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The so-called Landau-Levich-Derjagin problem treats the coating flow dynamics of a thin
viscous liquid film entrained by a moving solid surface. In this context, we use a simple
experimental set-up consisting of a partially-immersed rotating disc in a liquid tank to
study the role of inertia, and also curvature, on the liquid entrainment phenomenon.
Using water and UCONTM mixtures, we point out a rich phenomenology in the presence
of strong inertia : ejection of multiple liquid sheets on the emerging side of the disc, sheet
fragmentation, ligament formation and atomization of the liquid flux entrained over the
disc’s rim. We focus our study on a single liquid sheet and the related average liquid
flow rate entrained over a thin disc for various depth-to-radius ratio h/R < 1. We show
that the liquid sheet is created via a ballistic mechanism as liquid is lifted out of the
pool by the rotating disc. We then show that the flow rate in the entrained liquid film is
controlled by both viscous and surface tension forces as in the classical Landau-Levich-
Derjagin problem despite the three dimensional, non-uniform and unsteady nature of the
flow, and also despite the large values of the film thickness based flow Reynolds number.
When the characteristic Weber and Froude numbers become significant, strong inertial
effects influence the entrained liquid flux over the disc at large radius-to-immersion-depth
ratio, namely via entrainment by the disc’s lateral walls and via a contribution to the
flow rate extracted from the 3D liquid sheet itself.

Key words:

1. Introduction

When we imagine a car rolling over a puddle, we picture a spectacular lateral liquid
splash. While this common life phenomenon is interesting on its own, the liquid flux
entrained along the rotating wheel rim, its subsequent atomization, and dispersion on
different parts of the vehicle, is also an important related issue. Now if we simplify
both the wheel geometry and the flow domain by considering a smooth disc of finite
width, partially-submerged in a rectangular liquid tank (see section 2 for details about
this set-up), we can observe two global features in the resulting flow as illustrated in
figure 1. Firstly, a liquid sheet stands out of the pool at the rear of the wheel, extending
perpendicularly to its rim. And secondly, a non-uniform, unsteady liquid film is entrained
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Figure 1. Water entrainment by a partially-immersed rotating disc of radius R = 21 cm,
immersion depth h = 8.4 cm and linear velocity U = 4.6 m s−1. Two dominant liquid flow
structures appear, namely, a liquid sheet and a liquid film flow which fragments into ligaments
and droplets. Schematic of the experimental set-up showing a partially-immersed rotating disc
of finite width in a one meter long aquarium.

on the rim, and is then atomized into ligaments and droplets. As presented in a series
of photographs (see figures 2, 3, 4 & 5), the liquid sheet can either be stationary at
sufficiently small speeds, or corrugated at higher speeds. When the disc width is increased
multiple sheets can be observed, with each of them leaving a thick trail on the rim of the
wheel. These liquid sheets may even meander along the rim, and also coalesce so that
the number of sheets may vary with time. In addition, air bubbles are entrained on the
plunging side of the wheel.

Our primary interest here is to study the simplest of the features in this inertia-
dominated drag-out problem with the hope of providing some insights on high-speed
liquid entrainment processes, and thereby motivating future work. For this purpose, we
abandon the more classical case of a long horizontal cylinder to avoid multiple sheets, and
the associated multi-phase flow phenomena as well, in order to experimentally consider
two simple questions : (i) how does the size of a single liquid sheet vary as a function
of the disc speed U = RΩ, liquid properties and immersion depth h, (ii) what is the
resulting entrained liquid flux on the rotating disc? Our work is primarily experimental
with an intention to bring out some scaling laws in relation to this inertia-dominated
dragged-out problem.

Liquid entrainment is very well documented for films on fibers that are dragged out
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Liquid Mass fraction Density (ρ) Viscosity (µ) Surface tension (σ) Morton number

of UCONTM kg m−3 ×10−3 Pa s ×10−3 N m−1 Mo = µ4g/ρσ3

Water 0 998± 1 0.93± 0.04 72.9± 0.2 1.9× 10−11

WU1 0.09 1015± 1 5.5± 0.3 54.2± 0.14 5.5× 10−8

WU2 0.13 1022± 1 11± 0.5 53.7± 0.14 9.1× 10−7

WU3 0.28 1044± 1 82± 4 50.7± 0.04 3.3× 10−3

Table 1. Properties of working liquids in this study. Here, three different mass fraction of
UCONTM Lubricant 75-H-90,000 in water (denoted by WU) were used. The contact angle of
plexiglass-water in air and of plexiglass-WU3 in air varied between 29◦ – 39◦ and 32◦ – 71◦,
respectively.

of a liquid pool (Quéré 1999), for various coating flows between one or more horizontal
rolls that feed/pull/spread a thin liquid film on a substrate (Ruschak 1985; Benjamin
et al. 1995; Weinstein & Ruschak 2004), and also for film flows on the inside, or the
outside, of a freely rotating drum (Thoroddsen & Mahadevan 1997; Seiden & Thomas
2011). These works are crucial to study and model thin liquid film coating flows (Cohen
& Gutoff 1992; Schweizer & Kistler 2012) and their stability (Yih 1960; Pitts & Greiller
1961; Coyle et al. 1990). In this context, the present work may also actually be relevant
to an important class of problems in both modern engineering and fundamental fluid
mechanics involving high-speed entrainment of a liquid by a moving wall.

1.1. LLD flows : flat plate, or fiber, withdrawal from a liquid pool

The simplest entrainment flow configuration is that of a liquid film entrained by a
long vertical plate (figure 6a), or a thin vertical fiber, as it is withdrawn at a steady
speed U from a large reservoir of a viscous liquid of density ρ, viscosity µ and surface
tension σ. It is the so-called Landau-Levich-Deryagin dip-coating flow (Goucher & Ward
1922; Morey 1940; Landau & Levich 1942; Deryagin 1943; Van Rossum 1958). The
liquid surface tension plays a subtle role on the coating flow via the Laplace pressure
at the dynamic meniscus between the film and the reservoir. However, far away from the
dynamic meniscus, the flat entrained film is at the ambient pressure. Consequently, a
pressure gradient which opposes liquid entrainment should exist along the vertical film.
Landau & Levich (1942) and Deryagin (1943) were the first to remark this feature for
the case when the surface tension forces dominate viscous entrainment, ı.e. at sufficiently
small capillary numbers Ca = µU/σ and at negligible inertia. They showed that the
liquid film thickness far away from the reservoir is given by†

δ
(LLD)
f ' lc

[
0.946Ca2/3 − 0.107Ca+O

(
Ca4/3

)]
, (1.1)

where lc =
√
σ/ρg is the capillary length with g the acceleration due to gravity. This

pioneering result correlates well with numerous experimental investigations for small
capillary numbers up to O(10−2) (Morey 1940; Van Rossum 1958; Groenveld 1970b;
Snoeijer et al. 2008; Maleki et al. 2011) and also, for moderate values of Ca (White &
Tallmadge 1965; Groenveld 1970a; Spiers et al. 1974; Kizito et al. 1999).

When both inertia and surface tension are negligible compared to viscous forces and
the film is flat far away from the liquid bath, the film thickness δf can be deduced

† Note that the higher-order terms in capillary number are first developed by Wilson (1982)
using a matched-asymptotic technique.
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Figure 2. Instantaneous side view of the inertia-driven liquid menisci on a partially-immersed
rotating disc in water (R = 13.5 cm, h/R = 0.4). Linear velocities U = ΩR corresponding to
these conditions vary between 1.6 m s−1 and 5.4 m s−1. See supplementary videos for more
visualizations.

from a simple balance between the weight of the liquid film and the viscous drag of
the plate. Thus, in this viscosity-gravity driven regime, the relevant length scale for the
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Figure 3. Photographs presenting both side (left) and front (right) views of the dynamic liquid
sheet in a viscous UCON/water mixtures of dynamic viscosity µ = 82× 10−3 Pa s. Sheets can
be stationary at low speeds or unsteady at higher speeds.

