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A B S T R A C T   

Plant fiber properties, such as morphological and mechanical, are characterized by a large dispersion. Thereby, a 
statistical analysis is needed to obtain consistent results. An experimental study, conducted on 50 flax yarns, 
shows that the flax yarn properties (Young’s modulus, tensile strength and diameter) follow Gaussian distri
butions. This approach is obviously reliable, however time-consuming, to get relevant information. An alter
native could be the identification of the yarn mechanical properties using an inverse approach, based on tensile 
tests conducted on flax fabric reinforcement. The aim of this study is to develop a numerical method that allows 
to identify the statistical distributions of flax yarn properties based on tensile tests conducted on fabric speci
mens. The proposed strategy relies on two assumptions. On the one hand, fabric is constituted of several yarns 
acting like springs in parallel. On the other hand, yarns are considered as brittle-elastic materials. Hence, a yarn 
breaks when the load reaches its failure strength, leading to a loading redistribution to the intact yarns. A 
comparison of the numerical and experimental results of flax fabric tensile behavior, and of the flax property 
statistical distributions allows to confirm the performance of this strategy. The results show that the flax fabric 
tensile behavior is correctly described by the proposed modeling strategy. The average and the standard devi
ation of the Young’s modulus, the tensile strength and the diameter of flax yarns identified from fabric tensile 
tests via inverse approach are close to those obtained experimentally on individual yarns. Indeed, the measured 
average diameter of unitary yarns are 244.4 ± 19.2 μm and the fitted one is 2474.8 ± 17.4 μm, the fitting failure 
strength 292.3 ± 33.4 MPa are close to the experimental 271.2 ± 47.5 MPa. The identified Young’s modulus is 
9.4 ± 0.9 GPa is lower than the experimental 10.8 ± 1.3 GPa.   

1. Introduction 

Natural fibers reinforced polymer either synthetic or bio-based ma
trix are attractive to develop high-performance composite materials 
(Mohanty et al., 2018; Ramesh et al., 2017). Among all natural fibers, 
those derived from plants, such as hemp, flax, jute and alfa fibers, appear 
to be suitable as reinforcing materials for polymers for many industrial 
applications (Gurunathan et al., 2015) due to their high specific prop
erties, especially when compared to those of glass fibers (Bledzki and 
Gassan, 1999; Faruk et al., 2012). At the European scale, among plant 
fibers, flax and hemp are the most widely used for composite applica
tions (Bourmaud et al., 2018). 

Vegetal fibers generally have a hydrophilic behavior due to the 
presence of cellulose and hemicellulose with opened structures con
taining hydroxyl (OH) and acetyl (C2H3O) groups (Fotouh et al., 2014). 

The behavior of plant fibers and their associated composites is strongly 
affected by their water content and therefore by the external conditions 
(e.g. temperature, relative humidity) (Abida et al., 2020). Cadu et al. 
(2019) showed that the morphology, the microstructure and the 
chemical composition of flax fiber bundles change with cyclic hygro
thermal ageing (between relative humidity (RH) of 90% and RH of 
40%). These modifications could be responsible for the mechanical 
behavior change according to water content (Abida et al., 2019; Célino 
et al., 2014; Perrier et al., 2017). 

The fiber reinforced polymer matrix composite performance is gov
erned by a variety of factors including the fiber and the polymer matrix 
properties, the quality of their interface and fiber dispersion (Perrier 
et al., 2016). Understanding the behavior of composite materials re
quires, as first step, a good knowledge of the reinforcing material and of 
the matrix behavior. In plant fiber reinforced polymer composite 
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science, the characterization of the plant reinforcement behavior could 
be conducted at different scales (fabric, yarn, fiber bundle and 
elementary fiber). In this study, the behavior analysis at the fabric scale 
is considered as the macro-scale (Abida et al., 2019). In a scaling down 
approach, the behavior characterization at the yarn scale (Omrani et al., 
2017), is referred to as meso-scale. At a lower scale, called micro-scale, 
the behavior of elementary fibers or fiber bundles could be analyzed 
(Bourmaud et al., 2016). 

