
HAL Id: hal-03102760
https://hal.science/hal-03102760v2

Submitted on 13 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shape optimization of an imperfect interface:
steady-state heat diffusion

Grégoire Allaire, Beniamin Bogosel, Matías Godoy

To cite this version:
Grégoire Allaire, Beniamin Bogosel, Matías Godoy. Shape optimization of an imperfect interface:
steady-state heat diffusion. Journal of Optimization Theory and Applications, 2021, 191 (1), pp.169-
201. �10.1007/s10957-021-01928-6�. �hal-03102760v2�

https://hal.science/hal-03102760v2
https://hal.archives-ouvertes.fr


Shape optimization of an imperfect interface:
steady-state heat diffusion
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Abstract

In the context of a diffusion equation, this work is devoted to a two-phase optimal
design problem where the interface, separating the phases, is imperfect, meaning
that the solution is discontinuous while the normal flux is continuous and propor-
tional to the jump of the solution. The shape derivative of an objective function
with respect to the interface position is computed by the adjoint method. Numerical
experiments are performed with the level set method and an exact remeshing algo-
rithm so that the interface is captured by the mesh at each optimization iteration.
Comparisons with a perfect interface are discussed in the setting of optimal design
or inverse problems.
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Introduction

The problem of optimal distribution of materials or phases for a given physical system has
a great relevance in the field of optimal design. The aim is to find the optimal distribution
of materials, with prescribed proportions, such that a cost or performance criterion, which
depends on the phases mixture, is minimized. This problem has been explored for several
governing systems (for example in the scalar setting, for stationary heat, electrical or
magnetic diffusion [47, 15], or in the vector case for linear elasticity [10, 5]) with different
techniques, such as the Hadamard method of shape variation [34], homogenization meth-
ods [2, 49] or the SIMP method [13, 51]. In most works, the interface between phases
is assumed to carry the classical transmission conditions, namely continuity across the
interface of the solution and its normal flux, which in this work will be referred to as a
perfect interface.

In this work, we rather focus on systems where this classical transmission condition
between phases does not hold and we call it an imperfect interface. Such a behaviour is the
result of imperfect interactions or bondings between materials and is taken into account
in many works where this phenomenon has relevant and important physical consequences.
For example, [43] studied the reinforcement of composite structures for compliance min-
imization when there is a competition between the rigidity of the solid inclusions and
the imperfect interfacial bonding between the inclusions and the surrounding matrix. In
[15] so-called latent heat storage systems are considered: they are storage devices to solve
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the mismatch between energy demand and supply. They are made of a mixture of high
conductivity foams with so-called phase changing materials (PCM) which can store high
volumes of heat per unit volume at the cost of having very low conductivity. Due to
the big difference on material properties and the poor bonding due to material imperfec-
tions on the considered mixture, the resulting system features a heat loss on the interface
between phases. Finally, and this is our true ultimate motivation, in metallic additive
manufacturing structures are often built with the help of supports which are removed
after completion of the manufacturing process [12], [32], [31]. To facilitate their removal,
those supports are often weakly connected to the main structure by means of a jagged or
indented layer, which can be modeled, at first order, as an imperfect interface between
the supports and the structure. Optimization of such supports is a very active field, see
[4] and references therein.

Although some motivating examples are in the setting of linear elasticity, the present
work focus on the optimization of imperfect interfaces for the scalar model of heat diffu-
sion. The extension of our results to the elasticity system case is the topic of a further
work. Our model of imperfect interface is classical: the temperature is discontinuous
through the interface but the normal heat flux is continuous and proportional to the tem-
perature jump with a positive proportionality coefficient, which is called the conductance
of the interface (see Section 1 for more details). For the steady-state heat conduction
model and for a general cost function, we use the Hadamard boundary variation method
in order to perform a shape sensitivity analysis. As is well known in the case of a perfect
interface [37, 14, 47, 5], the solution of the boundary value problem is not differentiable
with respect to the interface in the usual sense. Nevertheless, the transported solution, in
a Lagrangian framework, is indeed differentiable with respect to the interface. It turns out
to be enough for computing the shape (or interface) derivative of the cost function, using
the Céa fast derivation method [18]. The same applies for an imperfect interface but the
method is even more straightforward since the Lagrangian for Céa’s method is simpler,
not having to take into account the continuity of the solution at the interface. Once the
expressions of shape derivatives are obtained, numerical interface optimization can be
performed. To do so, we rely on a level set based mesh evolution method (as presented in
[6]) in order to track and exactly mesh the interface. This is crucial because the imperfect
interface condition leads to integral terms in the variational formulation which are carried
by the interface. If a fixed mesh were used, it would require some interpolation process
or a smoothed-interface model like in [5, 50]. Clearly, resorting to an exact meshing of
the interface avoids many further numerical errors and guarantees an accurate modeling
during the optimization process.

As pointed out in previous works (see [15] and references therein), using continuous
finite elements does not allow to evaluate discontinuous quantities properly, notably the
jumps across interfaces. Rather, it requires to consider more ad-hoc techniques such as
extended finite element methods (XFEM, see [28] for example). Since the interface is
exactly meshed, we propose a simpler but effective method to compute the solution which
is discontinuous through the interface. As explained in Section 5 we define two fields in
the entire domain: each one correspond to the solution in one phase, but not in the other.
A small penalization term in the other phase for each field allows to obtain a well-posed
coupled system which approximates the exact equation.

The paper is organized as follows. In Section 1, the model and the optimization
problem are presented. Section 2 discusses the functional framework for the governing
system and some results of interest. Section 3 is devoted to the shape-sensitivity analysis,
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obtaining expressions for the shape derivative for a general class of objective functions.
In Section 4 we briefly recall the level set method in our context, namely to perform a
mesh evolution to track efficiently the interface. Finally Section 5 gives the implementa-
tion details and the optimization algorithm, while Section 6 contains our 2-d numerical
experiments which are motivated by optimal design or by inverse problems.

1 Problem Formulation

We consider a working domain D ⊂ Rd with d = 2, 3, which is a smooth bounded open
set, divided in two open subsets Ω1 and Ω2 = D \ Ω1, with piecewise-C2 regularity. The
subsets Ω1 and Ω2 are refered as phases since different material properties hold inside.
The phases are separated by a smooth interface Γ which satisfies the following assumption.

Assumption 1.1. The interface Γ is smooth and is described by one of the two different
cases. In the first case, Γ is a surface without boundary, included in D, and it holds
Γ = ∂Ω1 with Γ ∩ ∂D = ∅ (Ω1 can be seen as the interior or immersed phase and Ω2 as
the exterior phase, with respect to Γ). In the second case, Γ is a surface with a boundary
∂Γ which is included in the exterior boundary, ∂Γ ⊂ ∂D, meaning that both phases touch
∂D (see Figure 1 for examples of the two possible configurations).

Remark 1.2. A third case is not covered by our analysis, that of a surface Γ with a
boundary ∂Γ which is included in D but does not touch the exterior boundary ∂D. Of
course, in such a case, it cannot be an interface separating two different phases. But it
could be seen as a crack inside a single phase.

We consider a function u defined in D such that the restrictions to Ω1 and Ω2, denoted
by u1 and u2 respectively, satisfy [u] := u2 − u1 6= 0 on Γ, i.e. u is allowed to be
discontinuous across the interface Γ. This function u is the solution of the governing
system: 

−div (A∇ui) = f in Ωi

(A∇u1) · n1 = (A∇u2) · n1 on Γ

(A∇u1) · n1 = α(u2 − u1) = α[u] on Γ

A∇u · n = gN on ΓN ⊂ ∂D

u = gD on ΓD ⊂ ∂D,

(1.1)

where A(x) = A1(x)χ1(x) +A2(x)χ2(x), χi is the characteristic function of the set Ωi, i =
1, 2, A1, A2 ∈ C1(D) are the conductivities in each phase with infx∈D Ai > 0 and possibly
A2(x)−A1(x) 6= 0 on Γ, α ∈ C1(D) is the so-called conductance of the interface Γ and is
such that minx∈D α > 0, [u] = u2 − u1 is the jump of u across the interface Γ, n1 is the
exterior normal of Ω1, n is the exterior normal to D, ∂D = ΓD ∪ ΓN with ΓD 6= ∅ and
f ∈ H1(D), gD ∈ H1/2(ΓD), gN ∈ L2(∂D) are given (see the next section for a statement
about existence of solutions to (1.1)).