Figure 4. When a wider disc rotates in water (R = 21 cm, width = 13 cm) multiple water
sheets occur: (a) Photographs at different instants for a given wheel immersion depth h = 0.2R
and U = 3.56 m s−1 showing that the number of sheets may vary with time. (b) Photographs
at various immersion depths h (distance between the water level and the disc’s bottom. They
resemble a fully-developed inertial ribbing instability (Yih 1960).

film-thickness is

δ
(g)
f =

√
µU

ρg
= lcCa

1/2, (1.2)

as one could expect from the classical drainage problem (Jeffreys 1930; Chalmers 1937).
But the presence of a stagnation point in the meniscus region between the pool and the
moving plate (Groenveld 1970c) implies that the resulting film thickness is provided by
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Figure 5. Photographs showing multiple liquid sheets for the same UCON/water mixtures
and wheel radius as in figure 3 but for a wider disc (width = 13 cm) at U = 1.74 m s−1.
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Figure 6. Some common liquid entrainment configurations : (a) The classical Landau-Le-
vich-Deryagin (LLD) dip-coating flow. (b) Tallmadge (1971)’s variant of LLD flow which
Tharmalingam & Wilkinson (1978) used to model, as schematized in (c), the coating flow on a
partially-submerged rotating drum at different immersion heights; Rubashkin (1967), Groenveld
(1970c) & Middleman (1978) also used this rotating cylinder set-up to explore the large capillary
number limit. (d)–(e) Moffatt-Pukhnachev-Yih (MPY) external, or internal, rimming flows,
respectively. (f) Other examples of rotary entrainment in liquid film coating processes (for more,
refer to Schweizer & Kistler (2012)). Relevant non-dimensional numbers in several previous
experiments and computations are given in Table 2.

the expression (1.2) up to a constant factor, depending on the flow situations. Subsequent
experiments (Groenveld 1970a; Kizito et al. 1999) and 2D computations (Jin et al. 2005;
Filali et al. 2013) suggest that such a limit is attained at Ca� 1 but only for moderate
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Reynolds number

Ref =
ρUδgf
µ
≡
√
Ca3

Mo
, (1.3)

based on δgf =
√
µU/ρg which is the relevant length scale for the film entrained by an

infinite vertical wall. Note that Ref is related to the capillary number via Morton number
Mo = µ4g/ρσ3 (or, equivalently, the fluid property number) which depends only on the
fluid properties at a given g.

In this context, by extending the LLD model to include inertia, De Ryck & Quéré
(1998) suggested that deviations from the classical LLD limit could occur due to an
increased momentum transfer from the plate at the dynamic meniscus. Experimental
data of Kizito et al. (1999, in figure 3) indicates that deviations from the LLD law,
to either larger or smaller film thicknesses, are attained at different capillary numbers
depending only on the fluid property number, or Morton number Mo. In particular, as the
capillary number is further increased, for both moderate or large Mo, the measured film
thickness for viscous liquids attained a maximum and plateaued out at approximately

0.7δ
(g)
f . While the measured film thickness for various viscous fluids followed the so-

called viscosity-gravity regime beyond a Weber number RefCa = Wef ≈ 0.2, it cannot
be concluded from their data corresponding to less viscous liquids (Mo � 1) that this
will be the case when Ref � 1 since the maximum Reynolds number in their experiments
was only about 20.

Similarly, Jin et al. (2005) illustrated, using 2D creeping flow equations (Ref = 0)
for the dip-coating problem, that the film flow rate per unit width attains a constant

value of about 0.58δ
(g)
f U when Ca � 1. They also attempted to investigate the role of

inertia by taking into account the non-linear terms of 2D Navier-Stokes equation in their
computations. In order to vary the film flow Reynolds number (1.3), they performed
computations by varying the capillary number Ca at different Morton numbers Mo ={

1, 10−1, 10−2
}

. They observed that the liquid flux dragged-out of a pool by a flat-plate
is correctly predicted by the LLD scaling (1.1), independent of Mo, until it reaches
a maximum value, occurring at some characteristic capillary number which seems to
depend only on the Morton number Mo. Thereafter, their numerical data suggest that
the entrained flux varies weakly with the capillary number but depends on the Morton

number (hence, also Ref ). In particular, the entrained flow rate is smaller than 0.58δ
(g)
f U

corresponding to their results for Ca � 1 and Ref = 0 (or Mo = ∞). However, their
numerical procedure failed beyond a critical value of capillary number which depends only
on the Morton number Mo. Note that the maximum Reynolds number Ref attained in
the 2D simulations of Jin et al. (2005) was 54 (Mo = 10−2) and that they, like a good
number of other works (Middleman 1978; Campanella & Cerro 1984; Kizito et al. 1999;
Evans et al. 2005; Filali et al. 2013), suggest the formation of cusped menisci and wavy
free-surface structures on the liquid pool as Ref increases.

In regards to deviations from LLD scaling with increasing inertial effects, a remarkable
film thickness divergence is known for the case of a fibre-entrained liquid flux out of a
liquid pool. De Ryck & Quéré (1994); De Ryck & Quéré (1996) studied the role of inertia
on film coating on a fibre when it is dragged-out of a finite liquid drop held between two
plates. Beyond a characteristic Weber number (based on the fibre thickness) increasing
drag-out speed provokes a sudden thickening of the film. As the speed is further increased,
if the viscous boundary layer is sufficiently large, the film thickness flattens out and then
decreases with drag-out speed.

Other works on liquid entrainment by a moving flat plate, or a fiber, in relation
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to LLD scaling considered the role of non-Newtonian rheology (De Ryck & Quéré
1998), wettability (Snoeijer et al. 2006, 2008), surfactants (Krechetnikov & Homsy 2005;
Campana et al. 2010; Mayer & Krechetnikov 2012), adsorbed particles on fluid interfaces
(Campana et al. 2011; Dixit & Homsy 2013; Jung & Ahn 2013; Gans et al. 2019; Palma
& Lhuissier 2019), textured flat plates (Seiwert et al. 2011; Nasto et al. 2018) and also,
the existence of non-unique solutions for the LLD problem (Weinstein & Ruschak 2001;
Benilov et al. 2010).

1.2. Rotary entrainment, an inclined-LLD flow?

Rubashkin (1967) & Middleman (1978) investigated the relevance of the LLD scaling
(1.1) for the case of a partially-immersed rotating cylinder. Using horizontal cylinders of
radius R = 2.5 – 4 cm and about 10 to 20 cm long in a viscous oil bath, they reported,
as others before, that the film thickness attains the limiting value of about 0.56

√
µU/ρg

as the capillary number is increased. They also noted, however briefly, that increasing
the rotational speed of the cylinder destroys the dynamic meniscus. Tharmalingam &
Wilkinson (1978) provided further film thickness measurements for a wide variety of
liquids as a function of the drum’s rotational speed (Ω) at various cylinder immersion
heights (h) under laminar flow conditions. In all these cases, there was no account of
liquid sheets standing out of the liquid pool along the emerging side of the rotating
cylinder similar to what is seen in photographs provided here (see figures 4 – 5). This is
probably due to the small working Reynolds number Ref , or strong confinement effects.