The experimental characterization of plant fiber or yarn properties 
needs to overcome some experimental concerns such as a high precision 
measurement of the load and the diameter, a control of the external 
conditions and the water content in the materials. As for all fibers, 
synthetic or natural, plant fiber properties are characterized by a large 
dispersion (Andersons et al., 2009; Baley, 2002; Belaadi et al., 2016; 
Placet, 2009). The level of dispersion depends on the fiber nature and 
the characterization methods used. For instance, Belaadi et al. (2014) 
showed that the mechanical properties of sisal fibers depend on the 
number of tests (ranging from 15 to 40 tests). Hence, the mechanical 
properties of plant fiber should be obtained using a statistical approach. 
Depending on the analyzed properties and the fiber type, the statistical 
distribution of properties could be described using a Weibull, a 
Log-normal or a Gaussian probability distribution (Virk et al., 2009; 
Zafeiropoulos et al., 2007). Foray et al. (2012) investigated glass fiber 
flaw size distributions by developing an approach based on tensile tests 
on multifilament bundles and examination of the fiber surface. These 
results were used by Lamon and R’Mili (2014) to predict the durability 
of composites under fatigue loading. These strategies are often 
time-consuming and require a large number of tests to obtain relevant 
information. 

An alternative could be to conduct tests at a macro-scale (fabric 
scale) (woven: twill, satin weaves, non-woven: unidirectional). How
ever, as far as the authors’ knowledge is concerned, most of the works 
focus on the characterization of fabric properties or behavior. Sinoimeri 
and Dréan (1997) studied fabric uniaxial extension using energy 
methods. Dolatabadi and Kovar (2012), and Kovar and Gupta (2009) 
studied experimentally and theoretically the tensile and the rupture 
properties of plain weave fabric, respectively. More recently, Abida et al. 
(2019) conducted an experimental investigation on the influence of 
water content on the mechanical behavior of a quasi-unidirectional flax 
fabric and showed a low dispersion of the flax properties at the fabric 
scale. Kovar and Gupta (2009) proposed an analytical model to predict 
failure of plain woven fabric based on strain failure criterion and on 
fabric geometry changes with loading (orientation and length of yarns). 
Homogenization approaches are used to compute properties of textile 
composites or fabrics depending on yarn behavior and fabric geometry 
(El Mourid et al., 2013; Udhayaraman and Mulay, 2017). The theoretical 
fabric behavior is usually investigated using finite element modeling 
based on the geometry of textile structures. The geometry of fabric 
structures could be obtained by parametric modeling of the real geom
etry (Chu and Chen, 2018; Wu and Li, 2019) or by computed X-ray to
mography observation (Naouar et al., 2015). 

The aim of this study is to develop a numerical method that allows to 
identify the statistical distributions of flax yarn properties based on 
tensile tests conducted on fabric specimens. The proposed strategy relies 
on two assumptions. On the one hand, fabric is composed of several 
yarns acting like springs in parallel. On the other hand, yarns are 
considered as brittle-elastic materials. Hence, a yarn breaks when the 
load reaches its failure strength, leading to a loading redistribution to 
the intact yarns. This paper proposes, at first, a description of the ma
terials and the methods used during this study (section 2). Then, in 
section 3, the properties of the yarns (diameter, Young’s modulus, fail
ure strength and failure strain) are identified from tensile tests on in
dividual flax yarns and described by a statistical probability density. The 
mechanical behavior of fabric sample made of about a hundred of yarns 
is also experimentally defined. In the modeling, fabric behavior is 
assumed to be composed of several yarns that act like parallel springs. A 

yarn breaks when the applied load reaches its failure strength, which 
will lead to a loading redistribution transfer to the other intact yarns. 
The modeling of the fabric behavior is detailed in section 4. The fabric 
failure is obtained when all yarns break. The last section of this paper is 
devoted to the validation of the inverse approach strategy developed to 
determine the statistical properties of individual yarns from tensile tests 
on fabrics. 

2. Material and methods 

2.1. Materials 

2.1.1. Macro-scale specimens: flax fabric 
The studied material is a quasi-unidirectional flax fabric Flaxply FUD 

180 supplied by LINEO NV. The abbreviation “FUD” corresponds to 
quasi-unidirectional reinforcement. The associated number is the theo
retical specific mass of the fabric. On our sample batch, a specific mass of 
207 ± 0.5 g/m2 is measured. This reinforcement is characterized by few 
yarns in weft direction to facilitate its handling (Fig. 1 (a)). A 3D 
reconstruction of the fabric using TexGen software (“TexGen,” n.d.) is 
shown in Fig. 1 (b). The warp yarns are characterized by a pick count of 
4068 yarns/m, while the weft yarns pick count is 304 yarns/m. These 
technical data lead to a fabric with a balancing coefficient of 0.93. The 
balancing coefficient KG is defined as the warp yarns pick count divided 
by the total pick count. 