Our aim is to determine an optimal distribution for Ω1 and Ω2, or equivalently, we want
to find the optimal location for the interface Γ, such that the following cost functional is
minimized:

J(Γ) =

∫
D

j(u)dx+

∫
ΓN

k(u)ds, (1.2)
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where u ≡ u(Γ) is the unique solution of (1.1), j and k are smooth functions satisfying
quadratic growth conditions. In order to avoid ‘obvious configurations’ on the minimiza-
tion of J (e.g. filling completely with the ‘best’ material with respect to the functional)
a volume constraint for the phase Ω1 is added.

ΓD

ΓNΩ2

Ω1

Γ
Γ Ω1

ΓD

ΓN

Ω2

Figure 1: Two possible configurations of the interface Γ.

With this, our optimization problem reads:

min
Γ∈Uad

J(Γ) (1.3)

s.t.

∫
Ω1

dx = Vtar, (1.4)

where Uad is a set of admissible interfaces (for example, uniformly smooth) and Vtar is a
target volume for the phase Ω1.

As mentioned in the introduction, the governing system can be seen as a stationary
thermal conduction between two different materials with conductivities A1, A2, where
the interface Γ between them has a resistance, which is due to poor mechanical and
chemical bounds between the phases. This resistance induces a heat loss, modeled by a
discontinuity of the solution across Γ and a Fourier type law for the continuous normal
flux through Γ (see [15, 48] for a more detailed explanaiton of this phenomenon). In the
context of elasticity, in [42], imperfect bonding or partial adhesion is described as the
result of interfacial damage due to service or as a consequence of the surface properties
of the fiber and matrix materials. In any case, this is represented as a discontinuity of
the solution for the considered governing system across the interface. A more detailed
deduction of this type of interfacial conditions can be found in [1, 40].

The well-posedness of the optimal design problem is not discussed here. However, as
explained in several works (see [11, 19, 20]), existence of optimal designs for this type of
problems usually requires to include in the definition of Uad some uniform smoothness, or
geometrical or topological constraints.

Remark 1.3. We recall that the outer boundary ∂D and its subsets, where boundary
conditions hold, are not allowed to move (for example, due to design reasons). The only
optimization variable is the interface Γ.

Notation 1.4. In order to avoid confusion between the different normals (to the domain
D, or to the interface Γ), the normal to the interaface Γ is denoted by ν = n1 = −n2,
where ni stands for the exterior normal with respect to Ωi, and the notation n is reserved
for the exterior normal to the domain D.
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2 Review of Broken Sobolev Spaces

In order to study problem (1.1), we introduce so-called broken Sobolev spaces, where the
functions are allowed to be discontinuous at the interface between phases. These spaces
are also relevant in the context of discontinuous Galerkin methods (dG) in numerical
analysis. In order to simplify the presentation, we present these spaces and their results
in our particular context (the more interested reader is invited to study the following
references [25, 27], where the treatment is general).

Given a smooth bounded domain D we denote by Lp(D) with p > 0 and Hs(D) with
s > 0 the usual Lebesgue and Sobolev spaces. Also, given a relatively open part of the
boundary ΓD ⊂ ∂D with non-zero (d− 1)-dimensional measure, we consider the space:

H1
ΓD

(D) :=
{
v ∈ H1(D), v = 0 on ΓD

}
.

Now, suppose that D is such that D = Ω1 ∪ Ω2, where Ω1 and Ω2 are disjoint open
sets, Ω1 ∩ Ω2 = ∅, which are separated by an interface Γ = ∂Ω1 ∩ ∂Ω2, the broken space
H1
b (D; Ω1,Ω2) is defined by

H1
b (D; Ω1,Ω2) :=

{
u ∈ L2(D) such that u1 := u|Ω1 ∈ H1(Ω1), u2 := u|Ω2 ∈ H1(Ω2)

}
.

(2.1)
We simply write H1

b for this space, except when explicit mention of the partition of D is
needed. This space is endowed with the so-called broken norm:

‖u‖H1
b

:=
(
‖u1‖2

H1(Ω1) + ‖u2‖2
H1(Ω2)

)1/2

, (2.2)

with this norm, H1
b is a Hilbert space. From the definition of H1

b is clear that H1(D) ⊂
H1
b and in general the inclusion is strict, as we allow the function in H1

b to have jump
discontinuities along Γ. In fact, the following result (see [25]) states a natural condition
for functions in H1

b to be in H1(D).

Lemma 2.1. A function v ∈ H1
b (D; Ω1,Ω2) belongs to H1(D) if and only if

[v] := v|Ω2 − v|Ω1 = 0 on Γ.

We recall a result of [15] for the well-posedness of problem (1.1) (actually, the proof in
[15] focuses on the case when Γ is a closed surface but the extension to the general case
follows the same arguments). Define the subspace

H1
b,0 :=

{
v ∈ H1

b : v = 0 on ΓD
}
. (2.3)

Then, (1.1) admits the following variational formulationFind u ∈ H1
b , such that u = gD on ΓD and, for all v ∈ H1

b,0,∫
Ω1

A1∇u1 · ∇v1 , dx+

∫
Ω2

A2∇u2 · ∇v2 dx+

∫
Γ

α[u][v] ds =

∫
D

fv dx+

∫
ΓN

gNv ds.

(2.4)
For this variational problem, we have the following result.

Theorem 2.2. For any data f ∈ L2(D), gD ∈ H1/2(ΓD), gN ∈ L2(∂D), the problem (1.1)
or (2.4) has a unique solution u ∈ H1

b . This solution satisfies

‖u‖H1
b
≤ C

(
‖f‖L2(D) + ‖gD‖H1/2(ΓD) + ‖gN‖L2(ΓN )

)
. (2.5)
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Assumption 2.3. In the following, we assume that the solution u of system (1.1) (or
that of (2.6)) is smooth in each phase, namely ui = u|Ωi

∈ H2(Ωi). This assumption can
be proved to hold true if the data f, gN , gD are smooth, as well as the interface Γ. The
only difficulty comes from the possible interface between ΓD and ΓN . Indeed, it is well
known that at points in ΓD ∩ΓN the solution u may feature a singularity such that it does
not belong to H2(Ωi). We exclude this possibility which creates technical difficulties which
are not at the core of our study. It does not happen, for example, if we assume that ΓD
and ΓN are two different connected components of ∂D.

Notice that, when α is a constant, it can be seen as a penalization parameter for the
jump [u]. So, if we let α → +∞, it is expected that [u] goes to zero and therefore, in
this limit, a perfect transmission condition is recovered at the interface Γ. The following
result formalizes this idea.

Lemma 2.4. Denote by uα the solution of (2.4) for a given α > 0. As α goes to +∞
the sequence uα converges strongly for the norm of H1

b (D; Ω1,Ω2) to a limit u∗ ∈ H1(D),
which is the solution of the following boundary value problem, which is referred as the
‘perfect interface’ problem: 

−div (A∇ui) = f in Ωi

u1 = u2 on Γ

A1∇u1 · ν = A2∇u2 · ν on Γ

A∇u · n = gN on ΓN

u = gD on ΓD,

(2.6)

Proof. Without loss of generality, we can take gD = 0, so that uα ∈ H1
b,0. From Theorem

2.2 and using the variational formulation (2.4) with v = uα we have:

‖uα‖H1
b
≤ C and ‖[uα]‖L2(Γ) ≤

C√
α

with C independent of α. Letting α → +∞ we deduce from the first inequality the
existence of a subsequence and a limit u∗ ∈ H1

b,0 such that uα converges weakly to u∗

in H1
b,0. In particular, introducing u∗i = u∗|Ωi

∈ H1(Ωi), u
α
i converges weakly to u∗i in

H1(Ωi). From the second inequality we deduce that the jump [uα] converges strongly to
zero in L2(Γ) and, by the trace theorem, that the jump of the limit vanishes, [u∗] = 0.
Thus, from Lemma (2.1), it implies u∗ ∈ H1(D). Now, taking v ∈ H1

ΓD
(D) as a test

function in the variational formulation (2.4) and passing to the limit we obtain that u∗

solves (2.6). For the strong convergence it suffices to recognize that, for the test function
v = uα, the linear form of the variational formulation (2.4) converges and to use the
lower semi-continuity of the bilinear form. In particular it implies that

√
α[uα] converges

strongly to 0 in L2(Γ).

