηt, under M0

h (xt) + ηt + ot, under M (2)

where xt ∈ R
nx represents hidden (i.e. to be estimated) state of

the system;yt = (y
(1)
t , . . . , y

(ny)
t )� ∈ R

ny is the corresponding
observation, whose elements conditioned on xt might be corre-
lated; εt ∼ N (0,Qt) is the process noise;ηt ∼ N (0,Rt) is the
measurement noise; ot ∈ R

ny represents outliers on some or all
observations inyt; andN (μ,Σ) denotes a Gaussian distribution
with mean μ and covariance Σ. The mappings h(·) and f(·) are
referred to as the process and measurement functions. Several
solutions can be found to tackle this problem under different
perspectives, namely:
� Gaussian: consider that the noise statistics are Gaussian

but with unknown covariance matrices. In that case one
can resort to standard innovations-based techniques [17]
or variational Bayesian (VB) inference [18]–[20].

� Non-Gaussian: consider that the noise is heavy-tailed
and obtain a robust filtering solution via VB approxima-
tions [21], [22], or exploiting a hierarchically Gaussian
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formulation to obtain approximate Gaussian filtering
solutions. For the latter it is possible to use Rao-
Blackwellization [23], conjugate prior analysis [24] or for
linear systems to resort again to VB approximations [25]–
[29].

� Nonparametric: consider that the noise distribution is un-
known (in contrast to the previous parametric appoaches)
and resort to nonparametric Bayesian estimation tech-
niques such as Dirichlet Process Mixtures [30].

� Robust statistics: consider the standard contamination
model arising from robust statistics where a propor-
tion 1− ε of observations follows a nominal Gaussian
noise distribution, and another proportion 0 ≤ ε ≤ 1 of
observations is contaminated by an unknown distribu-
tion [31]. Within this framework, the KF can be reformu-
lated as a regression problem and then solved via iterative
M-estimation techniques [32]–[34].

� Detect-and-reject: recently a probabilistic outlier rejection
method was proposed in [35], where the goal is to have a
binary indicator to decide whether a (vector) measurement
arises from the nominal noise distribution or it is a con-
taminated observation (i.e., outlier). This approach relies
on VB inference to jointly estimate the state vector and
an indicator which informs whether the observed data is
legitimate or contaminated.

In this contribution we further elaborate on the methodology
proposed in [35] and extend it to more general problems. One of
the main limitations of that work is that even if it allows treatment
of multi-dimensional observations, a scalar indicator is consid-
ered for the entire observation vector, thus accepting/rejecting in
its totality regardless of which entry is corrupted. In this article,
the method is generalized to the more comprehensive case of
multiple outlier indicators, accounting for both independent and
correlated observation models (a common problem for RADAR
processing [36] or data gathering in sensor networks [37]–[39]).

We first introduce the proposed new framework in Sec-
tion II-A for the general case of correlated data, following a
VB approximation. This is then particularized to independent
data in Section II-B, showing that it is indeed a generalization
of the work in [40]. Remarkably, the relation to the original
method [35] where a single scalar indicator was used is detailed
in Section II-C, showing as well the generalization of this contri-
bution. An illustrative example is provided in Section III where
correlated data is used. More precisely, a code-based Global
Navigation Satellite System (GNSS) positioning problem [41]
is considered where double-difference range estimates are used
(causing the observations to become correlated). Finally, con-
clusions are discussed in Section IV.

Notation: Italic indicates a scalar quantity, as in c; lower case
boldface indicates a column vector quantity, as in a; upper case
boldface indicates a matrix quantity, as in A. The matrix/vector
transpose is indicated by a superscript (·)� as in A�. The trace
operator is denoted as Tr(A) and 〈A〉 represents the expectation
of A. Eb{g(a)} represents the expectation of g(a) over the
distribution of b, and we use equivalently 〈g(a)〉 for simplicity
where b is omitted. ||b||2A−1 = b�A−1b denotes the weighted
inner norm. The i−th row and j−th column element of the

matrix A is denoted by [A]i,j . The i−th element of the column
vector a will denoted by a(i), a(−i) is the vector of all elements
in a except for a(i), and [A]−i,−j is defined as a matrix with all
elements in matrix A except for the i-th row and j-th column.

II. VARIATIONAL BAYES KALMAN FILTER FOR OUTLIER

REJECTION IN GENERAL NONLINEAR/GAUSSIAN SYSTEMS

In this section, we describe the proposed Variational Bayes
Kalman filter (VBKF) method for outlier detection and mitiga-
tion, which generalizes the work in [35] to the case of multiple
outlier indicators and correlated observations. As in the original
method, the new VBKF estimates the probability of having out-
liers in the observation at every time step, and then down-weights
that particular observation. Notice that, in the original algorithm,
a single indicator zt was used for all observations gathered at
the same time, yt. In practice, outliers might affect differently
the elements in yt which ignited the contribution in this paper.

A. Generalized VBKF for Correlated Data

Following the approach in [35] to derive a VBKF algorithm,
the likelihood distribution is modified to incorporate the effect
of an outlier indicator vector zt = (z

(1)
t , . . . , z

(ny)
t )� ∈ Z =

{0, 1}ny , such that z(i)t = 0 if there is an outlier on the i-th
(corrupted) element of yt, i.e., y(i)t , and z

(i)
t = 1 if the i-th

element is otherwise clean (not corrupted). In the latter, the
nominal Gaussian modeling would apply, whereas in the former
the wrong information brought by y

(i)
t must be down-weighted.

Therefore, the observation model in (2) is modified to incorpo-
rate those indicators, becoming

p (yt|xt, zt) =
1

c(zt)
e
− 1

2 ||yt−h(xt)||2
Σ−1

t
(zt) (3)

where Σt(zt) is

Σt(zt) =

⎡
⎢⎢⎢⎢⎣
σ2
1,1/z

(1)
t σ2

1,2 . . . σ2
1,ny

σ2
2,1 σ2

2,2/z
(2)
t . . . σ2

2,ny

...
...

. . .
...