2.1.2. Meso-scale specimens: flax yarns 
Warp yarns are randomly and carefully extracted from the fabric in 

order to be studied. The warp yarns are characterized by a titration of 
48 ​ mg/m. SEM image of the studied flax yarns is given in Fig. 2. It is 
clearly shown that flax yarns are constituted of twisted fibers. The 
measured twist angle is 15 ± 5◦. 

2.2. Specimen manufacturing and conditioning 

2.2.1. Macro-scale specimen manufacturing 
Non-impregnated by polymer matrix quasi-unidirectional flax fabric 

specimens are prepared according to the standard ISO4606. According 
to this standard, a proper preparation of the fabric specimen ends is 
required to avoid damage and stress concentration in fixing jaws of the 
tensile test machine. Only the ends of the fabric specimens are 
impregnated with epoxy resin (Araldite LY 1546 resin and Aradur 3487 
hardener). The central gauge is non-impregnated. Fabric bands of 330 ×

250 mm2 are firstly cut and then dried at 110 ◦C for 1 h to promote resin 
impregnation. 

During manual impregnation of the specimen ends, the non- 
impregnated gauge length is ensured to be 80 mm. These samples are 
then cured at 100◦C for 2 h to respect the curing cycle of the resin 
recommended by the manufacturer. The fabric bands are then cut into 
tapes of 40 mm width and 250 mm length. The gauge width of the 
specimens is reduced to 25 mm so as to have a useful area centered in the 
middle of the specimen. Therefore, samples have a non-impregnated 
central zone of 80 × 25 mm2 and impregnated ends of 85 × 40 mm2 

to fix them in the jaws (Fig. 3). 

2.2.2. Meso-scale specimen manufacturing 
In order to have a yarn gauge length of 80 mm as fabric sample, yarn 

specimens of 100 mm total length are prepared. The specific grip jaws 
for yarn tensile test require 10 mm at each side of the yarn to fix it. 

2.2.3. Flax fabric and yarn specimens conditioning 
All the studied fabric and yarn samples are conditioned, before being 

tested, in a climatic chamber with a controlled relative humidity and 
temperature (RH = 48%, ​ ​ T = 20◦C) until mass stabilization. 



2.3. Diameter measurement 

An optical method is used to determine the apparent diameter of the 
yarns. The measurement is conducted using a Baty Venture 2512CN 
machine of 1 μm precision. This method consists in illuminating the 
yarns by back-lighting, which allows, with the use of a camera, to 
measure the width of the projected profile (Fig. 4). This distance is 
assumed to be the apparent diameter, which makes it possible to 
determine the mean diameter for each yarn. At least 10 measurements 

along the specimens are carried out. The cylindrical section of yarns is 
checked by performing measurements in two orthogonal directions at 
each measurement. 

2.4. Tensile test 

2.4.1. Macro-scale: flax fabric specimen 
The tensile properties of flax fabric specimens are measured on a 

MTS Criterion test machine equipped with a 5 KN load cell, at a tem
perature of 20 ◦C and RH = 50% with a strain rate of around 10− 3 s− 1. 
The elongation is measured via the machine head displacement. 2 
specimens are tested to identify the flax fabric behavior. 

2.4.2. Meso-scale: flax yarn specimen 
For flax yarn samples, tensile tests are conducted under the same 

atmosphere conditions, on the same test machine using a load cell of 10 
N. According to the standard NF T25-501, a strain rate of around 
10− 3 s− 1 is used, which is the same used for fabric tensile testing. The 
yarn specimen strain is computed using the machine head displacement. 
50 yarns are tested in order to ensure a statistical study of their behavior. 

3. Experimental mechanical behavior of flax fabric and yarns 

3.1. Tensile behavior of flax fabric 

The tensile behavior of flax fabric is shown in Fig. 5. Flax fabric 
behavior is characterized by a few dispersion. The required number of 
tests needed to identify their mechanical properties is therefore much 
less than what is needed for flax yarns. The properties of flax fabric, 
which are the stiffness, the maximal load and elongation, are given in 
Table 1. The stiffness is assessed in the linear part between 20% and 80% 
of the maximal elongation. 