3 Shape-sensitivity analysis

As the goal is to determine the optimal location of the interface Γ in order to minimize
(1.2), we rely on the concept of shape derivatives, based on the Hadamard boundary
variation method (see [36]). More precisely, the interface Γ is perturbed by a vector field
θ ∈ W 1,∞(Rd,Rd) in the following sense:

θ 7→ Γθ := (Id+ θ)(Γ) or θ 7→ Ω1,θ := (Id+ θ)(Ω1)
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where (Id + θ)(Γ) := {x+ θ(x) : x ∈ Γ}. Because Γ is restricted to belong to D, we
introduce the following set of admissible deformations Θad

Θad :=
{
θ ∈ W 1,∞(D,Rd) : ‖θ‖W 1,∞ < 1, θ · n = 0 on ∂D

}
. (3.1)

Note in passing that Θad could be used to define a possible set of admissible interfaces:
given a reference smooth interface Γ0, all possible interfaces are perturbation of Γ0 by an
admissible deformation θ ∈ Θad, namely

Uad :=
{

Γ ⊂ D : ∃θ ∈ Θad such that Γ = (Id+ θ)(Γ0)
}
.

With this, we can define the concept of shape derivative of a functional.

Definition 3.1. A function J(Γ) will be shape differentiable at Γ if the map θ ∈ Θad 7→
J(Γθ) is Fréchet-differentiable at 0. The corresponding derivative is denoted by J ′(Γ) ∈
W 1,∞(D,Rd)∗ and the following asymptotic expansion holds in a neighborhood of 0 ∈
W 1,∞(D,Rd):

J(Γθ) = J(Γ) + 〈J ′(Γ), θ〉+ o(θ), with lim
θ→0

|o(θ)|
‖θ‖W 1,∞

= 0.

The Hadamard method is widely used to determine derivatives with respect to single
phase problems, or shape optimization problems (see for example the textbooks [3, 36,
23]). In an interface context there are fewer works: we mention for the scalar case
[37, 47, 14], and in an elasticity context in [5, 10, 8, 38]. Finally, we can consider multi-
physics problems, where not only several phases are considered, but also on each one there
are different physical phenomena, see for example [29] for an in-depth analysis of several
problems of this type. It is worth to mention that in all these works the interfaces are
assumed to be perfect, this is, there are no discontinuities allowed across them.

In the following, we compute the shape derivatives using the Céa fast derivation
method [18]. We recall the results for a perfect interface setting and we present new
results in the imperfect interface setting. We first recall a classical but essential result
regarding the shape derivation of costs functionals where fixed functions are integrated
on a perturbed domain:

Lemma 3.2. Let O be a smooth bounded open set of Rd and θ ∈ W 1,∞(Rd,Rd). Let
f ∈ H1(Rd) and g ∈ H2(Rd) be two given functions. Assume that γ is a smooth subset of
∂O with boundary ∂γ. Then, the shape derivatives of

J1(O) =

∫
O
f dx and J2(γ) =

∫
γ

g ds

are given by:

〈J ′1(O), θ〉 =

∫
∂O
fθ · ν ds (3.2)

and

〈J ′2(γ), θ〉 =

∫
γ

(
∂g

∂ν
+ gκ

)
θ · ν ds+

∫
∂γ

gθ · τ dl, (3.3)

respectively, where ν is the unit normal vector to ∂O, κ is the mean curvature and τ is
the unit tangent vector to ∂O such that τ is normal to both ∂γ and ν, and dl is the (d−2)
dimensional measure along ∂γ.

Remark 3.3. The result (3.3) is usually stated when γ = ∂O (see [36]) and thus has no
boundary ∂γ. When γ has a boundary, the proof of (3.3) yields an additional term on ∂γ
which is due to an integration by parts on the surface γ (see [39]).
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3.1 Perfect bonding

In this context, the state equation is (2.6) and we define the adjoint problem:

−div (A∇pi) = −j′(ui) in Ωi

p1 = p2 on Γ

A1∇p1 · ν = A2∇p2 · ν on Γ

p = 0 on ΓD

A∇p · n = −k′(u) on ΓN

(3.4)

Due to the smoothness and growth conditions given on f, gD, gN , j and k, the problems
(2.6) and (3.4) are well posed and their unique solutions satisfy u, p ∈ H1(D). According
to Assumption 2.3 the restriction of u in each phase is smooth, namely u1 ∈ H2(Ω1), u2 ∈
H2(Ω2). In the sequel, the same smoothness assumption is made on the adjoint p. The
computation of the shape derivative for (1.2) is well known [47].

Theorem 3.4. Under Assumptions 1.1 and 2.3, the function J is shape differentiable
with respect to variations of the interface Γ, and we have, for θ ∈ Θad:

〈J ′(Γ), θ〉 = −
∫

Γ

[A](∂τu)(∂τp)θ · ν ds+

∫
Γ

[A−1](A∇u · ν)(A∇p · ν)θ · ν ds , (3.5)

where u solves (2.6), p solves (3.4), the jump [·] is defined as [ϕ] = ϕ2−ϕ1, ν = n1 = −n2

and ∂τφ = ∇φ− (∇φ · ν)ν.

It is remarkable that formula (3.5) depends explicitly on the jumps of physical prop-
erties. Obviously, if A1 = A2 on Γ, then 〈J ′(Γ), θ〉 = 0 which makes sense because in that
case the materials have the same properties and therefore a motion of the interface does
not imply any improvement of the cost functional.

Remark 3.5. The formula (3.5) is presented with the opposite sign with respect to [47].
This is due to the sign chosen for the right hand side in the adjoint problem (3.4).

Proof. Fort the sake of completeness, we recall the main idea for the actual computation of
the shape derivative of J , which relies on Céa’s fast derivation method [18]. A complete
proof can be found in [47] (see also [7]). The key is to introduce a Lagrangian which
separates the two subdomains Ω1,Ω2 and takes care of the transmission conditions on
Γ (this issue will be different for the imperfect interface case). The reason is that the
solution of (2.6) is smooth in each subdomain but not globally in D. Consider the
Lagrangian L : Θad×H1(D)×H1(D)×H1

ΓD
(D)×H1

ΓD
(D)×H1(D)×H1(D)→ R given

by:

L(θ, v1, v2, q1, q2, λ1, λ2) :=
2∑
i=1

∫
(I+θ)Ωi

j(vi)dx+

∫
(I+θ)Ωi

Ai∇vi · ∇qidx−
∫

(I+θ)Ωi

fqidx

−
∫

ΓN∩∂Ωi

gN · qids+
1

2

∫
(I+θ)Γ

(A1∂νq1 + A2∂νq2) · (v2 − v1)ds

+
1

2

∫
(I+θ)Γ

(A1∂νv1 + A2∂νv2) · (q2 − q1)ds+
2∑
i=1

∫
ΓN∩∂Ωi

k(vi)ds

+

∫
ΓD∩∂Ωi

λi(vi − gD) ds.

(3.6)

8



As usual, differentiating L with respect to q1, q2, λ1, λ2 and setting to 0 the obtained
derivatives evaluated at v1 = u1, v2 = u2 provide the state equation (2.6). An analogous
argument, differentiating with respect to v1, v2, provides the adjoint system (3.4). Now,
we get for any q1, q2, λ1, λ2:

L(θ, u1, u2, q1, q2, λ1, λ2) = J(Γ).

Then, using the chain rule lemma and imposing the previous optimality conditions we
deduce:

〈J ′(Γ), θ〉 = ∂θL(0, u1, u2, p1, p2, λ1(p1), λ2(p2))(θ).

The derivative on the right hand side is computed using Lemma 3.2, decomposing the
gradient in its normal and tangential part and imposing the transmission conditions satis-
fied by the state and adjoint solutions. Notice that no additional terms on ∂Γ are present
in (3.5) because of the transmission conditions.