σ2
ny,1

σ2
ny,2

. . . σ2
ny,ny

/z
(ny)
t

⎤
⎥⎥⎥⎥⎦ ,

(4)
which corresponds to the original matrix Rt with (indepen-
dent) indicators {z(i)t }ny

i=1 dividing its diagonal terms, such that
Rt = Σt(1). The dependence on time of the various elements,
[Rt]i,j � σ2

i,j , has been omitted for notation convenience. Con-
trary to what could be intuitively expected, the division by zero
when an indicator is zero does not cause any numerical issue. As
explained in this section, this is a consequence of the algorithm
operating on the precision matrix. In that case, it can be shown
using basic algebra manipulations that the term in the exponent
of the likelihood can be equivalently reinterpreted as

||yt − h(xt)||2Σ−1
t (zt)

= ||T (yt − h(xt), zt)||2C−1
t (zt)

(5)

where T (·, zt) : R
ny �→ R

n′
y is an operator that removes the

elements in the input vector corresponding to indicators valued
zero, we define the limiting case T (·,0) = 1. Matrix C(zt)
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Fig. 1. Graphical model considered in the VBKF algorithm.

is a transformation of Σt(zt) where the rows/columns corre-
sponding to those z

(i)
t = 0 are removed. Special cases are i)

C(1) = Σt(1) = Rt (resulting in the original model without
indicators), and ii)C(0), corresponding to the absence of mea-
surements and defined asC(0) = I. Therefore, the dimension of
the resulting multivariate normal variable (n′

y) is effectively re-

duced by the amount of zero indicators: n′
y =

∑ny

i=1 z
(i)
t ≤ ny ,

with equality when all indicators are one. Notice that c(zt), the
proportionality term in (3), depends on the indicators and can
be readily computed from (5) as

c(zt) =

√
(2π)n

′
y |C(zt)|. (6)

Therefore, the likelihood distribution (3) can be expressed as
N (T (yt, zt); T (h(xt), zt),C(zt)).

As a consequence of introducing the indicators zt, we need to
estimate those jointly with the state trajectory x0:t. To accom-
plish this task in a Bayesian sense, we impose a beta-Bernoulli
hierarchical prior to each individual indicator,

p
(
z
(i)
t |π(i)

t

)
=

(
π
(i)
t

)z
(i)
t

(
1− π

(i)
t

)1−z
(i)
t

, (7)

where π(i)
t is a beta distributed random variable which is param-

eterized by (unknown shape hyper-parameters)1 e
(i)
0 and f

(i)
0 ,

p
(
π
(i)
t

)
=

(
π
(i)
t

)e
(i)
0 −1 (

1− π
(i)
t

)f
(i)
0 −1

β
(
e
(i)
0 , f

(i)
0

) , (8)

and β(·, ·) is the beta function. Notice that we are assuming that
the indicators are mutually independent

p(zt,πt) =

ny∏
i=1

p
(
z
(i)
t |π(i)

t

)
p
(
π
(i)
t

)
, (9)

as well as independent from the observations since the underly-
ing statistics modeling the outliers do not depend on the actual
values of the data. These assumptions determines the graphical
model shown in Fig. 1.

According to the Variational Inference (VI) principle [42],
[43], to estimate the posterior distribution of the latent variables

1Notice that a beta distribution is generically defined as p(x;α, γ) ∝
xα−1(1− x)γ−1, where α and γ are two shape parameters. For simplicity
we drop the dependence on α and γ and thus we write p(x).

θ = {xt,πt, zt}, that is p(θ|y1:t), we can resort to an auxiliary
distribution q(θ) such that:

q (θ) = q (xt) q (πt) q (zt)

= q (xt)

ny∏
i=1

q
(
π
(i)
t

)
q
(
z
(i)
t

)
. (10)

According to Fig. 1, yt is conditionally independent onπt;xt is
conditionally independent on zt and πt; y1:t−1 is conditionally
independent on zt, πt and yt. Thus, the various marginal distri-
butions, q(·), are then obtained from the mean-field VI method
applied to the joint distribution

p (xt,πt, zt,y1:t) ∝ p (xt|y1:t−1) p (yt|xt, zt) p(zt,πt),
(11)

such that

ln [q(xt)] = Eπt,zt
{ln [p (xt,πt, zt,y1:t)]}, (12)

ln [q(πt)] = Ext,zt
{ln [p (xt,πt, zt,y1:t)]}, (13)

ln [q(zt)] = Eπt,xt
{ln [p (xt,πt, zt,y1:t)]}. (14)

Within the Gaussian filtering framework, the first term
p(xt|y1:t−1) on the right-hand side of (11) is a predic-
tive density, which can be approximated as p(xt|y1:t−1) ≈
N (x̂t|t−1,P t|t−1), where the corresponding mean and covari-
ance are [6]

x̂t|t−1 =

∫
f (xt−1) p (xt−1|y1:t−1) dxt−1, (15)

P t|t−1 =

∫ (
f (xt−1)− x̂t|t−1

) (
f (xt−1)− x̂t|t−1

)�
× p (xt−1|y1:t−1) dxt−1 +Qt, (16)

with x̂t−1|t−1 and P t−1|t−1 the mean and covariance of
the filtering posterior at t− 1, that is p(xt−1|y1:t−1) ≈
N (x̂t−1|t−1,P t−1|t−1). In the sequel we derive the update of
the terms in (10).

1) Update q(xt): According to the mean-field VI method,
q(xt) is obtained from (12) as

ln(p(xt,π, zt,y1:t))

= − 1

2
||xt − x̂t|t−1||2P −1

t|t−1
− 1

2
||yt − h(xt)||2Σ−1

t (zt)
+ κ

(17)

ln(q(xt))

= Eπt,zt
{ln [p (xt,πt, zt,y1:t)]} (18)

= − 1

2
||xt − x̂t|t−1||2P −1

t|t−1
(19)

− 1

2

∑
z∈Z

q(zt = z) ||yt − h(xt)||2Σ−1
t (zt)

+ κ

= − 1

2
||xt − x̂t|t−1||2P −1

t|t−1

− 1

2
(yt − h(xt))

�〈Σ−1
t (zt)〉(yt − h(xt)) + κ, (20)
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where the term κ gathers the logarithm of those factors that
are constant in the expression, and z represents one of the 2ny

possible combinations of {z(i)t }ny

i=1 binary values; the set of all
those possible values is given by Z = {0, 1}ny such that |Z| =
2ny ; The expectation ofΣ−1

t (zt)with respect to q(zt) is defined
as

〈Σ−1
t (zt)〉 =

∑
z∈Z

Σ−1
t (z) q(zt = z), (21)

and q(zt = z) =
∏ny

i=1 q(z
(i)
t = z(i)).