Fig. 1. Quasi-unidirectional flax fabric Flaxply FUD 180.  

Fig. 2. Scanning Electronic Microscopy image of a flax yarn.  

Fig. 3. An example of a fabric specimen.  

Fig. 4. Profile projection of a flax yarn for apparent diameter measurement.  



3.2. Tensile behavior of flax yarns 

Fig. 6 shows that flax yarn behavior appears to be linear prior to 
failure. Nevertheless, non-linear phenomena could be observed experi
mentally on flax behavior. A softening phenomenon could occur on the 
tensile behavior of some yarns. Other yarns could show a rigidification 
phenomenon at high stresses (Del Masto et al., 2017). Due to the large 

dispersion observed in Fig. 6, a statistical study, on at least 50 yarns, is 
required in order to determine the tensile properties of the yarns. 
Belaadi et al. (2016) pointed out the same conclusions in a study on sisal 
fibers and yarns. 

3.3. Statistical distribution of flax yarn properties 

The experimental histograms of D, σmax, εmax, and E are given in 
Fig. 7. Following the standard guidelines, the histogram class number is 
fixed using the square root of the number of the values. Among all sta
tistical distributions available, Normal, Lognormal, Gamma and Weibull 
laws are the most used in material sciences. For instance, Weibull dis
tribution is usually used to describe the material brittle failure. The 
Lognormal distribution is used to describe the particle size distribution 
in reinforced composites. The Normal law is used to describe random 
phenomena. In order to select the statistical distribution that could best 
describe the experimental dispersions, several information are used. 
Firstly, the modified Kolmogorov-Smirnov test is applied. This test is a 
hypothesis test used to reject the assumption that the experimental 
distribution follows a given law known by its continuous distribution 
function (Normal, Lognormal, Gamma, Weibull) depending on the 
probability-value (P-value). The P-value is the probability for a given 
statistical model of obtaining the same distribution as observed. Sec
ondly, a descriptive statistic property of the experimental dispersions is 
used. The skewness parameter allows to judge the symmetry of the 
dispersion about its mean. 

The test results show that the P-value of the Normal, Lognormal and 
Gamma laws are higher than 0.15 and that the P-value of the Weibull 
law is higher than 0.1. Even though the P-value should be inferior to 0.1 
to reject a distribution law, the P-value found for the Weibull law implies 
that it is not as efficient as the other laws. So, the properties dispersion 
could be described by a Normal, Lognormal or Gamma law. The skew
ness parameter of the experimental data, given in Table 2, is close to 
zero, which makes it possible to consider that the statistical distributions 
are symmetric about their mean. Since the Lognormal and Gamma laws 
are asymmetrical, it is concluded that the variation of the yarn proper
ties is best described by a Normal law. A good agreement is found be
tween the experimental histograms and the theoretical Normal 
distributions (Fig. 7). These results are confirmed by comparing the 
experimental data (average and standard deviation) with the fitting 
values of Normal law (Table 3). 

3.4. Correlation between yarn properties 

In this section, an analysis of the correlation between the yarn 
properties is conducted. This study is required to determine if there is a 
relationship between the properties, which will be needed in section 4 to 
reduce the model parameter number. 

In order to verify whether two properties are linearly related, their 
correlation coefficient should be assessed by equation (1). 

R(X,Y)=
cov(X,Y)

σxσy
(1)  

where cov(X,Y) is the covariance and σ is the standard deviation. 
The correlation coefficients between the yarn properties are given in 

Table 4. When the correlation coefficient is close to 1 or to − 1, a cor
relation between the properties could be detected. Thus, no linear 
relationship is found between (εmax; D), (εmax; E) (σmax; D), (D; E). For (E; 
σmax) and (σmax; εmax), the correlation coefficient is not high enough to 
confirm the existence of a linear relationship but it is not low enough to 
reject this hypothesis. The evolution of Young’s modulus with failure 
strength (E; σmax) and failure strength with failure strain (σmax; εmax) are 
shown in Fig. 8. Obviously, the scatter is high. Several studies on natural 
fibers in general highlighted the high dispersion of their properties. This 
dispersion was attributed, among others factors, to the meteorological 

Fig. 5. Tensile behavior of flax fabric at RH = 48% at 10− 3 s− 1 (initial gauge 
length of 80 mm). 

Table 1 
Mechanical properties of flax fabric (initial gauge length of 80 mm).  