Remark 3.6. An alternative expression for the shape derivative (3.5) is:

〈J ′(Γ), θ〉 =

∫
Γ

(A1∇u1 · ∇p1 − A2∇u2 · ∇p2 + 2A2∂νu2∂νp2 − 2A1∂νu1∂νp1)θ · ν ds.

3.2 Imperfect bonding

In the case of imperfect bonding, we have to consider the lack of continuity for the solution
of the state equation (1.1) on the interface Γ. We introduce the corresponding adjoint
problem: 

−div (A∇pi) = −j′(ui) in Ωi,

A1∇p1 · ν = A2∇p2 · ν on Γ,

A∇p · ν = α(p2 − p1) on Γ,

p = 0 on ΓD,

A∇p · n = −k′(u) on ΓN ,

(3.7)

where p is the adjoint state defined in D, with its restrictions to Ω1 and Ω2, denoted by
p1 and p2. Thanks to the smoothness and growth conditions on f, gD, gN , j and k, by
Theorem 2.2 problems (1.1) and (3.7) are well posed in the broken space H1

b , with unique
solutions u, p ∈ H1

b . Furthermore, according to Assumption 2.3 their restrictions on each
phase satisfy u1, p1 ∈ H2(Ω1), u2, p2 ∈ H2(Ω2).

Theorem 3.7. Under Assumptions 1.1 and 2.3, the shape derivative of the functional J ,
for θ ∈ Θad is given by:

〈J ′(Γ), θ〉 =

∫
Γ

(
−[j(u)]− [A∂τu · ∂τp] + f [p] + (ακ+ α2[A−1] + ∂να)[u][p]

)
θ · ν ds

+

∫
∂Γ∩ΓN

α[p][u]θ · τ dl +

∫
∂Γ∩ΓN

(gN [p]− [k(u)])θ · t dl, (3.8)

where u solves (1.1), p solves (3.7), κ stands for the mean curvature, the jump [·] is
defined as [ϕ] = ϕ2−ϕ1, ν = n1 = −n2, τ is the unit tangent vector to Γ which is normal
to ∂Γ, t is the unit tangent vector to ∂D which is normal to ∂Γ and dl is the (d − 2)
dimensional measure along ∂Γ ∩ ΓN .
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Remark 3.8. The two unit vectors τ and t are different, the first one being tangent to Γ
while the second one is tangent to ∂D. The first one appears because of the variation of
an integral on Γ, as studied in Lemma 3.2. The second one is a consequence of varying
an integral on a subset of the fixed surface ΓN .

Proof. According to Céa’s method, we introduce the Lagrangian:

L : Θad ×H1(D)×H1(D)×H1
ΓD

(D)×H1
ΓD

(D)×H1(D)×H1(D)→ R

L(θ, v1, v2, q1, q2, λ1, λ2) :=
2∑
i=1

∫
(I+θ)Ωi

j(vi)dx+

∫
(I+θ)Ωi

Ai∇vi · ∇qidx−
∫

(I+θ)Ωi

fqidx

−
∫

ΓN∩∂Ωi

gN · qids+

∫
(I+θ)Γ

α(v2 − v1)(q2 − q1)ds

+
2∑
i=1

∫
ΓN∩∂Ωi

k(vi)ds+

∫
ΓD∩∂Ωi

λi(vi − gD) ds.

(3.9)

As usual, differentiating with respect to v1, v2 and imposing the optimality condition, lead
to the adjoint problem (3.7). Differentiating with respect to q1, q2, λ1, λ2 and imposing
the optimality condition, yield the state equation (1.1). Recognizing the variational for-
mulation (2.4), the Lagrangian simplifies when (v1, v2) = (u1, u2) and ∀q1, q2, λ1, λ2 we
have:

L(θ, u1, u2, q1, q2, λ1, λ2) = J(Γ).

Then, using the chain rule lemma and imposing the previous optimality conditions we
deduce:

〈J ′(Γ), θ〉 = ∂θL(0, u1, u2, p1, p2, λ1(p1), λ2(p2))(θ),

where the right-hand side has to be computed by using Lemma 3.2. As the functions
u1, u2, p1, p2 are fixed when differentiating with respect to θ (we drop the reference to
λ1, λ2 as their integrals vanishes when we evaluate at u1, u2), we obtain:

∂θL(0, u1, u2, p1, p2)(θ) =

∫
Γ

θ · ν(j(u1)− j(u2))ds+

∫
Γ

θ · ν(A1∇u1 · ∇p1 − A2∇u2 · ∇p2)ds

+

∫
Γ

θ · ν (fp2 − fp1 + κα(u2 − u1)(p2 − p1) + ∂ν(α(u2 − u1)(p2 − p1))) ds

+

∫
∂Γ

α[u][p]θ · τ dl +

∫
∂Γ∩ΓN

(gN [p]− [k(u)])θ · t dl,

where the two last integrals do not appear if Γ has no boundary, ∂Γ = ∅. Because of the
same Dirichlet boundary condition on ΓD for both phases, the penultimate integral on Γ
reduces to an integral on ∂Γ ∩ ΓN . The last integral features the unit vector t instead
of τ because it comes from an application of Lemma 3.2 where the open set O ⊂ Rd is
replaced by ΓN ∩ ∂Ωi, a (d− 1)-dimensional surface. Expressing the gradient in the local
basis (τ, ν) we have ∇u = ∂τuτ + ∂νuν, and then:

∂θL(0, u1, u2, p1, p2)(θ) =

∫
Γ

(θ · ν)(−[j(u)]− [A∂τu∂τp] + f [p] + [u][p](ακ+ ∂να))ds

+

∫
Γ

(θ · ν)(A1∂νu1∂νp1 − A2∂νu∂νp2 + α∂ν(u2 − u1)[p] + α∂ν(p2 − p1)[u])ds

+

∫
∂Γ∩ΓN

α[u][p]θ · τ dl +

∫
∂Γ∩ΓN

(gN [p]− [k(u)])θ · t dl.
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To conclude we have to do some algebra:

A1∂νu1∂νp1 − A2∂νu∂νp2 + α∂ν(u2 − u1)[p] + α∂ν(p2 − p1)[u]

= A∂νu∂ν(p1 − p2) + ∂ν(u2 − u1)α[p] + ∂ν(p2 − p1)α[u]

= ∂ν(u2 − u1)α[p], with,

∂ν(u2 − u1) =
1

A2

A2∂νu2 −
1

A1

A1∂νu1 =
1

A2

α[u]− 1

A1

α[u] = α[u]

(
1

A2

− 1

A1

)
= α[u][A−1],

from which we deduce the desired formula.

Remark 3.9. The Lagrangian (3.9) has a simpler expression in comparison with the
Lagrangian of the perfect interface case given by (3.6). This is due to the fact that in the
first case the expression comes naturally from the variational formulation (2.4) of (1.1),
while in the latter the variational formulation of (2.6) hides the transmission conditions on
Γ, so they should be imposed in the Lagrangian via carefully chosen Lagrange multipliers.

Remark 3.10. Theorem 3.7 holds under the geometrical Assumption 1.1 on the interface
Γ. One may wonder what happen in the case of a surface Γ with a non-empty boundary ∂Γ
contained in the interior of D (not touching ∂D), for which Assumption 1.1 is no longer
valid. Of course, in such a case Γ cannot be an interface separating two different phases.
However, if the two phases are identical, Γ can be interpreted as a fracture or a surface
defect embedded in a uniform material. For such a configuration (identical phases and
Γ being a crack inside D), it is well known that the solution of (1.1) is usually singular
around the crack tips, namely in the vicinity of ∂Γ. Thus, the smoothness Assumption
2.3 does not hold true and formula (3.8) is usually not valid. A correct shape derivative
has been obtained in [30], [41] (see also [22] for a similar framework), to which we refer
for further discussions and references. Nevertheless, if one insists in taking for granted
the smoothness Assumption 2.3, then the proof of Theorem 3.7 is still valid and formula
(3.8) simplifies because there is no last integral since ∂Γ ∩ ΓN = ∅ and the penultimate
integral vanishes because there are no jumps for u and p at the crack tips.