These authors attempted to account for the effect of immersion height on the liquid
flux entrained by a rotating drum by modeling the latter as an analogous Landau-Levich-
Deryagin dip-coating flow over an inclined flat plate (see also, Tallmadge (1971); Wilson
(1982); Jin et al. (2005)). In particular, as depicted in figure 6b-c, if α is the angle between
the inclined plate which is tangent to the partially immersed cylindrical drum at its line
of contact with the liquid bath at rest and the horizontal line, they showed that the
non-dimensional film thickness T0 = δf

√
ρg sinα/µU just after the dynamic meniscus

between the cylinder and the liquid reservoir is given by

T0

(1− T 2
0 )

2/3
∼ 0.94Ca1/6

(
sinα

1− cosα

)
. (1.4)

With the advent of numerical techniques, earlier theoretical efforts (such as Soroka &
Tallmadge (1971) & Tharmalingam & Wilkinson (1978)) on the lubrication equations
wherein inertial effects could be included via 1D film flow modeling and Oseen-like
corrections were later complemented by fully non-linear, but 2D film flow, simulations
(Nigam & Esmail 1980; Cerro & Scriven 1980; Campanella & Cerro 1984; Hasan & Naser
2009). Along with Tharmalingam & Wilkinson (1978), these authors reported that the
modified-LLD scaling for an inclined plate, as in (1.4), holds for a good range of small
capillary numbers. They also noted that, by including inertial effects in the inclined-plate
LLD law, a better match was obtained with experiments when the film Reynolds number
is of O(1).

1.3. Rotary entrainment in roll coating and rimming flows

A related problem is that of the steady and unsteady motion of a thin liquid film on
the outside of a freely-rotating cylinder, or on the inside of a hollow rotating cylinder (as
in figures 6d-e). They are known as external, or internal, rimming flows, respectively†. In

† These flows are also referred to as Moffatt-Pukhnachev-Yih (MPY) flow (Yih 1960; Moffatt
1977; Pukhnachev 1977)
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the context of pattern formation, a large body of work exists for such thin film flows since
rimming flows are prone to both azimuthal and axial non-uniformities (see Evans et al.
(2005); Seiden & Thomas (2011) and references therein). Even though flow patterns in
internal rimming flows (Kovac & Balmer 1980; Thoroddsen & Mahadevan 1997) seem
to be relevant to the present study, the liquid puddle confinement is very strong in these
flows. In the case of external rimming flows, the rotating cylinder is not in continuous
contact with the liquid puddle and therefore, the liquid mass entrained by the former is
not constantly renewed. These differences might strongly alter the flow patterns such as
the liquid sheet height and the resulting liquid entrainment process when the Reynolds
number Ref is sufficiently large. In this context, questions regarding the relevant length
and time scales of the liquid sheet, the entrained flux are yet not well-known.

Note that a very large panel of coating flows involving rollers (Schweizer & Kistler
2012, part 3) also fall under the category of rotary entrainment. In these cases the gap
between the rollers is often very small (about one-tenth of the roller radius or smaller) and
the cylinder length-to-radius ratio is large. Therefore, as proposed first by G. I. Taylor,
the flow field is almost always divided into two regions (Schweizer & Kistler 2012, see
chapter 12) : 2D flow in the liquid meniscus, or the flim-splitting region (figures 6f),
and a thin film flow far away from the meniscus. In fact, these flows can also exhibit
azimuthal film thickness variations (Ruschak & Scriven 1976), axial patterns (Pitts &
Greiller 1961; Coyle et al. 1990) and even misting, or meniscus break-up and atomization,
at high-speeds (Owens et al. 2011). Unlike what is common in roller coaters, in the case
we study here there is hardly any confinement on the emerging side of the disc so that
the meniscus, or the liquid sheet, is not constrained by another disc. In addition, a long
cylinder can lead to multiple liquid sheets when Ref � 1, as already shown in figures 4
and 5.

Previous experimental and computational investigations on rotary entrainment often
restricted the working Reynolds number Ref based on coating thickness to small (or at
best, moderate) values. When Ref was large, the meniscus was often strongly constrained
as for example in roller coaters. An interested reader is referred to Table 2, for more
information on relevant dimensionless numbers in several earlier experimental and nu-
merical investigations. Since both numerical and theoretical modeling of this fully three-
dimensional, multi-phase and unsteady fluid flow is extremely difficult for the inertial
rotary entrainment of liquids out of pool, we take a phenomenological approach in order
to propose physical reasoning for the scaling laws observed in our experiment. In this
regard, we focus in the remainder of this paper on the liquid sheet formed in front of a
rotating disc of finite width at h/R < 1, and on the related entrained liquid flux at large
Ref up to 103.

2. Experimental set-up

As illustrated in figure 1, the experimental set-up consists of a large plexiglass tank
(40×41.5×100 cm3) containing the working liquid. An asynchronous motor is used along
with an AC Inverter Drive (Parker AC10) to rotate rigid PVC discs of radii R = 10 cm,
13.5 cm and 21 cm and width 4.5 cm. Qualitative results for a thicker disc (13 cm)
were also presented in the introduction but experimental data in the following sections
concern only these discs of thickness 4.5 cm. The angular velocity can be varied between
20 and 350 rpm. The disc is partly submerged in the liquid bath and the liquid level h,
as depicted in figures 1 and 6c, is properly verified before each run. The position of the
wheel’s axis cannot be changed in the present set-up and so various immersion depths h
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in the range 0.05 – 0.8 times the disc radius R are obtained by adjusting the volume of
liquid in the aquarium.

Water and mixtures of Water/UCONTM oil were chosen for the experiments (table 1).
The viscosity of these mixtures can be controlled readily, and they are Newtonian. Note
that temperature of the set-up was never imposed externally. The ambient temperature
was relatively constant, and close to 23± 2◦C during the experiments. Table 1 presents
physical properties of the different liquids used in the experiments. Liquid density
was measured using hydrometers whereas viscosity was obtained using a falling-sphere
viscometer and by suitably taking into account the Reynolds numbers corrections for
the viscous drag on the spheres (Brown & Lawler 2003). Surface tension measurements
were performed using the pendant drop method with a tensiometer Attension Theta Flex
(Biolin Scientific AB). No surfactants were added to the working liquid in the present
study.

At first, the required wheel immersion depth is reached by controlling the water level
while the wheel is at rest. Then, for a given liquid a typical series of experiments is
performed by running the disc at a some specific rotation rate (rpm) as indicated by
a tachometer. After a few seconds, the resulting average liquid sheet height (Hm) and
average film flow rate (Qf ) are measured. Then the angular velocity is increased to repeat
measurements. Visualizations are carried out with the help of a LED panel (59.5 cm ×
59.5 cm) placed behind the liquid reservoir. Images are acquired with a Sony α7 camera
(CMOS Sony Exmor). The following sections describe in detail both the measurement
techniques and the corresponding results obtained using this experimental set-up.

3. Experimental results

3.1. Inertial menisci – a liquid sheet

The series of photographs in figures (7) – (8) depicts the evolution of the emerging
liquid sheet as the number of rotations per minute (rpm) is increased, for a wheel radius
of 21 cm and a water level of h = 0.2R. As seen in the photographs of figure 7, the water
level is almost constant across the lateral side of the wheel except close to the wheel’s
rim, at the bottom of the liquid sheet where the water level rises slightly. At the lowest
of the speeds shown here in the photographs (40 rpm, or U = 0.88 m s−1, corresponding
to Ref = ρUδgf/µ ≈ 270), a small quasi-static meniscus appears at the contact between
the wheel and the stagnant water far away from the wheel. A close-up shows that even at
this stage the flow on the disc’s rim is distinct from the classical 2D LLD flow. Firstly, we
can observe a small dimple at the location where the meniscus emerges from the liquid
bath which is reminiscent of the cusped meniscus already observed for dip-coating flows
in previous experimental (Kizito et al. 1999) and numerical investigations (Jin et al. 2005;
Filali et al. 2013). Secondly, it is no longer a smooth two-dimensional (or axisymmetric)
structure, as is the case for LLD films on flat plates (or fibres), but a closer inspection
shows spatial variations in the sheet thickness and the presence of one or two liquid rims.
A further increase in wheel speed leads to the formation of a liquid sheet with a single
liquid rim. At higher speeds, the sheet size increases dramatically, and the rim presents
fluctuations. Holes form within the sheet, and their rupture results in drop formation
(see figure 8 and supplementary video 1)

The influence of the immersion depth h of the wheel is illustrated in figures 9 & 10. In
the former, the first four photographs (top and middle) compare instantaneous side views
of the water sheet over a rotating disc of same radius (R = 21 cm) and approximately
same rotation speeds but with different liquid depths, namely, h/R = 0.4 & h/R = 0.6.
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Figure 7. Instantaneous side view of the inertia-driven liquid menisci on a partially-immersed
rotating disc in water (R = 21 cm, h/R = 0.2). See supplementary videos for more information.
Linear velocities U = ΩR corresponding to these conditions vary between 0.88 m s−1 and 4.3
m s−1. Displayed scales represent the half-radius of the disc 11.5 cm.