Properties stiffness (N/mm) Maximal load (N) Maximal elongation (mm)  

497 ± 75  1059 ± 62  2.40 ± 0.22   

Fig. 6. Tensile curves of flax yarns at RH = 48%.  



conditions during growth (Baley et al., 2019). Even if a linear tendency 
could be noticed, it remains difficult to confirm the existence of a linear 
relationship between (E; σmax) and (σmax; εmax). That’s why, in the 
modeling, flax yarn properties are considered as non-correlated. 

4. Theoretical approach 

4.1. Model description 

In this section, a detailed description of the modeling strategy is 
given. Tensile test at the fabric scale allows to examine multiple yarns at 
the same time. Hence, fabric behavior modeling should take into ac
count the yarn variability, which follows a Normal distribution. 

The proposed model is based on two hypotheses. On the one hand, 
fabric is constituted of a yarn assembly acting like springs in parallel. 
Consequently, the fabric initial stiffness is the sum of every yarn stiffness 
ki (equation (2)). The contribution of the weft yarns on the longitudinal 

Fig. 7. Experimental histogram of flax yarn properties.  

Table 2 
Summary table of Normal law selection criteria.   

Diameter D 
(μm) 

Failure 
strength σmax 

(MPa) 

Failure 
strain εmax 

(%) 

Young’s 
modulus E 
(GPa) 

P-value for 
normality 
test 

>0.15 >0.15 >0.15 >0.15 

Skewness 
parameter 

0.27 − 2⋅10− 5 0.03 0.24  

Table 3 
Comparison between experimental data and normal law fitting values of flax 
yarn properties.   

Diameter 
D (μm) 

Failure 
strength 
σmax 

(MPa) 

Failure 
strain 
εmax (%) 

Young’s 
modulus E 
(GPa) 

Experimental 
data 

Mean 244.4 271.2 2.69 10.8 
Standard 
deviation 

19.2 47.0 0.32 1.2 

Fitting values Mean 244.4 271.2 2.69 10.8 
Standard 
deviation 

19.4 47.5 0.32 1.3  

Table 4 
Correlation coefficient between two properties.   

Diameter Young’s 
modulus 

Failure 
strength 

Failure 
strain 

Diameter – − 0.672 − 0.489 − 0.055 
Young’s 

modulus  
– 0.728 0.099 

Failure strength   – 0.739 
Failure strain    –  



fabric stiffness is neglected. 

Kfabric =
∑

ki (2) 

On the other hand, yarns are considered as brittle and elastic. 
Maximum stress failure criterion better describes brittle failure than 
strain criterion. Hence, the failure strain is not taken into account in the 
following. A yarn behavior is therefore described by its modulus and its 
failure strength (σmax). 

The properties of the yarn i (Young’s modulus Ei, diameter Di and 
failure strength σmaxi) are assigned randomly according to a normal 
distribution as proven experimentally (section 3). 

The yarn stiffness depends on the yarn Young’s modulus Ei, section Si 
and initial length l0 according to (3). 

ki =
Ei⋅Si

l0
(3) 

The model assumes a linear evolution of the elongation because the 
experiments were strain controlled. The overall elongation of the fabric 
is the same as each individual yarn (springs in parallel). In this case, the 
load on each yarn is computed according to equation (4). 

Fi = kiΔl (4)  

where Δl is the imposed elongation. The stress applied on each yarn (σi) 
is computed via the force Fi and the diameter Di. 

Then, the applied stress σi is compared to the failure strength σmaxi. 
When one of the yarns breaks, its contribution to the fabric stiffness is 
canceled. In other terms, the overall load on fabric is the sum of the loads 
on active yarns, and the fabric stiffness becomes the sum of the active 
yarns stiffness (equation (5)). An explanatory illustration of the 
modeling strategy is given in Fig. 9. 

F =
∑

Fi\ {failed yarns}→ Kfabric =
∑

ki\{failed yarns} (5)  

5. Inverse approach 

5.1. Description of the optimization method 

The aim of this part is to determine the yarn properties (D, E, σmax) 
from experimental tensile tests on fabric specimens using an inverse 
approach based on the model described in section 4. For that purpose, a 
multi-objective analysis is conducted by defining two groups of objec
tive functions. This approach corresponds to an optimization problem 
where the first objective is to minimize the difference between the 
measured and the computed fabric tensile curve. Consequently, the first 
objective function is defined by a least squares method, and computed 

according to equation (6). 

g1(θ) =
∑nk

i=1

|Fc(θ,Δl) − Fm(Δl)|
nk⋅Fk

max
(6)  

where.  