Lemma 3.11. Let Jα(Γ) be the cost function (1.2), evaluated with the solution uα of the
imperfect interface model. Let J∗(Γ) be the same cost function (1.2), evaluated with the
solution u∗ of the perfect bonding equation (2.6). Assume that the sequences uα and pα

are uniformly bounded in H2(Ω1) and H2(Ω2), as α goes to +∞, and that the jumps of
the tangential derivatives

√
α[∂τu

α] and
√
α[∂τu

α] are also bounded in L2(Γ). Then, for
fixed θ ∈ Θad:

lim
α→+∞

Jα(Γ) = J∗(Γ) and lim
α→+∞

〈J ′α(Γ), θ〉 = 〈J∗′(Γ), θ〉.

Remark 3.12. The assumption on the H2-bounds for uα and pα is an extension of our
previous Assumption 2.3. The assumption on the jumps of the tangential derivatives are
of the same type as the bounds on

√
α[uα] obtained in the proof of Lemma 2.4. We believe

these uniform bounds hold true for a smooth interface and smooth data. However, we
are unable to find such a result in the literature since the imperfect interface model (1.1)
is not so common. Conceptually, it is not very hard to imagine a proof, using standard
arguments from regularity theory (partition of unity, difference quotients for translations
of the solution in the case of a plane interface, etc.) but checking all the details would
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result in a lengthy proof which is not the topic of the present paper. So we prefer to state
it as an assumption. Note however, that the one dimensional case is obvious to check by
an explicit computation of the solution.

Proof. The first result is immediate thanks to Lemma 2.4. For the second one, using the
interface conditions A∂νu

α = α[uα], A∂νp
α = α[pα], the derivative of Jα is written as:

〈J ′α(Γ), θ〉 =

∫
Γ

(
−[j(uα)]− [A∂τu

α · ∂τpα] + f
A∂νp

α

α
+ A∂νu

αA∂νp
α

(
κ

α
+ [A−1] +

∂να

α2

))
θ·ν ds

+

∫
∂Γ∩ΓN

α[uα][pα]θ · τ dl +

∫
∂Γ∩ΓN

(gN [pα]− [k(uα)])θ · t dl. (3.10)

Using Lemma 2.4, the trace theorem, together with the regularity and quadratic growth
of j, we have, as α → +∞, that [uα] → 0 strongly in L2(Γ) and [j(uα)] → 0 strongly in
L1(Γ). The first term in (3.10) thus vanishes in the limit. In order to deal with the other
terms involving derivatives or the terms carried by the interface boundary ∂Γ, we rely on
our assumption on the H2-bounds for uα and pα.

Because of that assumption, the sequences uαi converge to u∗i strongly in H1(Ωi) and
weakly in H2(Ωi). In particular the gradients ∇uαi converge to ∇u∗i weakly in H1(Ωi)

d

and, by the trace theorem, weakly in H1/2(Γ)d. Using the compact embedding of H1/2(Γ)
into L2(Γ) (see [24, Theorem 3.85]) we deduce the strong convergence of the trace of the
gradients in L2(Γ)d. Thus, [A∂τu

α · ∂τpα] converge strongly in L1(Γ) to [A∂τu
∗ · ∂τp∗] =

[A]∂τu
∗·∂τp∗, because the tangential derivative is continuous through the perfect interface.

For the same reason, we have

lim
α→+∞

∫
Γ

[A−1]A∂νu
αA∂νp

α θ · ν ds =

∫
Γ

[A−1]A∂νu
∗A∂νp

∗ θ · ν ds.

Furthermore, the H2-bounds imply the following estimate:∣∣∣∣∫
Γ

f
A∂νp

α

α
θ · ν

∣∣∣∣ ds ≤ C

α
‖∇pαi ‖L2(Γ)d ≤

C

α
→ 0.

A similar argument applies for all integrals on Γ, involving normal derivatives multiplied
by negative powers of α, which vanish in the limit.

We now pass to the limit in the two last integrals of (3.10) which are carried by ∂Γ.
Since the sequences uαi converge to u∗i weakly in H2(Ωi), by two successive application
of the trace theorem and compact embedding of H1/2 into L2 (from Ωi to Γ and from
Γ to ∂Γ), uαi converge to u∗i strongly in L2(∂Γ). The same is true for the adjoint and
the limit of the last integral vanishes since u∗ and p∗ are continuous through the perfect
interface. For the penultimate integral, we already checked at the end of the proof of
Lemma 2.4 that the jump

√
α[uα] converges strongly to 0 in L2(Γ) (a similar argument

holds true for
√
α[pα]). By assumption the jumps of the tangential derivatives

√
α[∂τu

α]
and
√
α[∂τu

α] are bounded in L2(Γ). Thus, by the trace theorem
√
α[uα] and

√
α[pα]

converge strongly to 0 in L2(∂Γ). It implies that the penultimate integral vanishes in the
limit α→ +∞.

Remark 3.13. From Theorem 3.7, for a surface Γ without boundary, we can formally
deduce a descent direction θ for the cost function J , as we have:

〈J ′(Γ), θ〉 = −
∫

Γ

vΓ θ · ν ds. (3.11)
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So, it suffices to take the vector field θ(s) = vΓ(s)ν(s), s ∈ Γ, which implies:

〈J ′(Γ), θ〉 = −
∫

Γ

v2
Γds ≤ 0,

at least if vΓ belongs to L2(Γ). However, this choice may not belong to Θad, as L2(Γ,Rd)
is not a subset of W 1,∞(D,Rd) in general. Moreover, even ignoring this regularity issue,
this choice may not be suitable due to numerical inaccuracies and lack of validity away
from Γ, see [7] for a more detailed discussion.

In the next section we present a classical method to obtain a well defined descent
direction by means of identifying the linear form J ′(Γ) ∈ W 1,∞(D,Rd)∗ with a gradient
∇J(Γ) in a such way that the duality product 〈J ′(Γ), θ〉 is identified with an inner product
a(·, ·) on an adequate Hilbert space V .

4 The Level Set Method

The level set method has been proposed by Osher and Sethian [46] for tracking fronts and
free boundaries. It is often used in structural optimization because it allows to perform
shape and topology optimization. Usually, it relies on a fixed mesh of a working domain.
However, we shall not follow this usual approach since, as we are dealing with imperfect
transmission conditions across the interface, we need to keep the most accurate possible
track of Γ. Rather, we rely on a level set based mesh evolution method for the optimization
process, following the strategy introduced in [6].

We consider a fixed computational working domain D ⊂ Rd in which all admissible
phase subdomains Ω1,Ω2 are included and such that the loaded boundaries ΓD,ΓN are
included in ∂D. The mesh on D is not fixed: we remesh it along iterations, based on a
level set function φ for the internal phase Ω1, whose zero level set defines the interface Γ.
The level set φ is defined on D by:

φ(x) < 0⇔ x ∈ Ω1

φ(x) = 0⇔ x ∈ Γ

φ(x) > 0⇔ x ∈ Ω2

(4.1)

In order to track the evolution of the interface Γ as we perform the minimization of the
cost functional, we relate the motion of the level set function φ for Γk−1 (the interface at
the (k − 1) iteration of the numerical algorithm) and the normal velocity θ = −vn given
by (3.11), which ensures that the new shape Γk := Γk−1

tθ is such that J(Γk) < J(Γk−1)
for a descent step t > 0. To move Γ we solve the following linear transport equation
(introducing a pseudo-time variable for the descent step t):

∂tφ+ θ · ∇φ = 0 on [0, τ ]×D, (4.2)

with initial condition φ(0, x) taken as the input level set. The new level set will correspond
to φ(τ, x). For this task, we use the solver advect, which solves equation (4.2) using a
numerical scheme based on the method of characteristics (see [17] for more details on this
solver).

Finally, in order to solve equation (4.2) the velocity field θ is required on the whole
domain D, instead of just its expression on Γ, as formally deduced in Remark 3.13. To
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this end, following [9] we perform an extension-regularization of the velocity, by solving
the variational problem:Find Q ∈ V :=

{
v ∈ H1(D,Rd), v · n = 0 on ∂D

}
such that:

∀v ∈ V, a(Q, v) =

∫
D

(
γ2
reg∇Q : ∇v +Q · v

)
dx = 〈J ′(Γ), v〉

(4.3)

where the regularization parameter γreg > 0 is taken of the order of the minimal cell size
in the mesh of D. Notice that this process is guaranteed to provide a descent direction.
Indeed, taking v = −Q, we have

〈J ′(Γ),−Q〉 = −
∫
D

(
γ2
reg∇Q : ∇Q+ |Q|2

)
dx ≤ 0.