237 rpm 237 rpm
R = 21 cm
h = 0.05R
width = 4.5 cm

Figure 8. Visualization of the liquid sheet entrained by the wheel, for R = 21 cm, h = 1 cm
and U = 5.2 m/s: holes form regularly on the water sheet and disintegrate it, leading to the
formation of droplets (for a closer look, see supplementary video 1).

Firstly, it is clearly visible that the water sheet climbs as high as the wheel at about
215 rpm, or even higher at faster rotation rates. Secondly, the water depth h does not
seem to influence very much the water sheet height. A careful observation indicates that
the water sheet is thicker at its base, just at the emerging side of the wheel’s rim, and
thereafter the sheet thins out. Observing the last of the two images in figure 9, it is
inferred that the effect of water depth on the sheet height is not negligible for the case of
h/R = 0.8 as compared to smaller depths. Moreover, instead of a thin liquid sheet a very
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Figure 9. Instantaneous side view of the inertia-driven liquid menisci on a partially-immersed
rotating disc in water (R = 21 cm) at various immersion depth h/R. See supplementary videos
for more visualizations. Linear velocities U = ΩR corresponding to these conditions vary
between 4.68 m s−1 and 5.23 m s−1. The bottom two images compare the sheet height and
the related liquid entrainment at the same speed but at different times.

Figure 10. Instantaneous front view of the inertia-driven liquid menisci on a partially-immersed
rotating disc in water (R = 21 cm) at various immersion depths h/R but for the same speed
U = 3.12 m s−1. A sheet as thick as the wheel width is obtained for the case of h/R = 0.8.

thick mass of liquid is ejected in front of the wheel and also, a relatively thicker layer
of water is entrained on top the wheel. Front views of these configurations, as presented
in figure 10 at smaller speeds, also illustrate these observations on the sheet height and
sheet thickness.

The same phenomenology, with a few exceptions, is observed when a more viscous
liquid is used (figure 11). Here, the liquid used is a Water-UCONTM oil mixture WU3 (see
Table 1 for physical properties). Already at U = 0.42 m s−1 (Ref ≈ 10 and Ca ≈ 0.7), a
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Figure 11. Instantaneous side view of the inertia-driven liquid menisci on a partially-immersed
rotating disc (R = 21 cm, h/R = 0.2) in a viscous liquid (µ = 82 mPa s), a mixture of UCONTM

oil and water. For videos see supplementary material. Linear velocities U = ΩR corresponding
to these conditions vary between 0.42 m s−1 and 2.5 m s−1.

three dimensional quasi-static meniscus appears. In addition, pendant drops are also seen
to descend along the rim of the rotating disc (see supplementary video 2). This film flow
is similar to that observed by Evans et al. (2004, 2005) in their numerical simulations
of external rimming flows, or the classical Moffatt-Pukhnachev-Yih (MPY) flow, at low
speeds. No trace of descending pendant drops is seen at larger speeds but a quasi-steady
liquid sheet emerging from the liquid bath is clearly visible. These images suggest that
even in this highly viscous liquid, a lubrication approximation for the related flow is may
be irrelevant. At speeds up to 1.85 m s−1 (Ref ≈ 90), a fine stable liquid sheet which
terminates with a thick rim flow is observed. From these images of Water-UCONTM oil
mixtures (WU3), it is evident that the liquid rim is a result of a capillary recession, as
in a Savart sheet (Savart 1833; Villermaux et al. 2013). This recession is known to occur
at the Taylor-Culick velocity of vc =

√
σ/ρδs where δs is the local liquid sheet thickness

(Taylor 1959; Culick 1960; Savva & Bush 2009). As the speed is further increased, the
rim of the sheet shows strong corrugations (see also, figure 3). Numbers are indicated
for several images in figure 7 (for water) and figure 11 (for UCONTM). They correspond
to identical rotation rates for these series of experiments, and are provided to help the
reader compare the height of the liquid sheet for different fluids. Such a comparison
illustrates that the sheet height Hm measured from the surface of the pool is about 3 to
5 times larger for the case of the most viscous liquid (WU3) than for the water case, at
a given disc speed U .

3.1.1. Time-averaged sheet height

We have carried out measurements of the mean maximum liquid sheet height Hm

above the surface of the pool, measured by visualization over a duration of 10s. As seen
in figures 1 – 2 (and also, 7 & 11), Hm is not necessarily measured at the point where
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Figure 12. Average liquid sheet height Hm (in meters) with respect to the horizontal liquid
level in the tank as shown in figure 1 – 2. (a) Hm Vs rotational speed U = RΩ for various
disc radii R = 10 (green), 13.5 (red), 21 (black) cm and immersion depth to radius ratio
h/R. Data correspond to the experiments with both pure water (open symbols) and various
UCONTM/Water mixtures (R = 21 cm, filled symbols). Dotted line correspond to radius of
the wheel. (b) Same data rescaled with respect to two different Froude number scaling. Dashed
lines represent Hm = U2/2g (or simply, Hm/R = Fr2). Note that the error bars indicate the
amplitude of the fluctuations in the instantaneous value of sheet height.
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Figure 13. Same data as in figure 12(a) but rescaled with respect to Reynolds numbers Ref
based on the viscous entrainment length scale. Dashed lines represent Hm = U2/2g (or simply,
Hm/δ

g
f = Ref/2).

the liquid sheet meets the wheel. These results are presented in figure 12 wherein the
error bars correspond to minimum/maximum of the sheet height during the measurement
window. Figure 12(a) presents these measurements as a function of the rotation speed
U for three disc radii and several depths h for all working liquids. Here, filled symbols
correspond to viscous UCONTM/Water mixtures and open symbols correspond to pure
water.

Consider now all data when the working liquid is water. The sheet height Hm increases
monotonically with velocity. In figure 12(a), each symbol corresponds to a different depth
of immersion h of the rotating wheel whereas colours of open symbols denote wheel radius
R. We observe that the depth-to-radius ratio h/R and the wheel radius R seem to have
little influence on the average height of the liquid sheet Hm, except for the cases at larger
velocities. Especially for velocities about 3 m s−1 and higher, the role of wheel radius is
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not negligible. We attribute this effect to the wheel’s finite-size effect arising from the
fact that here h+Hm is O(R), or greater. So, it is expected that a smaller wheel (larger
curvature) will lead to a smaller sheet for a given linear velocity U . In addition, this effect
seems to be much more significant when h/R = 0.8 (denoted by �) at all wheel radii and
also, when h/R = 0.6 (denoted by /) for the smallest of the wheels. As already discussed
in the previous section in relation to figure 10, the effect of the wheel immersion h is to
increase the sheet thickness. In particular, when h/R = 0.8 the sheet thickness is as large
as the wheel’s width and so, it is distinctly different from the cases when h/R is smaller.
Furthermore, as the velocity is further increased, the sheet exhibits large fluctuations and
strong fragmentation which is readily evident from increasing length of the errorbars in
figure 12(a). At much higher velocities, the top of the liquid sheet stretches even beyond
the top of the rotating disc (see figures 2 and 9 for example).