− θ is the vector that contains the parameters to be identified. This 
vector contains the mean and the standard deviation of all statistical 
distributions of the yarn properties to be identified. As a reminder, 
the yarn properties required are the diameter, the modulus and the 
failure strength;  

− nk is the number of points measured experimentally;  
− Fc is the load computed by the model;  
− Fm is the load measured experimentally for an elongation of Δl;  
− Fmax is the maximum failure load of the fabric. 

The method robustness is improved by adding a second objective 
function, based on the fact that the equivalent fabric stiffness is the sum 
of each individual yarn rigidities. The second objective function tends to 
minimize the difference between the computed fabric stiffness, given by 

Fig. 8. Scatter plots of yarn properties.  

Fig. 9. Schematization of the modeling strategy of fabric behavior.  



the sum of individual yarn rigidities, and the experimental linear slope 
of the fabric tensile curve (equation (7)). 

g2(θ)=
∑ni

n=1
kn − Kfabric (7)  

where ni is the number of yarns of the fabric specimen; kn is the yarn 
stiffness and Kfabric is the fabric experimental initial stiffness. 

Two fabric tensile tests are used in the inverse approach to increase 
the physical information, and the two objective functions (equation (6) 
and (7)) are used for each test. 

5.2. Model parameters identification 

The identification is performed using a genetic algorithm available in 
Matlab. The basic idea of the method is to generate a population of 
several solutions at each iteration. Over successive generations, the 
population “evolves” towards an optimal solution. In this case, the so
lution generation consists in generating the Gaussian distribution pa
rameters (mean and standard deviation) of yarn properties (D, E, σmax), 
that allows to minimize the objective functions. 

A description of the genetic algorithm principles is given in the 
following:  

1. The algorithm begins by creating a random initial population. Each 
member of the population corresponds to a fabric load-elongation 
curve.  

2. Then, the algorithm creates a sequence of new populations called 
generations. At each step, the algorithm uses the members in the 
current generation to create the next population. To create a new 
population, the algorithm performs the following steps.  
a. Scores each member of the current population by computing its 

fitness value according to equations (6) and (7).  
b. Ranks all members according to their fitness values. Members 

with the best fitness values in the current generation are guar
anteed to survive to the next generation. Only 5% of the popu
lation size could directly pass to the next generation.  

c. Selects members, called parents, based on their ranking using a 
stochastic uniform selection to produce their children. Children 
are produced by crossing over the vector parameters (mean and 
standard deviation of the statistical distributions of the yarn 
properties) of a pair of parents.  

3. The algorithm repeats the step 2 until convergence is reached. 
Standard stopping criteria are used. The algorithm terminates when 
the maximal generation is reached or when average relative change 
in the best fitness function is less than or equal to the function 
tolerance. 

For this algorithm, a maximum generation number of 100 and a 
population size per generation of 100 are used. 

5.3. Results and discussion 

An example of the convergence curve is provided in Fig. 10. Less than 
20 generations are needed to get the same optimal solution. The stability 
and convergence of the algorithm are verified by running it several 
times. The algorithm quickly converges to a stable and repeatable 
optimal solution for each run. 

The robustness of the proposed approach is verified by comparing 
the predicted and the experimental fabric tensile curves as well as the 
flax yarn properties. 

The model correctly describes the overall flax fabric behavior 
(Fig. 11). A good agreement is found between the experimental and the 
predicted initial stiffness as well as the maximal load of the fabric. 
However, discrepancies are detected in the description of the fabric 
failure. The experimental fabric tensile curve shows some load 

variations close to the peak load, which corresponds to the failure of 
some yarns. Then, a sudden drop in fabric load is observed, which cor
responds to the failure of all remaining yarns (Figs. 5 and 12), unlike the 
numerical curves which exhibit a more progressive failure. Fig. 12 
shows the predicted yarn failure kinetics given by the number of intact 
yarns at each level of elongation. The intact yarn count curve shows 3 
regions. The first region corresponds to an elastic region where no yarn 
fails. The second region corresponds to a transition zone where yarns fail 
followed by an increase of fabric stress. The last part of the curve shows a 
softening due to cumulative yarns failure. The modeling does not 
correctly describe the experimental yarn failure kinetics. Actually, even 
though in the modeling, several yarns could fail at the same time, the 
successive yarn failure in the predicted fabric behavior is less brutal than 
the observed one (Fig. 12). This deviation could be explained by an 
overstress phenomenon that could appear on yarns close to the failed 
ones. However, the quantification of this overstress phenomenon re
mains complicated that’s why it is not taken into account in the 

Fig. 10. Example of a convergence curve.  