Thus, the estimation of q(xt) is given by

q (xt) ∝ exp
(
− 1

2
||xt − x̂t|t−1||2P −1

t|t−1

− 1

2
||yt − h (xt) ||2〈Σ−1

t (zt)〉

)
(22)

Therefore, after manipulating (22), we can identify that q(xt) ≈
N (x̂t|t,P t|t), with

x̂t|t = x̂t|t−1 +Kt

(
yt − ŷt|t−1

)
, (23)

P t|t = P t|t−1 −Kt

(
St + 〈Σ−1

t (zt)〉−1
)
K�

t , (24)

Kt = Ct

(
St + 〈Σ−1

t (zt)〉−1
)−1

, (25)

where

ŷt|t−1 =

∫
h (xt) p (xt|y1:t−1) dxt (26)

St =

∫ (
h (xt)− ŷt|t−1

) (
h (xt)− ŷt|t−1

)�
× p (xt|y1:t−1) dxt (27)

Ct =

∫ (
xt − x̂t|t−1

) (
h (xt)− yt|t−1

)�
× p (xt|y1:t−1) dxt (28)

where the integrals can be solved analytically in linear systems
(as in the celebrated KF) or through numerical integration in
nonlinear systems where closed-form solutions are not possible
(approach taken in the case of SPGFs).

2) Update q(zt): Recall that due to the mutually indepen-
dence assumption, we operate on the marginal distributions
q(z

(i)
t ) in (10). Each is obtained following (14) as

ln
[
q(z

(i)
t )

]
= E

πt,xt,z
(−i)
t

{ln [p (xt,πt, zt,y1:t)]}

= E
π
(i)
t ,xt,z

(−i)
t

{ln [p (xt,πt, zt,y1:t)]} , (29)

where notice that the expectation is over {π(i)
t ,xt, z

(−i)
t }. For

the sake of convenience, we reorganize the measurement vector
such that the i-th element is swap at the end of the vector,

yt,i =

(
y
(−i)
t

y
(i)
t

)
, hi(xt) =

(
h(−i)(xt)
h(i)(xt)

)
, (30)

and the corresponding covariance matrix (4) is then reorganized
accordingly as

Σt,i(zt) =

[
Σ−i,−i Σ−i,i

Σi,−i σ2
i,i/z

(i)
t

]
. (31)

Operating on the precision matrix Λt,i = Σt,i(zt)
−1 and using

the Schur complement, this can be expressed as,

Λt,i =

[
Λ−i,−i Λ−i,i

Λi,−i λi,i

]

=

⎡
⎣ M−i −M−iΣ−i,i

z
(i)
t

σ2
i,i

− z
(i)
t

σ2
i,i
Σi,−iM−i Mi

⎤
⎦ (32)

where

M−i =

(
Σ−i,−i −Σ−i,i

z
(i)
t

σ2
i,i

Σi,−i

)−1

, (33)

Mi =

(
σ2
i,i

z
(i)
t

−Σi,−iΣ
−1
−i,−iΣ−i,i

)−1

. (34)

Applying the matrix inversion lemma, (33) can be further ex-
tended as,

M−i = Σ−1
−i,−i +

Σ−1
−i,−iΣi,−iΣ−i,iΣ

−1
−i,−i

σ2
i,i

z
(i)
t

−Σi,−iΣ
−1
−i,−iΣ−i,i

. (35)

Notice that for independently-distributed observations, the
cross-covariance in Σt(zt) is zero and Mi = z

(i)
t /σ2

i,i. For

correlated data, z(i)t is part of a fraction which would make it
tedious in terms of computing the Bernoulli probabilities for
the indicator. Fortunately, z(i)t is a binary variable z(i)t = {0, 1}
which allows the following equivalent expression

Mi =
z
(i)
t

σ2
i,i −Σi,−iΣ

−1
−i,−iΣ−i,i

, (36)

which yields to identical result as in (34) regardless of the
value z

(i)
t takes. Thus, if z(i)t = 1, the multivariative Gaussian

with all ny observations would be obtained; if z
(i)
t = 0, the

corresponding diagonal elements and off-diagonal elements in
precision matrix would be 0 according to (32)–(34), and the
influence of those contaminated observations would be removed
according to (5), thus only keeping observations deemed clean
in a multivariate Gaussian of reduced dimension n′

y . In or-

der to model q(z
(i)
t ) in the form of a Bernoulli distribution,

we use

ln [p (xt,πt, zt,y1:t)] = − 1

2
||yt,i − hi (xt) ||2Σt,i(zt)−1

+ z
(i)
t ln[π

(i)
t ] +

(
1− z

(i)
t

)
× ln[1− π

(i)
t ]− ln[c(zt)] + κ,
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in

ln
[
q(z

(i)
t )

]
= E

π
(i)
t ,xt,z

(−i)
t

{ln [p (xt,πt, zt,y1:t)]}

= E
π
(i)
t ,xt,z

(−i)
t

{
−1

2
||y(−i)

t − h(−i) (xt) ||2Λ−i,−i

−
(
y
(−i)
t − h(−i) (xt)

)�
Λ−i,i

(
y
(i)
t − h(i) (xt)

)
− 1

2
||y(i)t − h(i) (xt) ||2λi,i

+ z
(i)
t ln[π

(i)
t ]

+
(
1− z

(i)
t

)
ln[1− π

(i)
t ]− 0.5z

(i)
t ln[2π]