Filled symbols in figure 12(a) denote data for liquids with different mass fractions of
UCONTM oil in water. The time-averaged liquid sheet height Hm exhibits a similar trend
with speed U , as for the cases of pure water. In addition, Hm depends on the viscosity
of water and UCONTM oil mixture of varying viscosity (µ = 5.5, 11 and 82 ×10−3Pa.s).
By comparing with the case of water (open symbols), it can be concluded that a strong
increase in sheet height Hm occurs when viscosity is increased. Besides, for the highest
viscosity liquid, the sheet height seems to increase linearly with the wheel speed.

A simple picture to describe the formation of the liquid sheet can be obtained by
considering the motion of liquid particles as ballistic when they are dragged out of the
bath by the rotating drum at a velocity proportional to the wheel speed U = ΩR. The
fluid particles then follow a free-flight trajectory in the liquid sheet and attain a height
Hm ∝ U2/2g. Irrespective of the working liquid, figure 12(b) illustrates that Hm is
indeed proportional to U2/2g when all data from figure 12(a) are non-dimensionalized
in terms of Hm/R versus Froude number Fr = U/

√
2gR based on the disc radius. This

suggests that the simple ballistic model captures the overall trend and provides a first
approximation for the time-averaged inertial sheet height.

Figure 13 presents the same data as in figure 12(a)-(b) but by comparing the sheet
height Hm with this drainage length scale δgf =

√
µU/ρg as a function of Reynolds

number Ref = ρUδgf/µ. Clearly, the liquid sheet height is one big order of magnitude
larger than this characteristic film thickness scale at the smallest of the Reynolds numbers
in our experiments and can reach as high as 500× δgf for sheets in water. Note that the

dashed line represents Hm/δ
g
f = Ref/2 and this is also an another way to show that Hm

is proportional to U2/2g.

Nonetheless, a closer look at the data makes it clear that Hm is significantly smaller
than this ballistic height as 2gHm/U

2 ∼ 0.3, for the case of water. In addition, this ratio
seems to decrease at larger speeds. Firstly, the fluid elements which quit the rim before
ending up in the sheet do not all have the same momentum and so, the corresponding
fluid element may only reach a smaller fraction of the ballistic height U2/2g. Secondly,
capillary recession is expected to truncate the liquid sheet when it stretches and thins out,
as evidenced by the formation of the liquid rim bordering the liquid sheet on its outer
perimeter. Therefore, increasing viscosity is expected to delay this capillary recession,
and lead to larger sheets, in accordance with the observed trend.

3.1.2. Time-averaged liquid sheet thickness

In order to better understand the effect of viscosity on the retardation of the Taylor-
Culick cut-off and thereby, explain the larger heights observed when viscosity is increased,
further information on the inertial liquid sheet thickness is obtained experimentally. A
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Figure 14. Schematic and photographs showing the wedge used for the calibration of liquid
sheet thickness. Two wedges with different lengths and widths were used : (1) L = 12.5 cm &
W = 4.5 cm ; (2) L = 14 cm & W = 1 cm. Minimum measurable thickness is 2mm.

standard technique is to mix the working liquid with a small amount of fine titanium
oxide particles (Ti O2) whereby the liquid opacity increases. For calibration, small wedge-
shaped plexiglass tanks are used (figure 14). When these tanks are filled with opaque
liquid/Ti O2 mixtures and illuminated with the back light LED panel, the intensity of
the light passing through the tank varies depending on the local width. This technique is
used to properly calibrate the relationship between liquid thickness and the light intensity
received by the camera. It is then possible to deduce the local thickness of the sheet for
various wheel immersion depths and rotational speeds. The profiles and contour plots of
the mean sheet thickness δs are deduced by averaging over 1500 images acquired during
30 seconds each and then applying this calibration. Data for these time-averaged sheet
thickness profiles are depicted in figures 15 and 16. Note that the maximum and the
minimum measureable thicknesses are about 4.5 cm and 2 mm, respectively.

For both h/R = 0.2 and h/R = 0.4, the contour plots in figure 15 illustrate that the
sheet thickness δs is not constant. It is thicker than the wheel’s rim at its base where
fluid elements are ejected with a kinetic energy proportional to U2/2, and it rapidly thins
out to attain a critical thickness at which capillary recession occurs. This recession then
leads to the formation of a thick liquid rim, clearly visible on the thickness profiles. As
mentioned previously, this recession leads to sheet truncation at a location where the
local fluid velocity is smaller than the Taylor-Culick velocity of vc =

√
σ/ρδs (Taylor

1959; Culick 1960; Savva & Bush 2009). Thus, for a given water depth, the critical sheet
thickness where the sheet forms a thick rim should decrease with increasing rotational
speed. This is indeed observed in figure 16(a) wherein δs attains a minimum of about
2 mm and 4 mm, respectively, as the rotation rate increases from 115 to 160 rpm. On
the other hand, at a given rotation rate 160 rpm for both h/R = 0.2 and h/R = 0.4,
figure 16(b) indicates that δs attains a minimum of about the same value 4 mm. So,
the depth-to-radius ration h/R only weakly influences this critical sheet thickness where
capillary recession leads to truncation. Figure 16(c) compares the measured thickness
for both Water and UCONTM/Water mixture at a h/R = 0.2 and a wheel speed of
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Figure 15. Liquid sheet thickness (δs) at different immersion depth to radius ratio h/R
and rotational speeds for water. All data correspond to a wheel radius of 21 cm. Maximum
measurable thickness is 4.5 cm (width of the drum), minimum measurable thickness is 2 mm.
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Figure 16. Sheet thickness δs as a function of the distance s traveled along a ballistic trajectory
by a hypothetical fluid element that is ejected with an initial velocity equal to U = RΩ at the
emerging side of the wheel (R = 21cm). Here, s = 0 is at the line of contact between the disc
and the horizontal liquid surface.

115 rpm. In comparison, the liquid sheet width decreases in a very similar trend for
both cases until the point where a liquid rim is formed for the case of water at about
s = 7.5 cm and δs ≈ 1.5 cm whereas the formation of a liquid rim occurs much later
for the UCONTM/Water mixture. In the latter case, the critical sheet thickness δs where
recession truncates the sheet is about 0.3 cm. This suggests that, compared to the case
of water, capillary recession is delayed for the more viscous UCONTM/Water mixture.

Finally, it is pointed out that the contour plots in figure 15 for the case of h/R = 0.8
present a distinct phenomenon. They show that the thickness of the sheet is at least as
large as the wheel width for all velocities presented here and it is so almost all over the
sheet. Also, no characteristic liquid rim is observed when h/R = 0.8. This trend is also
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visible in figure 16(b) where the liquid sheet thickness (filled, blue diamonds) remains
thicker than 4.5 cm for a good distance away from the wheel and then the sheet suddenly
disintegrates without a rim.

3.2. Entrained liquid film

As mentioned in the introductory section, the inertial entrainment produced by a
rotating wheel does not only eject a thin liquid sheet, but also drags out a liquid film
on the wheel rim. We discuss in the following the flow rate entrained in this liquid film.
While it is conventional in the LLD approach to characterize the film thickness δf , a
global flow rate measurement is privileged in this study over film thickness measurements
for practical reasons. At the same time, this provides a interesting measurement of the
“efficiency” of the overall inertial entrainment flux.

Most of the film flow rate measurements were done using a simple scraping technique
which consists in applying the sharp edge of a flexible, transparent plastic sheet on
the declining side of the wheel rim and thereby scraping the film flow out of the rim.
The former is then collected into a large receptacle, including droplets ejected from the
film itself for larger rotation speeds. Since disc speed U can show large variations when
one scrapes-off the lubrication film, special care was taken to avoid such variations by
systematically monitoring the tachometer over the time interval during which the liquid
is allowed to flow into the receptacle. This technique showed very good repeatability. It
is also possible to use a local measurement technique which measures the film thickness
at a given location on the cylinder, as is common at low Reynolds number entrainment
flows. However, due to the large Reynolds numbers at the scale of the liquid film, a series
of local film thickness measurements using Chromatic Confocal Imaging showed strong
spatio-temporal fluctuations of the film thickness at any given point on the rim. In fact,
the scraping technique is found to be more robust compared to the local measurement
technique as it directly provides a spatio-temporal average of the film flow rate, during a
fixed time interval. This time interval was of 40 seconds for the lowest wheel velocities,
but had to be reduced down to 10 seconds for larger velocities, in order to ensure that
the volume of the removed sample does not exceed 2 liters, and that the liquid level in
the tank remains constant during the measurement.