Fig. 11. Comparison between experimental and theoretical flax fabric ten
sile curves. 



modeling. 
The identification strategy performance is also verified by comparing 

the experimental and the numerical results of the average value and 
standard deviation of the normal distribution function. Table 5 shows a 
comparison between the identified flax yarn properties with experi
mental data obtained from tensile tests on 50 individual yarns. The 
morphological property (diameter) of the yarns is correctly identified by 
the proposed strategy. The identified normal distribution parameters of 
the diameter are 247.8 ± 17.4 μm. The error between the identified 
average value compared to the experimental one is 1.4%. However, the 
error on the identified mechanical properties is higher. The average 
value of the Young modulus is identified with an error of 13%. The 
failure strength is overestimated with an error of almost 8% compared to 
the experimentally characterized one. This deviation could be explained 
by the particular behavior of the flax yarns. Indeed, the model supposes 
a linear behavior prior to the first yarn failure. Nonetheless, non-linear 
behavior appears on some yarn tensile curves leading to misestimating 
the mechanical properties. 

Despite the error between the experimental data and the model 
values, the strategy of the yarn properties identification, from tensile 
tests on fabric, is reliable. 

Using the identified parameters of normal distributions from Table 5, 
the average behavior of yarns is computed and plotted on Fig. 13. The 
95% confidence level prediction of yarn behavior is also plotted on 
Fig. 13. The 95% confidence level prediction interval is having 95% 
probability for a yarn behavior to be located in this interval. These 
ranges are compared to those obtained experimentally on Fig. 13. The 
comparison shows that the model succeeds in predicting the experi
mental behavior of the flax yarns. However, the model does not take into 
consideration the non-linear phenomena of flax yarns, observed exper
imentally, which could explain the discrepancy found for the low 
stresses. 

6. Conclusion 

The purpose of this study is to develop a numerical strategy in order 
to characterize the statistical distributions of flax yarn properties from 
tests conducted on flax fabric. As a first step, experimental analyzes of 
morphological property (diameter) and mechanical properties (Young 
modulus, tensile strength) of flax yarns reveal that the distributions of 
the three properties follow a Normal law. The proposed model assumes 
that the fabric is constituted of several yarns acting like springs in par
allel and that flax yarns are brittle and elastic material. Following the 
experimental findings, all the properties of the flax yarns in the fabric 
follow a Gaussian law in the proposed model. In order to determine the 
yarn properties (D, E, σmax) from experimental tensile tests on fabric 
specimens, a genetic algorithm is used to solve this inverse problem. The 
genetic algorithm is based on a multi-objective analysis where two 
objective functions are defined. The strategy correctly identifies the 
distributions of flax yarn properties from only two tests on fabric spec
imens. One key point of the proposed method is that it requires 2 fabric 
specimens testing instead of at least 50 tests on yarns to get relevant 
results. The robustness of the proposed approach is verified by 
comparing the predicted and the experimental fabric tensile curves as 
well as the flax yarn properties. A good agreement is found between the 
experimental and the predicted results. The model correctly describes 
the fabric tensile behavior. However, the numerical fabric failure ki
netics are overestimated compared to the experimental ones. These 
discrepancies were attributed to an overstress phenomenon that appears 
on the yarns close to the failed ones. Despite these discrepancies, the 
proposed strategy is reliable to identify the yarns behavior and the 
properties statistical distributions from tensile tests on fabric. Indeed, 
the identified mean and the standard deviations of yarn properties are 
close to the experimental ones. The most probable numerical yarn 
behavior obtained from the numerically identified statistical distribu
tions of yarn properties show a good agreement with the experimentally 
observed yarn behavior range. 
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Diameter D 
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modulus E 
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deviation 
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Identified model 
values 
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Standard 
deviation 

17.4 33.4 0.9  

Fig. 13. Comparison between experimental and the predicted flax yarn 
behavior dispersion (the predicted dispersion is given at 95% confidence level). 
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