Another consequence of this extension-regularization process, as mentioned in Remark
3.13, is that we found an Hilbert space V and an inner product a(·, ·) such that the
linear form J ′(Γ) on W 1,∞(D,Rd) is identified with a gradient Q ∈ V . This process is
not fully satisfactory from a theoretical point of view because, here, V is not a subset of
W 1,∞(D,Rd) and thus some extra regularity of J ′(Γ) is required to make (4.3) well-posed.
However, in numerical practice it works perfectly fine (see [7, Section 5.2] for a detailed
discussion).

5 Numerical Implementation

We explain how to solve the systems (1.1), (3.7) and to compute the shape derivatives
(3.5), (3.8) in numerial practice.

5.1 Resolution of Direct Problems

In the case of perfect bonding, it is completely standard to solve equations (2.6) and (3.4),
which are posed in classical functional spaces, so any finite element software can do the
job. However, for an imperfect interface, things become a bit more difficult due to the
fact that the variational formulation (2.4) is not obvious to implement in classical finite
element softwares (such as FreeFEM [35]) as there is no implementation of a discretization
of the space H1

b . In order to circumvent this difficulty, we propose to extend the function
ui, solely defined in Ωi, to a function uεi defined in the entire domain D, for some small
extension parameter ε > 0. In other words, we introduce the following approximated
variational formulation, which relies on standard finite element spaces. For ε > 0, define
the spaces V ε

i for i = 1, 2 by:

V ε
i :=

{
vε ∈ L2(D) such that ∇vε ∈ L2(Ωi)

}
,

and consider the variational problem:

Find (uε1, u
ε
2) ∈ V ε

1 × V ε
2 such that, uεi = gD on ΓD for i = 1, 2 and ∀(vε1, vε2) ∈ V ε

1 × V ε
2

such that vεi = 0 in ΓD:
2∑
i=1

(∫
Ωi

Ai∇uεi · ∇vεi dx−
∫

Ωi

fvεi dx

)
+

∫
Γ

α(uε2 − uε1)(vε2 − vε1)ds

+ ε

(∫
Ω1

uε2v
ε
2dx+

∫
Ω2

uε1v
ε
1dx

)
−
∫

ΓN∩∂Ω2

gNv
ε
2ds−

∫
ΓN∩∂Ω1

gNv
ε
1ds = 0, (5.1)
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with a parameter 0 < ε � 1 (ε = 10−5 in our computations). Extra terms of order zero
are included to make this variational formulation well posed: there exists a unique solution
(uε1, u

ε
2) ∈ V ε

1 × V ε
2 for the variational problem (5.1). Of course, only the restrictions of

uεi in Ωi are used in practice. We check that this approximation is well suited for our
purposes with the following result.

Proposition 5.1. For ε > 0, let uε1, u
ε
2 be the solution of (5.1) and pε1, p

ε
2 be the solution

of an analogous approximate variational formulation of the adjoint system (3.7). Define
uε = uε1χ1 + uε2χ2 ∈ H1

b . Let Jε(Γ) be the objective function for this approximate problem:

Jε(Γ) :=

∫
D

j(uε) dx+

∫
ΓN

k(uε) ds.

Then, limε→0 Jε(Γ) = J(Γ) and, for any θ ∈ Θad, limε→0〈J ′ε(Γ), θ〉 = 〈J ′(Γ), θ〉.

Proof. By mimicking the proof of Theorem 3.7 it is easy to prove that Jε(Γ) is shape
differentiable and to obtain the fomula

〈J ′ε(Γ), θ〉 = (〈J ′(Γ), θ〉)ε + ε

∫
Γ

(uε1p
ε
1 − uε2pε2) θ · ν ds,

where (〈J ′(Γ), θ〉)ε is equal to formula (3.8) for 〈J ′(Γ), θ〉 where u and p are replaced by
their approximations uε and pε = pε1χ1 + pε2χ2.

For the sake of simplicity, we prove the convergences, as ε goes to zero, when Γ has no
boundary, i.e., Ω1 is immersed in Ω2. By using Poincaré inequality and a trace theorem
on Γ, it is easy to obtain the following uniform bounds, with respect to ε > 0, for the
solution (uε1, u

ε
2) of (5.1)

ε1/2‖uε‖L2(D) + ‖uε1‖H1(Ω1) + ‖uε2‖H1(Ω2) ≤ C.

Furthermore, uε ∈ H1
b is also the unique solution of:Find uε ∈ H1

b , such that uε = gD on ΓD and, for all v ∈ H1
b,0,∫

Ω1

A1∇uε1 · ∇v1 , dx+

∫
Ω2

A2∇uε2 · ∇v2 dx+

∫
Γ

α[uε][v] ds =

∫
D

fεv dx+

∫
ΓN

gNv ds,

(5.2)
with fε = f − ε(uε1χ2 + uε2χ1) ∈ L2(D). Since fε converges strongly to f in L2(D) the
sequence (uε)ε converges strongly, in the H1

b -norm, to u = u1χ1 + u2χ2 ∈ H1
b , solution of

the variational problem (2.4). A similar result holds for the adjoint pε = pε1χ1+pε2χ2 ∈ H1
b ,

which converges in the H1
b -strong sense to p ∈ H1

b , solution of (3.7). In particular, uε and
pε are uniformly bounded in H1

b and, by the trace theorem on Γ, we deduce:∣∣∣∣∫
Γ

εuεip
ε
iθ · ν ds

∣∣∣∣ ≤ Cε‖uε‖H1
b
‖pε‖H1

b
≤ Cε→ 0.

It remains to prove limε→0 (〈J ′(Γ), θ〉)ε = 〈J ′(Γ), θ〉. Recall that, since Γ and the source
terms are smooth, for fixed ε, the solution uε of (5.2) satisfies the extra regularity that
uεi ∈ H2(Ωi). More precisely the H2(Ωi)-norm of uεi is bounded by the L2(D)-norm of
fε. Since the coefficients in the variational formulation (5.2) are independent of ε and fε
converges strongly to f in L2(D), we deduce that uεi converges strongly to ui in H2(Ωi).
A similar argument applies to pεi . Finally, we can pass to the limit in formula (3.8) for
the shape derivative by using the trace theorem on Γ for uε and pε, as well as their first
derivative, concluding the proof.
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Remark 5.2. Other methods have been proposed in the FEM literature to deal with sys-
tems in the form of (1.1), see for example [16, 33]. However, their implementation in
finite element software is not straightforward as the resolution of (5.1).

5.2 Remeshing to track the interface accurately: level set based
mesh evolution method

As is clear from the variational formulation of the direct problem, an accurate evaluation
of the jump on Γ is required. As already said, the so-called level set based mesh evolution
method proposed in [6], and used for example in multi-physics problems as in [29], fits
our needs. The MMG platform [26, 21] allows to perform the remeshing operations starting
from a level set function φ such that Γ is the zero iso-level and providing several options
of interest (exact mesh of interface, minimal mesh size, maximal mesh size, graduation,
etc.). We refer to [29, Chapter 6] for additional practical details.

Remark 5.3. The choice of this method over a simpler FE mesh-movement based algo-
rithm relies on the fact that our method allows to capture the interface with any desired
precision (given as a parameter to the software MMG) in a simple and effective way, without
increasing substantially the computational cost of the algorithm and allowing significant
shape modification, including topological changes. In contrast, mesh-movement methods
are limited to small deformations and no topological changes, as been pointed in [7, Sec-
tion 6.4].

5.3 Normal and curvature computations

Another delicate issue is the computation of the curvature, which appears in formula (3.8)
of the shape derivative for an imperfect interface. We rely on the signed distance function
(as proposed in [29]), for which we have n1 = ∇dΩ1 and κ = div (n1) where dΩ1 stands for
the signed distance to the set Ω1 and n1 for the unit normal vector (with respect to ∂Ω1).
However, as the signed distance function is discretized as a P1 function, it is not possible
to compute κ directly from n1 which is discretized as a piecewise constant function. We
propose to compute the curvature κ by solving the following variational problem:Find κ ∈ H1(D), such that, for all w ∈ H1(D)∫

D

(
γ2∇κ · ∇w + κw

)
dx =

∫
D

div (nreg)w dx,
(5.3)

where the normal nreg is computed via a similar H1(D) regularization with source term
∇dΩ1 . Upon discretization, dΩ1 is a P1 function, ∇dΩ1 is a P0 function, while nreg is a P1

function, its divergence a P0 function and κ again a P1 function.