Figure 17 depicts the variations of the time-averaged film-flow rate as a function of
velocity, measured for the three discs of radius R = 10 cm, 13.5 cm and 21 cm over at least
seven different immersion heights in water. Data in figure 17 are averaged over different
experimental trials for which the rotational speeds differ by at most 5%. The error bars
in this figure represent the standard deviation of measurements in such samples of trials.
For the sake of clarity, figure 17 presents these error bars only for a few cases. It shows
that the entrained flow rate increases monotonically with the disc speed U = RΩ and also
with the depth h. Note that all data seem to be relatively independent of the water height
h/R up to some critical azimuthal speed U . After this limit, figure 17 clearly indicates
that the entrained water flow rate is strongly influenced by the immersion height h. For
example, the film-flow rate at h/R = 0.8 is three times larger than that at h/R = 0.05
for discs R = 10 cm & 13.5 cm. And it gets as large as eight-folds when R = 21 cm.

It is well-known in dip-coating flows that confinement can play an important role (Kim
& Nam 2017) if the meniscus, or the liquid sheet, at the emerging side of the wheel’s
rim is confined. However, we observe no major effect of confinement in our experiments.
We checked this (i) by adding a plexiglass floor below the wheel, which reduces the
distance between wheel and bottom wall from 12.5 cm down to 3 mm (figure 17b) and
(ii) reversing the wheel’s direction of rotation (the distance between the wheel and the
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Figure 17. Time-averaged water flow rate Q̇f in the entrained liquid film on the rim of
the rotating disc. Dashed blue and red lines represent estimations using 3.2, as provided
by Tharmalingam & Wilkinson (1978), for respectively the smallest and the largest depth
(h/R = 0.05 & h/R = 0.8). For the sake of clarity, error bars are given only for one set of
data per wheel.

wall goes from 39 cm to 15 cm, as in figure 17c). In both cases, we could verify that this
had no measurable impact on the entrained flow rate.

The role of the working liquid is explored using the same various water-UCONTM

mixtures as in the previous section. Figure 18 illustrates that, as expected, increasing the
liquid viscosity increases the flow rate. Thus, when the liquid viscosity is increased about
100-fold, an increase in the liquid entrainment by an order of magnitude is observed.
The effect of liquid depth observed for water is also observed for these liquids and, more
importantly, figure 18 suggests that the corresponding critical velocity depends on the
working liquid.
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Figure 18. Impact of viscosity on the entrained flow rate at a fixed disc radius (R = 21 cm).

3.2.1. Comparison with 2D creaping flow models

It is conventional in film coating flows to study the entrained flow by monitoring the
film thickness δf as a function of the capillary number Ca = µU/σ. In the creeping flow
regime (Re� 1), the entrained mass flow rate is then given by

Q̇f = ρUδfw

1− 1

3

(
δf
δgf

)2
 , (3.1)

where w is the rim thickness (Deryagin & Levi 1964; Groenveld 1970c). Note that the
film flow thickness δf , at sufficiently small Ca, should correspond to the expression
(1.1) associated with the classical Landau-Levich-Deryagin dip-coating flow. However,
when Ca � 1, previous observations (Ruschak 1985; Kizito et al. 1999) report that the
observed mass flow rate in the entrained film is obtained from the above expression if the
film thickness δf is taken as in the expression (1.2). This corresponds to the viscosity-

gravity driven dip-coating flow and in this case, Q̇f = 2/3 × ρUwδgf . More recently, Jin
et al. (2005) suggested, via numerical simulations of creeping flow (Re� 1) at sufficiently
large capillary numbers, that the right expression for the flow rate with δf = δgf should
contain a different pre-factor 0.58 instead of 2/3. In order to compare our experimental
data with these results, we render the experimental flow rates of figure 18 dimensionless
with Q̇LLD and Q̇G: Q̇LLD is obtained from expression (3.1) when the film thickness is
taken to be δLLDf (1.1), whereas Q̇G is obtained from the same expression (3.1) but with

a film thickness of δgf (1.2) so that Q̇G = 0.58 × ρUwδgf . Figure 19 indicates that both

Q̇LLD and Q̇G capture the correct order of magnitude of the entrained mass flow rate,
which, as inferred from figure 18, varies over more than two orders of magnitude. The
main dispersion observed in the rescaled experimental data is due to depth-to-radius ratio
h/R. In addition, figures 19 suggest that this dispersion kicks-in at some capillary number
which depends on the working liquid’s Morton number. Finally, below this characteristic
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Figure 19. Rescaled data from figure 18. Here, Q̇G and Q̇LLD are obtained from the

expression (3.1) when the film thickness δf is taken as δ
(g)
f (1.2) and δLLDf (1.1), respectively.
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Figure 20. Rescaled data from figures 17 & 18 as a function of Weber number Wef = ρU2δ
(g)
f /σ

(left) and Weλ = ρU2λ/σ (right) based on the LLD dynamic meniscus length λ = 0.65lcCa
1/3,

where lc =
√
σ/ρg is the capillary length. Here, open symbols with + (red online) and × (blue

online) represent experimental results for R = 10 cm and R = 13.5 cm, respectively.

capillary number, the ratio Q̇f/Q̇LLD is approximately equal to unity for all liquids while

the ratio Q̇f/Q̇G significantly departs from unity for experiments in water.
In fact, it is already known in coating flows that a transition from the LLD law to an

inertia-dominated regime happens when the capillary pressure at the base of the liquid
film is no longer large compared to the wall-imposed dynamic pressure ρU2. This is
precisely the case as the Weber number becomes sufficiently large. Note that two Weber
numbers can be defined, depending on the length scale chosen, namely, Wef based on

the drainage length scale δ
(g)
f = lcCa

1/2 (Kizito et al. 1999) and Weλ based on the

quasi-static LLD meniscus length λ ' 0.65lcCa
1/3 (De Ryck & Quéré 1996). We further
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investigate how the liquid depth modifies the film thickness by plotting all the data from
figures 17 & 18 as a function of these Weber numbers in figure 20.

There is a relatively good collapse of data for Weber numbers smaller than 10, in
particular when these data are plotted as a function of Weλ. In addition, the effect of
wheel depth h which kicks in at strikingly different capillary numbers in figure 19 (ranging
from 10−2 to 1) appears above a single threshold Weber number of about 10, both for
Weλ and Wef . To the authors’ knowledge, this is the first ever demonstration of the
existence of such a characteristic Weber number above which a transition occurs from
2D creeping flow to an inertial regime for rotary film entrainment. Beyond this Weber
number the film thickness is either under-estimated or over-estimated by both the LLD
dip-coating law and drainage film length, depending essentially on the ratio h/R.

Note that the rotary flow entrainment problem in our case is particularly distinct
from that of classical coating flow processes. Here, instead of a dynamic LLD meniscus
at the base of the liquid film flow, a large, corrugated liquid sheet is present due to
inertial ejection of the liquid at the emerging side of the disc’s rim. As already illustrated
in section 3.1, the latter presents a three-dimensional flow structure and its height is
proportional to the square of the Froude number. Moreover, the range of Reynolds
numbers Ref = ρUfδ

g
f/µ in the film flow varies between O(1) to O(103). Therefore,

it is quite unexpected that a good agreement with 2D creeping flow analyses is retrieved
here for the entrained flux on a rotating disc, as long as Weλ < 10. In addition, this model
provides a satisfactory order of magnitude for the film flow rate even when Weλ > 10.