− 0.5z
(i)
t ln |C([z

(−i)
t , z

(i)
t = 1])|

− 0.5(1− z
(i)
t ) ln |C([z

(−i)
t , z

(i)
t = 0])|+ κ

}
(37)

where in expanding the terms due to the normalizing constant
(6) we factorized the determinant of C (cf. (5)) as

|C(zt)|= |C([z
(−i)
t , z

(i)
t =1])|z

(i)
t |C([z

(−i)
t , z

(i)
t =0])|(1−z

(i)
t )

(38)
After additional manipulations (cf. Appendix A) we obtain

q
(
z
(i)
t

)
= exp{−0.5z

(i)
t Tr (B−i,−i〈Λt1〉)

− 0.5z
(i)
t Tr (−Bi,−i〈Λt2〉)

− 0.5z
(i)
t Tr (−Bi,−i〈Λt3〉)− 0.5z

(i)
t Tr (bi,i〈λt4〉)

+ z
(i)
t 〈ln[π(i)

t ]〉+
(
1− z

(i)
t

)
〈ln[1− π

(i)
t ]〉

− 0.5z
(i)
t ln[2π]

− 0.5z
(i)
t 〈ln |C([z

(−i)
t , z

(i)
t = 1])|〉

− 0.5(1− z
(i)
t )〈ln |C([z

(−i)
t , z

(i)
t = 0])|〉+ κ}

(39)
where B−i,−i, Bi,−i, and bi,i are given by

B−i,−i =

∫ (
y
(−i)
t − h(−i) (xt)

)
×
(
y
(−i)
t − h(−i) (xt)

)�
q (xt) dxt, (40)

Bi,−i =

∫ (
y
(i)
t − h(i) (xt)

)
×
(
y
(−i)
t − h(−i) (xt)

)�
q (xt) dxt,

bi,i =

∫ (
y
(i)
t − h(i) (xt)

)(
y
(i)
t − h(i) (xt)

)�
q (xt) dxt,

(41)

and the expectations (with respect to q(z
(−i)
t )) are

〈Λt1〉 =
∑

z(−i)∈Z−i

Σ−1
−i,−iΣ−i,iΣi,−iΣ

−1
−i,−i

σ2
i,i −Σi,−iΣ

−1
−i,−iΣ−i,i

× q(z
(−i)
t = z(−i)) (42)

〈Λt2〉 =
2

σ2
i,i

∑
z(−i)∈Z−i

Σ−1
−i,−iΣ−i,iq(z

(−i)
t = z(−i)) (43)

〈Λt3〉 =
∑

z(−i)∈Z−i

2Σ−1
−i,−iΣ−i,iΣi,−iΣ

−1
−i,−iΣ−i,i

σ4
i,i − σ2

i,iΣi,−iΣ
−1
−i,−iΣ−i,i

× q(z
(−i)
t = z(−i)) (44)

〈λt4〉 =
∑

z(−i)∈Z−i

1

σ2
i,i −Σi,−iΣ

−1
−i,−iΣ−i,i

q(z
(−i)
t = z(−i))

(45)

where the sum over z(−i) is indeed the sum over all possible
2ny−1 values for the vector z(−i), whose associated probability
is q(z(−i)

t = z(−i)). The set of all those possible values is given
byZ−i = {0, 1}ny−1 such that |Z−i| = 2ny−1. Notice thatz(−i)

t

appears in the diagonal elements of Σ−i,−i, dependence that we
omitted for the sake of simplicity.

Finally, we can identify from q(z
(i)
t ) that z(i)t is a Bernoulli-

distributed random variable, whose distribution can be charac-
terized as

p
(
z
(i)
t = 1

)
∝ exp{−0.5 tr (B−i,−i〈Λt1〉)

− 0.5 Tr (Bi,−i〈Λt2〉)− 0.5 Tr (Bi,−i〈Λt3〉)

− 0.5 Tr (bi,i〈λt4〉) + 〈ln[π(i)
t ]〉 − 0.5 ln[2π]

− 0.5 〈ln |C([z
(−i)
t , z

(i)
t = 1])|〉} (46)

p
(
z
(i)
t = 0

)
∝ exp{〈ln[1− π

(i)
t ]〉

− 0.5〈ln |C([z
(−i)
t , z

(i)
t = 0])|〉}. (47)

Using (46) and (47), the expectation of a Bernoulli z(i)t can
be readily computed as

〈z(i)t 〉 =
p
(
z
(i)
t = 1

)
p
(
z
(i)
t = 1

)
+ p

(
z
(i)
t = 0

) , (48)

a quantity that would be required in updating q(π
(i)
t ) next.

3) Update q(π
(i)
t ): Similar to the derivation in [35], [40],

q(π
(i)
t ) is updated for each indicator as,

q
(
π
(i)
t

)
∝ exp

(
e
(i)
t ln[π

(i)
t ] + f

(i)
t ln[1− π

(i)
t ]

)
(49)

where

e
(i)
t = e0 + 〈z(i)t 〉 (50)

f
(i)
t = f0 + 1− 〈z(i)t 〉 (51)
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such that f0 and e0 are two initial hyper-parameters for distri-
bution π

(i)
t , assumed the same for all i.

4) Practical Aspects: At this point, we would like to com-
ment on an algorithmic choice that should be taken in order
to make the proposed filter practical. More precisely, the al-
gorithm requires the evaluation of multivariate expectations
〈Σ−1

t (zt)〉, 〈Λt1〉, 〈Λt2〉, 〈Λt3〉, and 〈λt1〉 which are of the
form of Ezt

{·} or E
z
(−i)
t

{·}. These expectations over discrete

random variables involve sums over their 2ny and 2ny−1 pos-
sible combinations, respectively. Additionally, the expectation
requires solving a matrix inverse (with cubic complexity on the
dimension) for each of the combinations, resulting onO(n3

y2
ny )

and O((ny − 1)32ny−1) computational complexities,2 respec-
tively. As a consequence, it is impractical to exactly evaluate
the expectation when ny grows. Alternatively, we propose two
practical methods based on the knowledge and factorization of
q(zt = z) =

∏ny

i=1 q(z
(i)
t = z(i)).

First, we propose a maximization approach in which we select
the value of each {z(i)t }ny

i=1 as the one with highest probability.