5.4 Constraints: Simple and Augmented Lagrangian

As we have mentioned before, if we perform the minimization of J without any additional
requirement, the optimization algorithm will often fill the whole computational domain
D with the ‘best’ material (with respect to the functional J). Therefore, we take into
account a volume constraint on phase Ω1. There are, at least, two alternatives to prescribe
a constraint in an optimization problem.
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The simplest one is to introduce a Lagrangian, given by

L(Ω1) := J(Γ) + `

(∫
Ω1

dx− Vtar
)
, (5.4)

where ` is a Lagrange multiplier which is updated during the optimization process in order
to satisfy the constraint at convergence. This is the simplest method but its convergence
is rather slow.

On the other hand, the Augmented Lagrangian method allows to actually impose a
series of constraints during the optimization process, it is based on considering a merit
function to be optimized. For example, if we want to impose n equality constraints, given
by the equations ci(Ω1) = 0, we take:

L(Γ, λ, µ) := J(Γ)−
n∑
i=1

λici(Ω1) +
n∑
i=1

µi
2
c2
i (Ω1),

where each λi is expected to converge to the Lagrange multipliers of each constraint and
µi > is a penalty parameter for each constraint. In order to do this, the theory (see [45]),
suggest to update λk+1

i as:
λk+1
i = λki − µki ci(Ω1), (5.5)

is important to notice that, in this case, it is not necessary to take a sequence of µki such
that µki → +∞. The general algorithm used in our simulations is illustrated in Algorithm
1.

Algorithm 1 Interface optimization by a level set based mesh evolution method

Require: Γ0, D0 = Ω0
1 ∪ Ω0

2 and φ0.
while k ≤ kmaxiter do

Solve direct and adjoint systems on Dk = Ωk
1 ∪ Ωk

2. Update normal and curvature.
Compute the descent direction V k solving the extension-regularization problem (4.3)
and using formula (3.11) with vΓ provided by the shape derivative.
Put t = initial step and let φkj := φk, Dk

j := Dk.
while j ≤ jmax (Line search) do

Transport φkj solving (4.2) with θ = −V kn using τ = t.
Remesh Dk to capture the transported level set φkj : new mesh is Dk

tθ

if L(Dk
tθ) < L(Dk) + tol|L(Dk)| then

Dk ← Dk
tθ, φ

k ← Transport(φkj ), t← 1.2t
break

else
φk ← φkj (No transport), Dk ← Dk

j (No remeshing), t← max(0.5t, tmin)
end if
j ← j + 1

end while
New interface Γk is defined by

{
x ∈ D : φk(x) = 0

}
and is exactly meshed on Dk.

Update parameters following (5.5) (augmented Lagrangian case)
k ← k + 1

end while
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6 Numerical Examples

All the simulations were performed on a personal laptop with an Intel i7 8th-gen

processor, 16 GB of RAM and SSD storage; all the computations were sequential. The
finite element analysis is performed with the FreeFEM package [35], the advection step of
the level set is performed using the advect tool [17] from the ISCDtoolbox, the compu-
tation of the signed distance function to a given domain is done with the mshdist tool
also from the ISCDtoolbox and, finally, the remeshing steps are performed using the MMG

platform [26, 21]. In the following examples, when two materials with different conduc-
tivities are considered, we depict the weaker material in gray, and the stronger material
in white. To assess the impact of the imperfect interface on the optimization process we
systematically make a comparison between the perfect and imperfect interface cases on all
the examples (except for Example 3, which has no perfect setting). The implementation
remains the same for perfect interface cases (following Algorithm 1).

6.1 Example 1: The Radiator

Consider a square domain D = (−0.5, 0.5)2. There is no bulk source term, f = 0, but
an incoming unit heat flux gN = 1 on the upper side ΓN = [−0.5, 0.5] × {0.5}, with
an homogeneous Dirichlet boundary condition gD = 0 at ΓD = [−0.5,−0.4] × {−0.5} ∪
[0.4, 0.5]× {−0.5} and adiabatic walls on ∂D \ (ΓD ∪ ΓN).

Figure 2: Radiator setting, initial and final distribution for Example 1 - Perfect interface

We have two different materials with conductivities A1 = 0.01 and A2 = 1.0, the aim
is to determine the distribution of the materials which, for a given volume, minimizes the
thermal compliance. So, we consider:

J(Γ) =

∫
ΓN

u ds

i.e. j(u) = 0, k(u) = u. This is a self-adjoint problem, with p = −u. The temperature
u solves (2.6) in the case of a perfect interface or (1.1) for an imperfect interface. In this
example we consider Vtar = 0.5 and the initialization is the same for the two cases (see
Figure 2).
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Figure 3: Convergence history for Figure 2

Figure 4: Final distribution and convergence history for Example 1 - Imperfect interface
with α = 1

For this example, we compare optimal designs obtained with a perfect interface (Figure
2) and with an imperfect interface (Figure 4). Although we plot only the result for α = 1,
we performed many other tests with different values of α and they all give very similar
designs. It is not surprising that for different α the obtained configuration is essentially the
same as for the perfect interface. The interface acts basically as an isolating barrier: the
smaller α, the stronger the isolation. But, since the phase A1 is already a poor conductor,
isolating it from A2 does not add much to its weak behavior. Thus the obtained optimal
configurations are all very similar. Notice also that it is reasonable for the weak phase to
avoid the region of the heat source: the isolation imposed by the interface will not allow
to let it go through the cold end. We will see an application of this idea on Example 4.

As can be checked on Figures 3 and 4 the optimization convergence is smooth and
takes roughly 100 iterations. The final mesh has 21,219 elements for Figure 2 and 20,154
elements for Figure 4.

6.2 Example 2: Optimal heat conduction

Consider the following configuration (see [29, 44] for the original setting): we have a square
domain D = (0, 1)2 heated with an uniform bulk source f = 10, with a cold end with
homogeneous Dirichlet boundary condition on ΓD = [0.45, 0.55]×{0} and adiabatic walls
on ∂D \ ΓD. We have in this region two different materials with conductivities A1 = 1.0
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and A2 = 0.001, we want to determine the distribution of the materials which, for a given
volume on the strong material (V1 = 0.2), minimizes the average temperature. So, in this
context we have: gD = 0, f = 10 and

J(Γ) =

∫
Ω1

u1dx+

∫
Ω1

u2 dx

i.e. j(u) = u, k(u) = 0. This problem is also self-adjoint, with p = −u/f .

Figure 5: Initial and final distribution for Example 2 - Perfect interface

Figure 6: Convergence history for Figure 5

Figure 7: Final distribution for Example 2 - Imperfect interface with α = 1.0 (left),
α = 0.1 (right)
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Test Case Initial Compliance Final Compliance Perimeter of Γ
Perfect Interface 4808.91 37.86 12.13
Imperfect α = 1.0 4903.89 89.77 6.66
Imperfect α = 0.1 5183.36 116.03 5.97

Table 1: Obtained compliance on each test for Example 2

The goal of this example is to show that the value of the interface conductance α may
have a strong influence on the optimal design. We compare the optimal design for the
perfect interface (Figure 5) with two values of the imperfect interface (Figure 7). Clearly,
as α increases (meaning an improvement of the heat transmission through the interface),
the design becomes more and more complex with many small branches, as well as its
perimeter increases (see Table 1). For finite values of α there is a competition between
the complexity of Ω1, which allows to extract efficiently the heat produced by the bulk
source f , and the length of the interface Γ which is a thermal barrier.

The final mesh has 29,027 elements for Figure 5 (right), 18,794 elements for Figure
7 (left) and 17,736 elements for Figure 7 (right). The convergence is smooth as can be
checked on Figure 6.