3.2.2. Impact of depth on entrained flow rate when Weλ > 10

Figures 17 (a)–(c) & 18 suggest that beyond a critical speed the role of depth must be
accounted for. In this context, Tallmadge (1971) and Tharmalingam & Wilkinson (1978)
suggested a suitably modified version of the dip-coating flow (see schematic 6c). In fact,
via lubrication approximation along with LLD-type asymptotic analysis, these authors
previously predicted that the average mass flow rate should be

Q̇TT = ρUδfw

1− 1

3

(
δf
δgf

)2

sinα

 , (3.2)

where δf is computed from expression (1.4) and α is the angle between the tangent to
the partially immersed cylindrical drum at its line of contact with the liquid bath at rest
and the horizontal line. When the measured data is compared with the estimates from
this model (dashed blue and red lines in figures 17), a reasonable qualitative agreement is
observed, showing a strong relative increase in the flow rate with increasing depth. This
arises from the fact that the model accounts for the squeezing of the meniscus occurring
at large α, or low depths, and therefore predicts a smaller flow rate than that of equation
(1.1) corresponding to the drag-out problem of a vertical plate (α = 90◦). Nevertheless
the model largely underestimates the entrained flow rate. Also, Q̇TT depends on h/R
irrespective of the wheel speed U while figures 17(a)-(c) and 20 suggests that, for all
Weλ < 10, the entrained flux is well predicted by the classical 2D creeping flow models
corresponding to the vertical drag-out problem. Therefore, the observed influence of depth
h when inertia dominates both surface tension and viscous forces (ı.e., at large Ref and
Weλ) cannot be explained by simply accounting for the angle between the emerging side
of the disc and the horizontal pool level in the LLD flows.

A first possible explanation can be found in the observation that there exists a thin
liquid film which is dragged out of the liquid bath by the disc’s lateral walls and which
could, in turn, contribute to the film flow on the disc’s rim provided that centrifugal forces
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Figure 21. Direct evidence for the contribution from liquid entrained via lateral walls (water,
and wheel radius R = 21 cm). Open symbols represent the cases without lateral scrapping while
closed symbols represent data from scrapped cases. Remarkably, data corresponding to the depth
to radius ratio h/R = 0.4 (black, filled squares) follows the LLD-scaling when lateral entrainment
is scrapped off. However, for h/R = 0.6 and 0.8, lateral entrainment cannot completely explain
the increase in mass flow rate.

overcome gravity, which occurs for Fr > 1. This contribution is expected to increase
when the depth is increased and a larger fraction of the lateral wall is consequently wet.
In order to better quantify this contribution, two wiper blades were used to scrap-off
the lateral film: the wiper blades were placed right next where the disc’s lateral walls
and the liquid bath meet. The results are shown in figure 21 for R = 21 cm at various
water depth h/R (filled symbols) where they are also compared with data from figure
17(c). Here, it is evident that the water flow on the lateral wall modifies the entrained
flow on the rim. Clearly, data from experiments with lateral scrapping for the case of
h/R = 0.2 and h/R = 0.4 closely follow a unique curve given by Q̇LLD. Nonetheless,
at water depths corresponding to h/R = 0.6 and 0.8, the supplementary entrainment
via lateral walls accounts only for about 10–20 % increase in film flow rate on the disc’s
rim. Furthermore, experimental data in figure 21 (right) strongly suggests that, for both
h/R = 0.6 & h/R = 0.8, the entrained flow rate in the absence of contribution from the
film flow along lateral walls increases as a power-law of Weλ, independent of h/R.

The physical mechanism for this observed entrained flux augmentation at depth-to-
radius ratio h/R > 0.4 can be linked with the shape and dynamics of the liquid sheet on
the emerging side of the wheel. As illustrated via photographs 9 and time-averaged sheet
thickness measurements 15 in section 3.1, when the water depth is sufficiently large, the
whole liquid sheet is as thick as the wheel rim whereas the sheet thickness is negligibly
small compared to the wheel width when h/R 6 0.4. In the latter case, it is deduced
that the liquid sheet does not influence the flow rate at all speeds, whatever the working
Weber number Weλ, as depicted by the corresponding data in figure 21 (right) in the
absence of any contribution from lateral wall entrainment. However, in the former case,
ı.e., when h/R > 0.4, the liquid sheet wets the entire thickness of rotating wheel: liquid
is entrained from this liquid rim onto the wheel. Taking this action of the liquid sheet
into account, it is possible to extend the classical Landau-Levich scaling to explain the
liquid entrainment without lateral wall contributions.

In the classical entrainment problem, as illustrated by (Maleki et al. 2011), Landau-
Levich asserted that the viscous driving force per unit volume µU/δ2f on a fluid element
is balanced out by the restoring force per unit volume (σ/lc)/λ which is taken solely due
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to the pressure gradient arising from the Laplace pressure across the dynamic meniscus
of length λ. Here, δf is the entrained film thickness and lc =

√
σ/ρg is the capillary

length. The missing length scale λ is then obtained by matching the curvature of the
dynamic meniscus δf/λ

2 to the static curvature 1/lc. Thereby, it is possible to obtain

δ
(LLD)
f ∼ lcCa

2/3 which is exactly the first-order approximation to the Wilson formula
in equation 1.1. However, the fact that the wheel rim is entirely covered by a thick liquid
sheet from which the thin liquid film emanates is indeed very distinct from the Landau-
Levich case wherein the liquid film emerges from a quasi-static liquid bath. Therefore,
it is no longer appropriate to match the curvature of dynamic menisci δf/λ

2 with that
of a static menisci 1/lc. Since the sheet height Hm depends only weakly on the wheel
radius R, a simple dimensional analysis points out that the appropriate curvature before
the dynamic menisci should be g/U2 × f(h/R). By matching the curvature of dynamic
menisci δf/λ

2 with this inertial menisci curvature, the film thickness δIf is obtained as

δIf ∼ lcCa
2/3

(
U2

glc

)1/3

ζ

(
h

R

)
, (3.3)

where ζ(h/R) is an arbitrary function of only the water depth to radius ratio. Thus, the
corresponding entrained film flow rate is given by

Q̇If ∼ Q̇LLDf We
1/3
λ Ca−1/9ζ

(
h

R

)
. (3.4)

where only the first-order contribution of the thickness (1.1) in the expression (3.1) is
taken. The modified LLD scaling (3.4) can be compared with the experimental data
for the case when the liquid sheet occupies the entire rim ı.e., when h/R > 0.6.
As seen in figure 21 (right), despite many simplifying assumptions, the above scaling
argument matches relatively well with the available data when the contribution from
lateral entrainment is scrapped-off for both h/R = 0.6 & h/R = 0.8. Therefore, up to
a first estimate, the observed entrainment in the inertial regime of a rotating wheel at
h/R > 0.6 should arise from the presence of a thick liquid sheet.

4. Conclusion

The aim of the present work is to illustrate the dominant flow structures in relation to
the rotary entrainment of a partially-submerged disc in the absence of any confinement
at the point where the disc emerges out of the liquid pool. In particular, we performed
experiments in the range of very large Reynolds Ref and Weber numbers We = CaRef
where the relevant Reynolds numbers is taken as Ref = ρUδgf/µ with the drainage length

scale δgf =
√
µU/ρg.