That is for all i of interest, if p(z
(i)
t = 1) > p(z

(i)
t = 0) then

z
(i)
t = 1 is selected, and z

(i)
t = 0 otherwise.

Secondly, a sampling approach is also proposed in which a
binary value for z

(i)
t is drawn from q(z

(i)
t ) with probabilities

p(z
(i)
t = 1) and p(z

(i)
t = 0). This is done independently for all

the i indicators of interest (depending on the target expectation).
In general, this independent sampling can be doneN times, such
that

Ezt
{g(zt)} ≈ 1

N

N∑
n=1

g(zt,n) (52)

E
z
(−i)
t

{g(z(−i)
t,n )} ≈ 1

N

N∑
n=1

g(z
(−i)
t,n ) (53)

where g(·) is an arbitrary function of the corresponding ran-
dom variable; and the samples are independently sampled from
zt,n ∼ q(zt) and z

(−i)
t,n ∼ q(z

(−i)
t ).

Finally, similarly to [35], since the VI process detailed here
is an iterative procedure, in practice we need to specify a stop
criteria. For instance, one could compare two consecutive state
estimates (i.e. through the norm of the difference) and choose
an arbitrary small threshold (e.g. 10−9 in the simulations of this
paper) below which the algorithm is said to converge.

B. Particular Case I: Independent Data and Multiple
Outlier Indicators

As mentioned at the beginning of this section, the Generalized
VBKF method described earlier can be particularized to obtain
other methods available in the literature. Mostly, this involves
a different arrangement of the latent variables θ and the cor-
responding auxiliary distributions used in approximating q(θ)
through the VI principle.

2The asymptotic time complexity of an algorithm can be interpreted as the
number of required basic operations, denoted as O(d) with d being the number
of operations. A function p(d) isO(g(d)) if and only if there exist a real, positive
constant C and a positive integer d0 such that p(d) ≤ Cg(d), ∀d ≥ d0.

Particularly, we notice that the variant in [40], where an
indicator associate to each element in yt was considered under
the assumption that data was uncorrelated, can be derived from
the general VBKF. In this case, θ = {xt,πt, zt} remains the
same, with the update of q(πt) as in Section II-A3, since the
model assumed for those hyper-parameters is the same in both
methods. However, in [40] the assumption that all measurements
are uncorrelated was used in order to simplify the model and the
corresponding method’s derivation. Thus, the covariance matrix
Σt(zt) in (4) becomes:

Σt(zt) =

⎡
⎢⎢⎢⎢⎣
σ2
1,1/z

(1)
t 0 . . . 0

0 σ2
2,2/z

(2)
t . . . 0

...
...

. . .
...

0 0 . . . σ2
ny,ny

/z
(ny)
t

⎤
⎥⎥⎥⎥⎦ ,

(54)
and the measurement model in (3) can be further derived as:

p (yt|xt, zt)

= N (T (yt, zt); T (h(xt) , zt),C(zt))

=

ny∏
i=1

N
(
T (y

(i)
t , z

(i)
t ); T (h(i)(xt), z

(i)
t ), [C(z

(i)
t )]i,i

)

=

ny∏
i=1

N
(
y
(i)
t ;h(i) (xt) , [Rt]i,i

)z
(i)
t

, (55)

Notice that with Rt diagonal, c(zt) =
√
(2π)n

′
y |C(zt)| =∏ny

i=1

√
(2π)z

(i)
t [C(z

(i)
t )]i,i =

∏ny

i=1 c(z
(i)
t ). The normaliza-

tion factor c(z(i)t ) being the standard one for a univariate Gaus-
sian distribution, yielding to the last equality in (55). This
simplification circumvents the general algorithm complexity and
computation but degrades the performance of the VBKF when
correlated data is observed.

According to (12), with the same model for zt and its param-
eter πt, q(xt) is updated as:

q (xt) ∝ exp
(
− 1

2
||xt − x̂t|t−1||2P −1

t|t−1

− 〈Zt〉
2

||yt − h (xt) ||2R−1
t

)
(56)

where Zt is a diagonal matrix with zt as its elements, Zt =

diag(z(1)t , . . . , z
(ny)
t ).

Using (29), the update of q(z(i)t ) would be:

q
(
z
(i)
t

)
∝ exp

(
− 0.5z

(i)
t

(
b
(i)
t /σ2

i,i

)
+ z

(i)
t

〈
ln[π

(i)
t ]

〉
+
(
1− z

(i)
t

) 〈
ln[1− π

(i)
t ]

〉)
(57)

where b
(i)
t is given by

b
(i)
t =

∫ (
y
(i)
t − h(i) (xt)

)(
y
(i)
t − h(i) (xt)

)�
q (xt) dxt

(58)
Thus, the update of q(xt), q(zt) and q(πt) in this particular case
would be the same as in [40], showing the generalization of the
method proposed in this contribution.
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C. Particular Case II: Scalar Outlier Indicator

Here we notice that the seminal method in [35] can be
readily obtained from the Generalized VBKF. In this case,
θ = {xt, πt, zt} since a single indicator is used for the entire
vector yt, thus accepting or rejecting the entire observation
vector. Assuming a similar model for πt, the update of q(πt)will
be as in Section II-A3 with exception that just one indicator is
required. However, the likelihood distribution in (3) will change
in this case since the quality of all measurements is modeled by
a binary scalar indicator zt:

Σt(zt) =

⎡
⎢⎢⎢⎢⎣
σ2
1,1/zt σ2

1,2/zt . . . σ2
1,ny

/zt

σ2
2,1/zt σ2

2,2/zt . . . σ2
2,ny

/zt
...

...
. . .

...