6.3 Example 3: Maximization of the compliance - The impact
of the imperfect interface

The domain is D = (0, 1)2 filled with a single phase with a unit conductivity A1 = A2 = 1,
heated with an uniform bulk source f = 1 with homogeneous Dirichlet boundary condtions
on ∂D. Since the two phases are identical, the interface Γ is truly the only design variable.
Its conductance is taken as α = 1. The goal is to maximize the thermal compliance:

J(Γ) :=

∫
Ω1

u1 dx+

∫
Ω2

u2 dx.

Of course, the longer the imperfect interface and the closer to the boundary, the larger
the compliance. Nevertheless, the initialization matters and different optimal designs are
obtained when varying the initial interface. Notice that in this example, the problem is
again self-adjoint with p = u.

Figure 8: Initial, final distribution and convergence history for Example 3
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Figure 9: Another initial, final distribution and convergence history for Example 3

With two different initializations two different optimal interfaces are obtained in Fig-
ures 8 and 9. In both cases, the imperfect interface is very close to the exterior boundary
since it acts as an isolating barrier, separating the interior, where the heat source is ap-
plied, from the boundary ∂D, where heat can be evacuated. The compliance is almost
doubled in Figure 9 compared to Figure 8, with values 0.244 and 0.451 on each case. The
length of the interface is clearly important as can be checked in Figure 10 where Γ is ini-
tialized as 8 concentric circles. Notice that the obtained value for the compliance is higher
than the previously seen cases: 0.508. Also, it is worth to notice that the components of
Γ tend to approach themselves, until there is no more room (the minimal resolution for
the mesh is the lilmitation) and we cannot improve the value of J anymore. The final
mesh has 4,800 elements in the case of Figure 8, 6,717 elements in the case of Figure 9
and 31,264 elements in the case of Figure 10.

Figure 10: Initial and final distribution for Example 3

6.4 Example 4: A quadratic cost.

The goal of the this example is to provide a numerical test for a non self-adjoint problem.
The domain D is still a square D = (−0.5, 0.5)2, with a unit flux (gN = 1) imposed on
the top boundaries ΓN = [−0.5, 0.5]×{0.5}, a homogeneous Dirichlet boundary condition
gD = 0 (cold end) on ΓD = {0.5}× [−0.2, 0.2] and adiabatic walls (A∂nu = 0) on the rest
of the boundary ∂D \ (ΓD ∪ ΓN). The domain D is filled with two phases A1 = 1.0 and
A2 = 0.5 (with a relatively low contrast). To define the objective function, we introduce a
measuring region Γm ⊂ ∂D which is Γm = {−0.5}× [−0.5,−0.2]. The goal is to minimize
the quadratic cost:

J(Γ) :=

∫
Γm

u(Γ)2 ds,
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which yields a non self-adjoint optimization problem. The corresponding adjoint system
is defined by: 

−div (A∇pi) = 0 in Ωi,

A∂νp = α(p2 − p1) on Γ,

p = 0 on ΓD,

A∂np = 0 on ΓN \ Γm,

A∂np = −2u on Γm.

Notice that in this example there is imposed volume constraint.
The idea is to see if, as one can expect, the interface moves in order to use the weak

material as a barrier, pushing the strong phase near the cold end, letting the tempera-
ture flux go out and avoiding to go further inside the domain in order to minimize the
temperature in the measuring region.

Figure 11: Setting, initial and final distribution for Example 4 - Perfect interface

Figure 12: Convergence history for Figure 11
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Figure 13: Initial and final distribution for Example 4 - Imperfect interface with α = 1

As can be seen for the two cases of a perfect interface (Figure 11) and of an imperfect
interface (Figure 13), the weaker material distributes in such a way that it prevents the
heat to approach directly the measuring zone Γm. As could be expected, the imperfect
interface, acting as a thermal barrier, leads to a final value of the cost J which is smaller
(0.0599) than for a perfect interface (0.0754). However, the convergence is faster for the
perfect interface, as can be checked on Figure 12. The final mesh has 4,725 elements for
Figure 11 right, and 3,428 elements for Figure 13 middle.

6.5 Example 5: Least Square Inverse Problem.

This example is a toy model of an inverse problem. The goal is to reconstruct the interface,
knowing the conductivity of the two phases and with some given synthetic data in the full
domain. We do not claim that it is realistic inverse problem but it is a good numerical test
for our optimization method. Recall, as inverse theory asserts, that domain reconstruction
is an ill posed problem. The setting is that of the radiator example in Subsection 6.1 (with
the same source term and boundary conditions), except that the the two phases have a low
contrast with known conductivities A1 = 1.0 and A2 = 0.5. The problem is to determine
the target interface Γ∗, displayed on Figure 14 (right). (Note in passing that Γ∗ is the
result of a compliance minimization for a perfect interface.) The only known information
about Γ∗ is the synthetic data udata which is the associated temperature computed by
solving one of the model (2.6) or (1.1). In order to recover the interface, we minimize the
least square type cost:

J(Γ) :=

∫
D

|u(Γ)− udata|2 dx,

where u(Γ) solves the state equation on D. In all following cases, the optimization problem
is initialized with the interface Γ0 displayed on Figure 14 (left). We do not impose any
constraint on the minimization of J . We perform three numerical tests.
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Figure 14: Initialization Γ0 (left) and target interface Γ∗ (right) for Example 5

A first test amounts to use a perfect interface to compute the data udata and the
solution u(Γ). In other words, they are both solution of equation (2.6). The minimization
of J(Γ) involves an adjoint equation given by (3.4). The results are depicted in Figure
15. It is somehow a reference computation and one can check that the reconstruction is
not very good although the objective function is almost zero.

Figure 15: Obtained distribution and convergence history for test 1 of Example 5 - Perfect
interface

A second test amounts to still consider udata as the solution of system (2.6) (perfect
interface), but now u(Γ) solves the state equation (1.1) (imperfect interface) with α = 1.
The minimization of J(Γ) involves a different adjoint equation given by (3.7). The results
are depicted in Figure 16 and, of course, they are worse than for the first test because
there is a mismatch between the two models used for computing the synthetic data on
the one hand and for optimizing on the other hand.
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Figure 16: Obtained distribution and convergence history for test 2 of Example 5 - Im-
perfect interface with α = 1

A third test is concerned with both udata and u(Γ) given by solving equation (1.1)
(imperfect interface) with α = 1. The results are depicted in Figure 17 and the reconstruc-
tion of Γ∗ is much better than in the previous cases although the value of the objective
function is not closer to zero. The reason for this qualitatively better result is that, since
the two phases do not have a large contrast, it is easier to recognize an imperfect interface
than a perfect one.

The final distribution mesh has 5,680 elements in the case of Figure 15, 3,848 elements
in the case of Figure 16 and 6,300 elements in the case of Figure 17. In all three tests the
convergence is rather smooth and takes place after roughly 100 iterations.

Figure 17: Obtained distribution and convergence history for test 3 of Example 5 - Im-
perfect interface with α = 1

7 Conclusion

The main objective of this article is to perform shape optimization on a steady-state heat
diffusion system when the design variable is an imperfect interface. For this goal, the
shape derivative of a general class of cost functionals was obtained and a gradient-descent
algorithm was successfully implemented in the level set setting. One key feature of our
approach is the use of a remeshing algorithm such that the interface is exactly meshed
at each optimization iteration, thus minimizing the numerical errors in the treatment of
the imperfect interface. Several numerical experiments have been performed, motivated
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by optimal design or inverse problems. In all cases our algorithm was able to significantly
decrease the objective function, converging to a local minimum. From these experiences
we observed that the influence of the imperfect interface can be significative, from the
point of view of the obtained design and/or the obtained cost value. However, is some
cases, in particular when the contrast between the phases is high, there is no noticeable
differences between the optimized designs with a perfect or an imperfect interface. We
plan to extend our approach to the linearized elasticity setting with an application to the
optimization of support structures in additive manufacturing. Indeed, to ease the removal
of these supports, they are often weakly connected to the main structure by means of a
jagged or indented layer, which can be modeled, at first order, as an imperfect interface
between the supports and the built structure. Therefore, our approach does make sense
although it may be possible to enrich the model of elastic imperfect interface by adding
a contact or non-interpenetrating condition.
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[47] O. Pantz. Sensibilité de l’équation de la chaleur aux sauts de conductivité. C. R.
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