Experiments showed that a liquid sheet of finite height is present on the emerging
side of the rotating disc when the rotational speed is sufficiently large (U & 0.8 m s−1).
The time-averaged liquid sheet height Hm is shown to be proportional to the maximum
ballistic height U2/2g attained by a fluid particle. It is independent of the immersion
depth h/R, except for the case of h/R > 0.6 wherein combined immersion depth and
the sheet height become larger than the wheel size h + Hm > R. In particular, when
the immersion depth is small compared to the radius (h/R < 0.5), time-averaged sheet
thickness measurements indicate that the sheet rapidly thins out until capillary recession
inhibits further decrease. Since the capillary recession is delayed in viscous liquids, the
sheet height in viscous UCONTM/Water mixtures is found to be much larger than those
observed in water at the same velocity. For large depth-to-radius ratio h/R, no capillary
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recession is observed. Instead a thick liquid sheet as large as the rotating wheel’s rim
appears which in turn can influence the entrained liquid flux over the rim of the rotating
disc.

Despite Ref � 1 ranging over three decades in the present experiments, the liquid
entrainment follows remarkably the flow rates predicted by the 2D creeping flow models
until a characteristic capillary number Ca = µU/σ, or equivalently a characteristic
Reynolds number (since Ref =

√
Ca3/Mo where the Morton number Mo = µ4g/ρσ3),

depending only on the liquid physical properties. The transition to an inertia-dominated
entrainment regime occurs when the capillary pressure based on the quasi-static LLD
meniscus length λ ' 0.65lcCa

1/3 becomes lesser than the wall-imposed dynamic pressure
ρU2. Experimental data in the present study demonstrates that such a transition happens
when Weλ = ρU2λ/σ is about 10. Beyond this limit, two major contributions are
identified for inertial entrainment : (1) lateral wall entrainment and (2) entrainment
from the top of the thick liquid sheet. The former is present when the Froude number
based on the wheel radius is larger than unity and at this stage, the liquid film entrained
on the lateral wall is centrifuged towards the wheel rim. This seems to be the dominant
mechanism when the water depth is small compared to the wheel radius. The latter
modifies the curvature of the quasi-static liquid in front of the entrained film and thereby
leads to an enhanced film flow rate. This contribution is predominant when the liquid
sheet thickness is comparable to that of the wheel’s rim (h/R > 0.5).

We also showed, however briefly, that sheets can meander, become corrugated and
fragment into droplets. Furthermore, when the disc width is increased multiple sheets
can occur. While internal, external rimming flows and rotary coating flows have received
a lot of attention in the last few decades (Seiden & Thomas 2011; Schweizer & Kistler
2012), not much is known for the case of a rotating cylinder submerged in liquid pool in
the absence of any confinement. So, the authors hope that the present work motivates
further numerical simulations and experiments on the complex flow structures in inertia-
dominated liquid film flows and also, in the more challenging fully 3D two-phase flow
problem of rotary entrainment at large Reynolds numbers and Weber numbers.

The authors acknowledge Stéphane Martinez and Arthur Buridon for their technical
assistance, Hélène Scolan and also the contribution from projects at the Mechanics
department in the Université Claude Bernard Lyon1 for several measurements. Financial
support from Groupe PSA is also acknowledged by the authors.
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A deeper insight into the dip coating process in the presence of insoluble surfactants: A
numerical analysis. Physics of Fluids 23 (5), 052102.

Campanella, O.H. & Cerro, R.L. 1984 Viscous flow on the outside of a horizontal rotating
cylinder: The roll coating regime with a single fluid. Chemical Engineering Science 39 (10),
1443 – 1449.

Cerro, RL & Scriven, LE 1980 Rapid free surface film flows. an integral approach. Industrial
& Engineering Chemistry Fundamentals 19 (1), 40–50.

Chalmers, Bruce 1937 Surface tension and viscosity phenomena in tinplate manufacture.
Trans. Faraday Soc. 33, 1167–1176.

Cohen, Edward D & Gutoff, Edgar B 1992 Modern coating and drying technology, , vol. 1.
VCH New York.

Coyle, DJ, Macosko, CW & Scriven, LE 1990 Stability of symmetric film-splitting between
counter-rotating cylinders. Journal of Fluid Mechanics 216, 437–458.

Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 1128 – 1129.
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De Ryck, Alain & Quéré, David 1998 Gravity and inertia effects in plate coating. Journal

of Colloid and Interface Science 203 (2), 278 – 285.
Deryagin, B. V. 1943 Thickness of liquid layer adhering to walls of vessels on their emptying

and the theory of photo-and motion-picture film coating. In Comptes Rendus (Doklady)
de l’Academie des Sciences de l’URSS , , vol. 39, pp. 13–16.

Deryagin, B. V. & Levi, S. M. 1964 Film coating theory. Focal Press.
Dixit, Harish N. & Homsy, G. M. 2013 The elastic landau–levich problem. Journal of Fluid

Mechanics 732, 5–28.
Evans, P. L., Schwartz, L. W. & Roy, R. V. 2004 Steady and unsteady solutions for

coating flow on a rotating horizontal cylinder: Two-dimensional theoretical and numerical
modeling. Physics of Fluids 16 (8), 2742–2756.

Evans, P. L., Schwartz, L. W. & Roy, R. V. 2005 Three-dimensional solutions for coating
flow on a rotating horizontal cylinder: Theory and experiment. Physics of Fluids 17 (7),
072102.

Filali, Abdelkader, Khezzar, Lyes & Mitsoulis, Evan 2013 Some experiences with the
numerical simulation of Newtonian and Bingham fluids in dip coating. Computers & Fluids
82, 110–121.

Gans, Adrien, Dressaire, Emilie, Colnet, Bénédicte, Saingier, Guillaume, Bazant,
Martin Z & Sauret, Alban 2019 Dip-coating of suspensions. Soft matter 15 (2), 252–
261.

Gaskell, PH, Innes, GE & Savage, MD 1998 An experimental investigation of meniscus roll
coating. Journal of Fluid Mechanics 355, 17–44.



28 J. John Soundar Jerome, S. Thevenin, M. Bourgoin and J-P. Matas

Goucher, FS & Ward, H 1922 The thickness of liquid films formed on solid surfaces under
dynamic conditions. Phil. Mag 44, 1002–1014.

Groenveld, P 1970a High capillary number withdrawal from viscous newtonian liquids by flat
plates. Chemical Engineering Science 25 (1), 33–40.

Groenveld, P 1970b Low capillary number withdrawal. Chemical Engineering Science 25 (8),
1259–1266.

Groenveld, Pieter 1970c Dip-coating by withdrawal of liquid films. PhD Thesis .

Hasan, N. & Naser, J. 2009 Determining the thickness of liquid film in laminar condition on
a rotating drum surface using cfd. Chemical Engineering Science 64 (5), 919 – 924.

Jeffreys, Harold 1930 The Draining of a Vertical Plate. Mathematical Proceedings of the
Cambridge Philosophical Society 26 (2), 204–205.

Jin, Bo, Acrivos, Andreas & Münch, Andreas 2005 The drag-out problem in film coating.
Physics of Fluids 17 (10), 103603.

Jung, Yoon Dong & Ahn, Kyung Hyun 2013 Prediction of coating thickness in the convective
assembly process. Langmuir 29 (51), 15762–15769.

Kim, Onyu & Nam, Jaewook 2017 Confinement effects in dip coating. Journal of Fluid
Mechanics 827, 1–30.

Kizito, J. P., Kamotani, Y. & Ostrach, S. 1999 Experimental free coating flows at high
capillary and reynolds number. Experiments in Fluids 27 (3), 235–243.

Kovac, J. P. & Balmer, R. T. 1980 Experimental Studies of
External Hygrocysts. Journal of Fluids Engineering 102 (2), 226–
230, arXiv: https://asmedigitalcollection.asme.org/fluidsengineering/article-
pdf/102/2/226/5701423/226 1.pdf.

Krechetnikov, R. & Homsy, G. M. 2005 Experimental study of substrate roughness and
surfactant effects on the landau-levich law. Physics of Fluids 17 (10), 102108.

Landau, L & Levich, B 1942 Dragging of a liquid by a moving plate. Acta Physicochim. URSS
17, 42.

Maleki, M, Reyssat, M, Restagno, F, Quéré, D & Clanet, Christophe 2011 Landau–
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