σ2
ny,1

/zt σ2
ny,2

/zt . . . σ2
ny,ny

/zt

⎤
⎥⎥⎥⎥⎦ , (59)

thus the measurement model in (3) becomes

p (yt|xt, zt) = N (T (yt, zt); T (h(xt) , zt),C(zt))

= N (yt;h(xt) ,Rt/zt)

= N (yt;h(xt) ,Rt)
zt ,

(60)

where notice that Rt can be colored. In the general notation,
zt = zt · 1, and since c(zt) =

√
(2π)nyzt |Rt| then: c(1) =√

(2π)ny |Rt| and c(0) = 1, yielding to the last equality in (60).
According to (22), the update of q(xt) is:

q (xt) ∝ exp
(
− 1

2
||xt − x̂t|t−1||2P −1

t|t−1

− 〈zt〉
2

||yt − h (xt) ||2R−1
t

)
(61)

and q(zt) is updated according to (14):

q (zt) ∝ exp{ − 0.5zt Tr
(
BtR

−1
t

)
+ zt〈ln[πt]〉+ (1− zt) 〈ln[1− πt]〉} (62)

where Bt is given by

Bt =

∫
(yt − h (xt)) (yt − h (xt))

� q (xt) dxt (63)

=

[
B−i,−i B−i,i

Bi,−i bi,i

]
, (64)

the intuition being that when a single indicator is used, the covari-
ance Σt,i(zt)

−1 in (37) becomes Σt(zt) = Rt/zt. Therefore,
we have that

ln [q(zt)] = Eπt,xt
{ln [p (xt, πt, zt,y1:t)]}

= Eπt,xt

{
−zt

2
||yt − h (xt) ||2R−1

t

+ zt ln[πt] + (1− zt) ln[1− πt]
}
+ κ,

(65)

matching the result in the original article, resulting in the same
q(zt) update. Thus, the update of q(xt), q(zt) and q(πt) in
this particular case would be the same as in [35]. Remarkably,
the original VBKF in [35] can deal with both correlated and
uncorrelated data. However, since it accepts or rejects the entire

Fig. 2. Illustration of the RTK positioning system: the trajectory followed by
the vehicle (in yellow) depicted with the dashed black line. The localization
problem is resolved with respect to the position of the base station combining
the observations of the satellites between the base and vehicle receivers.

observation vector jointly, it is potentially inefficient in dealing
with independent outliers among the elements in yt whereby a
single outlier can corrupt the observed vector. In practice, the
VBKF would only operate using predictions, thus eventually
losing track of the estimated state even when a single element is
contaminated.

III. ILLUSTRATIVE EXAMPLE: GPS LOCALIZATION

In order to put into practice the new generalized VBKF and
show the performance improvement with respect to previous
contributions, we consider an illustrative positioning example
where by construction the data is correlated.

A. GPS RTK Problem Formulation

Real Time Kinematic (RTK) is a well-known differential
GNSS-based positioning procedure, for which the unknown
location of a vehicle is determined with respect to a georef-
erenced base station [44]. Since satellite observations are influ-
enced by atmospheric delays and receiver clock offset effects,
RTK applies the so-called observation double-differencing to
eliminate the nuisance parameters. Double-differencing involve
taking differences between the observations at the target and the
base station, and then with respect to a reference satellite [45].
Fig. 2 provides a pictorial example of the agents involved in the
RTK positioning: i = 1, . . . , ns satellites and r (for reference)
satellite, the base station and the trajectory of the moving vehicle
over time.

Hereinafter, we refer to observations as the result of double-
differencing the original measurements. The observation co-
variance matrix becomes then fully populated, since the noise
of the pivot satellite is present across all observations. RTK
implies the use of code and carrier phase observations, with
the later introducing an additional estimation complexity, since
a number of integer ambiguities is to be found. Given the fact
that ambiguities are related to wavelength, double difference ob-
servations needs to be calculated among satellites observations
in the same frequency band. In each frequency band, we have
ñs satellite observation and ñy double difference observations,
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ñy = ñs − 1. Without loss of generality and for the sake of
simplicity, this example disregards the exploitation of carrier
phase observations. The dynamical constant velocity model for
RTK is written as[

pt

vt

]
︸ ︷︷ ︸
xt

=

[
I ΔtI

0 I

]
︸ ︷︷ ︸

F t

[
pt−1

vt−1

]
︸ ︷︷ ︸

xt−1

+εt (66)

where pt and vt are the three-dimensional vectors of position
and velocity, respectively, xt is the state to be inferred and εt is
a zero-mean Gaussian noise vector with known covariance Qt.
Having the base station as center of the coordinate frame and
the positions of the satellites and the vehicle w.r.t. to the base,
the observation model for the i-th measurement is

y
(i)
t =

∥∥∥p(i)
t − pt

∥∥∥−
∥∥∥p(r)

t − pt

∥∥∥−
∥∥∥p(i)

t

∥∥∥+
∥∥∥p(r)

t

∥∥∥︸ ︷︷ ︸
h(i)(xt)

+ n
(i)
t + n

(i)
b,t + n

(r)
t + n

(r)
b,t ,︸ ︷︷ ︸

η
(i)
t

(67)

where the superscript inp indicates the satellite and the subscript
b in the noise n refers to the noise observed at the base station
receiver. Notice that, the observation model (67) is nonlinear
and the observations’ noise vector ηt becomes inter-correlated,
since the noise for the reference satellite on the base and moving
receiver is common for theny observations. A linearized version
of (67) subject to outliers is

yt =

{
Gtpt + ηt, under M0

Gtpt + ηt + ot, under M (68)

where yt = (y
(1)
t , . . . , y

(ny)
t )� ∈ R

ny is the vector of double
difference (DD) observations for the ny tracked satellites (plus
the reference one) and Gt ∈ R

ny×3 is the geometry matrix
containing the unit line-of-sight steering vectors to the satellites,
as in [45, Ch. 26]. The observation noiseηt has a fully populated
covariance matrixRt ∈ R

ny×ny , as described in [46]. Multipath
and non-line-of-sight (NLOS) effects lead to gross biases in the
range observations to the satellites. Such errors are collected in
vector ot, following the initial model (2) to generate the data
while the method is derived considering the alternative model
(3).

B. Simulation Setup

The root mean square error (RMSE) over a trajectory and
the percentage of misdetected outliers are taken as measures
of performance. The RMSEs are obtained from 50 independent
Monte Carlo runs for a 100 seconds trajectory, sampled at Δt =
1 s, while 500 Monte Carlo runs were used in the experiments
comparing generalized VBKF with N = {1, 10} to show the
tiny difference between them. The present simulation, simulated
in MATLAB, considers ns = 12 tracked satellites at a specific
time, distributed according to a realistic sky plot, as shown in
Fig. 3. In practice, satellites belonging to different constellations
(i.e., and depending on the satellite generation) may broadcast a
different number of signals at different frequency bands. In the

Fig. 3. Sky plot of the tracked satellites from GPS L1 and Galileo E1 for the
simulation.

TABLE I
PARAMETERS FOR THE MARKOV CHAIN MODEL

simulation, we consider ny = 2ns − 4 DD observations from
a dual-band receiver. Outliers (i.e., NLOS) are simulated based
on a Markov Chain model according to [47] with parameters
shown in Table I. The motivation of such model is to account for
the time correlation of multipath (and other spatially correlated
errors), in contrast to the less realistic case of assuming totally
independent statistics between consecutive time instances.

Notice that from t = 10 s, outliers are always injected into
both pivot satellite observations (i.e., at the base station and the
corresponding one at the receiver side), and to the observations
for 6 out of the ny = 20 DD observations, therefore outliers
are correlated. Besides, since outliers are simulated from the
corresponding carrier-to-noise density ratio (C/N0 in dB-Hz),
which is a common measure in GNSS receivers, the random
outlier amplitudes are in general correlated to the noise power,
which is also modelled from the C/N0 as [48],

σ =
c · 3.444 · 10−4√

C/N0BTobs

, (69)

where σ is the standard deviation for the observation noise, c
is the speed of light, B = 2 MHz is the receiver bandwidth,
and Tobs = 20 ms is the coherent integration time. We consider
the performance comparison of different methods: 1) a standard
Extended Kalman Filtering (EKF) that does not account for
possible outliers; 2) the original VBKF [35] using a single outlier
indicator; 3) a VBKF with independent outlier indicators (see
Section II-B); 4) the generalized VBKF, considering two differ-
ent valuesN = {1, 10}, which are used to estimate (52)–(53); 5)
an ideal EKF that accounts for all outliers; 6) a Cubature KF [6]
with measurement gating by threshold equalling to triple of stan-
dard deviation of innovations [49]; and 7) a Cubature KF with
measurement gating by threshold equalling to standard deviation
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Fig. 4. RMSE performance of the VBKF with independent outliers indicator,
general VBKF, standard EKF and VBKF with single outlier indicator as a
function of C/N0 in the LOS scenario.

of innovations. Note that, when computation of expectations is
needed in these methods, we used numerical integration based
on Gaussian cubature rules.

It is worth noting that the original VBKF [35] is taken as the
performance benchmark. In the original article [35], this method
was already shown to provide improved performances with
respect to other robust state-of-the-art filtering techniques (i.e.,
IGG-based cubature information filter (CIF), Huber-based CIF,
Hampel-based CIF, and Student’s t-based robust cubature KF),
therefore we do not include the comparison to such techniques
in the results.

C. Results

When assessing the performance of new robust filtering tech-
niques, and because of the optimality versus robustness trade-
off, two important points are: i) the so-called loss of efficiency
(LoE) [31], that is, the loss in performance with respect to
the optimal method under nominal conditions; and ii) under
non-nominal conditions, the performance gain with respect to
the optimal solution that does not accounting for a possible
model mismatch, that is, outliers in our case.

1) Loss of Efficiency: the LoE is assessed by comparing the
performance of the different methods under nominal line-of-
sight (LOS) conditions, i.e., without outliers. The LoE results
are shown in Fig. 4. It can be seen that the general VBKF method
(i.e., regardless of N ) exhibits a pretty similar performance
compared to the standard EKF and measurement gating method
in terms of RMSE, therefore the proposed method has a very low
LoE. The original VBKF with a single scalar outlier indicator
shows a minor degradation at low C/N0. In contrast, the VBKF
with independent outlier indicators performance is degraded
compared to the EKF, that is, it exhibits a larger LoE. This is
mainly induced by the model mismatch, because this method
does not take into account that observations are correlated. The
uncorrelation of the observations is the main assumption for its
derivation (see Section II-B).

2) Robustness: to assess the robustness of the proposed
approach we show the performance of the different methods
under non-nominal NLOS conditions, i.e., with outliers, in
Fig. 5. The mean RMSE is given as a function of the C/N0.
When comparing both robust methods to the standard EKF,
it is obvious that while the latter is severely influenced by
outliers the robust solutions are able to cope with outliers and
improve the overall performance. Notice that the general VBKF

Fig. 5. RMSE performance of the VBKF with independent outlier indicators,
general VBKF and standard EKF as a function of C/N0 in the NLOS scenario.

Fig. 6. Empirical CDF of position estimation error performance of the VBKF
with independent outlier indicators, general VBKF, standard EKF and the VBKF
with single outlier indicator in logarithmic scale.

improves the performance obtained with the independent outlier
indicator VBKF. Such performance gain is expected to be even
larger in applications where the correlation among observations
increases. The performance of the original VBKF is not shown
in Fig. 5 because it is substantially worse than the rest of methods
(i.e., orders of magnitude larger). The gating method works
reasonably well against outliers. Although, there are still meter
level degradations compared with the VBKF method in certain
configurations, for instance when the signal-to-noise ratio is
small. Additionally, in other applications where data becomes
more correlated, it is expected that the generalized VBKF will
outperform the gating approach more clearly. On the other hand,
the measurement gating strategy features a much lighter imple-
mentation, which could suffice in certain applications where data
correlation is not severe.

The original VBKF with a single outlier indicator (as in
Section II-C and [35]) was also simulated, exhibiting a RMSE of
large magnitude. The reason being that the original VBKF, once
it determines that the observation contains an outlier, discards
the complete observation vector. In outlier-rich situations, as the
NLOS case simulated here, this implies that few observations are
indeed used in the KF update. To further support this statement
and provide a meaningful comparison, Fig. 6 shows the empir-
ical CDF of position estimation error of all VBKF versions as
well as the standard EKF and measurement gating method under
C/N0 = 30 dB-Hz in NLOS case. It is clear that the VBKF with
a single outlier indicator presents much larger errors compared
to the other methods, even with respect to the standard EKF, due
to the fact the it mostly relies on KF predictions as outliers are
being detected.

Again, notice that the performance of the generalized VBKF
in terms of RMSE for different values of N is very similar. This
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Fig. 7. Histogram for q(zt) in the transient regime.

Fig. 8. Histogram for q(zt) in the convergence regime.

behaviour can be explained by the fact that the estimation of
q(z

(i)
t ) is likely to converge to either 0 or 1 when the general

VBKF works properly. This can be further supported by the
results in Fig. 7 and Fig. 8 (along with an inner plot showing a
zoom for the lower values) for the case N = 1. In the iterative
VBKF process, the estimation of q(zt) experiences a transient
regime and a convergence regime, which we investigate in the
aforementioned figures, respectively. Whereas in the transient
regime there are some values in the open interval (0,1), when
the algorithm converged, almost all the values are concentrated
in 0 and 1. In any case, the algorithm correctly estimates q(zt)
most of the times. As a consequence, when approximating (52)–
(53) through sampling, one sample is typically sufficient (in
this particular application). Similar results were obtained with
N = 10, which are omitted for the sake of clarity.

3) Outlier Misdetection: we notice from the previous analy-
sis on the estimation of q(zt) that not all values are either 0 and 1,
and that there is some probability associated with values in (0,1).
Therefore, this uncertainty may lead to an outlier misdetection
(i.e., contaminated observations which are regarded as clean
ones). The percentage of misdetected outliers for the different
methods (i.e., not for the standard EKF which do not allow to
detect outliers) is shown. In this case we see that increasing the
value N from 1 to 10 within the general VBKF reduces the
misdetection, because this value controls the accuracy of the
expectation approximation in (52)–(53). Therefore, increasing
N leads to a lower misdetection and in turn lower RMSE. Re-
gardless of N , it is shown that taking into account the correlated
observations in the filter formulation as expected improves the
results compared to the independent outlier indicator VBKF.
That is one of the main reasons of the performance loss in terms
of RMSE previously shown in Fig. 9. Notice that the VBKF with
scalar outlier indicator is not shown for the similar reasons as in
Fig. 5.

Fig. 9. Misdetection performance for the VBKF with independent outlier
indicator and the general VBKF method as a function of C/N0 in the NLOS
scenario.

IV. CONCLUSION

This article presented a generalization of the Variational
Bayes Kalman filter (VBKF) for correlated measurement mod-
els. The VBKF acts as a method for outlier detection and
mitigation in the observations in filtering problems. The original
method, proposed in [35], considered a single indicator for the
vector-valued observations, therefore rejecting the entire obser-
vation vector when a single element in it is faulty. The present
contribution generalized VBKF to having multiple indicators
(one per observation) and considering the more comprehensive
case of correlated observations. Practical implementation solu-
tions are proposed to avoid the otherwise growing complexity
with the observations’ dimension. The method is validated on
a precise-positioning problem, namely the popular real-time
kinematic (RTK) procedure, where correlated data appears.
Results in this context show the benefits of the generalized
VBKF method, as compared to non-robust filtering or the single-
indicator VBKF.

APPENDIX A
COMPUTATION OF q(z

(i)
t )

To keep q(z
(i)
t ) Bernoulli distributed, (32) is substituted in

(37) and the equation is derived as:
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Following the transform from (34) to (36), we can write that:
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Given the expectation over {xt, π
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term as a normalization coefficient and thus remove it from the
previous equation to further obtain that:

ln
[
q(z

(i)
t )

]
= E

π
(i)
t ,xt,z

(−i)
t

{
− 1

2

(
y
(−i)
t − h(−i) (xt)

)�

×
(
z
(i)
t Σ−1

−i,−iΣi,−iΣ−i,iΣ
−1
−i,−i

σ2
i,i −Σi,−iΣ

−1
−i,−iΣ−i,i

)

×
(
y
(−i)
t − h(−i) (xt)

)
+
(
y
(−i)
t − h(−i) (xt)

)�

×
(
Σ−1

−i,−iΣ−i,i
z
(i)
t

σ2
i,i

+
z
(i)
t Σ−1

−i,−iΣi,−iΣ−i,iΣ
−1
−i,−iΣ−i,i

σ4
i,i − σ2

i,iΣi,−iΣ
−1
−i,−iΣ−i,i

)

×
(
y
(i)
t − h(i) (xt)

)
− 1

2

(
y
(i)
t − h(i) (xt)

)�

× z
(i)
t

σ2
i,i −Σi,−iΣ

−1
−i,−iΣ−i,i

(
y
(i)
t − h(i) (xt)

)

+ z
(i)
t ln[π

(i)
t ] +

(
1− z

(i)
t

)
ln[1− π

(i)
t ]

− 0.5z
(i)
t ln |C([z

(−i)
t , z

(i)
t = 1])| − 0.5z

(i)
t ln[2π]

− 0.5(1− z
(i)
t ) ln |C([z

(−i)
t , z

(i)
t = 0])|+ κ

}
. (73)

Taking advantage of the properties of the trace of matrix,
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With z
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t being a scalar we can finally obtain:
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methods, and technologies,” IEEE Trans. Veh. Technol., vol. 64, no. 4,
pp. 1263–1278, Apr. 2015.

[3] J. Dunik, S. K. Biswas, A. G. Dempster, T. Pany, and P. Closas, “State es-
timation methods: Overview and application in navigation,” IEEE Aerosp.
Electron. Syst. Mag., vol. 35, no. 12, pp. 16–31, Dec. 2020.

[4] B. Anderson and J. B. Moore, Optimal Filtering. Englewood Cliffs, New
Jersey, NJ, USA: Prentice-Hall, 1979.

[5] K. Ito and K. Xiong, “Gaussian filters for nonlinear filtering problems,”
IEEE Trans. Autom. Control, vol. 45, no. 5, pp. 910–927, May 2000.

[6] I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Trans.
Autom. Control, vol. 54, no. 6, pp. 1254–1269, Jun. 2009.
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