
Perspectives on security kernels for IoT
Nicolas Dejon

Orange Labs, Châtillon, France,
Univ. Lille, CNRS, Centrale Lille,

UMR 9189 - CRIStAL -
Centre de Recherche

en Informatique Signal
et Automatique de Lille,

F-59000 Lille, France
nicolas.dejon@orange.com

Chrystel Gaber
Orange Labs,

Châtillon,
France

chrystel.gaber@orange.com

Gilles Grimaud
Univ. Lille, CNRS, Centrale Lille,

UMR 9189 - CRIStAL -
Centre de Recherche

en Informatique Signal
et Automatique de Lille,

F-59000 Lille, France
gilles.grimaud@univ-lille.fr

Abstract—IoT market’s growth surge encouraged developers
to focus on fast delivery rather than security resulting in several
major attacks. Efforts to provide secure-by-design applications
or IoT devices rely on trusting physical secure elements or on the
lower software layers. Thus, the entire system roots its overall
security in the kernel given it is the first software layer above
the hardware. However, constrained objects often struggle to
combine functionality and security due to inherent low resources
and few mechanisms address this problem. In this article, we
explore existing approaches and highlight the need for a minimal
and formally proven root of trust for constrained objects while
presenting the challenges this implies.

I. INTRODUCTION

Today, Internet of Things (IoT) enters a popularization
phase and impacts the professional and personal spheres of
a growing number of users. IoT is a paradigm that evolved
steadily since its apparition in 1999, and according to most
forecasting reports, it will become generalized in the years to
come [1].

The pace of change and the associated consequences will
be pushed by the number of connected devices expecting to
explode in the next few years. Indeed, Gartner, which closely
follows the trends in IoT, expects a high market adoption by
2023. Gartner calculated that 8.4 billion IoT things were in
use in 2017 and forecasts 14.2 billion connected things in
2019 (almost double in two years) and will eventually reach
25 billion by 2021. These devices will conquer homes and
industries and the market will mostly be driven by consumer
devices [2].

This substantial twist in the IT market may revolutionise the
business environment: costs reduction through the collected
data, new business opportunities, and new services. However,
IoT products and services are disadvantaged compared to non-
connected devices, because of the concern over cybersecurity
risks.

This clearly shows that the ecosystem is at risk and must be
protected in order to build a resilient user trusted system. The
research community is particularly concerned about the IoT se-
curity topic, given the number of devices to be connected and
the lack of effective countermeasures preventing the current
security issues and attacks. By its very nature, the whole IoT

ecosystem could fail from internal (unintentionally?) flawed
devices that could lead to business disasters, user threats or
even life threats.

The explosion of the IoT devices brings a plethora of IoT
device applications. In the recent years, these applications
leverage advanced security mechanisms and the scientific
community made significant efforts on the static and dynamic
security analysis of IoT applications [3], [4], [5]. However,
they all need to trust the software stack underneath and
ultimately the layer in interaction with the hardware (CPU,
memory, devices). The latter feature is usually accomplished
by the kernel and becomes in such way the first software
Trusted Computing Base (TCB) of the firmware. If the kernel
is badly designed or compromised, no assumptions can be
made about the applications that run above, weakening the
security trust in the firmware and potentially compromising
the whole IoT ecosystem as a consequence.

This paper explores how to build a minimal kernel for
constrained devices with strong security guarantees. We show
that IoT devices could benefit from formal methods to reach
the expected security level and we identify the current chal-
lenges. Section I discusses the requirements for a secured IoT
ecosystem built up from trusted devices, which roots in the
firmware and its kernel security. Then, section II analyses
the state-of-the-art for secure kernels with a specific attention
on formally proven kernels. Section III describes the IoT
device specificities and the obstacles hindering the use of
the methodologies described previously. Section IV identifies
future works and perspectives in the design of a formally
proven kernel. Finally, section V concludes this paper.

II. STATE-OF-THE-ART

A. Kernels

Kernels vary in size and exposed features. Two main
categories are frequently opposed: monolithic kernels and
microkernels.

Monolithic kernels are usually used by general-purpose
operating systems, like Linux for UNIX-like operating sys-
tems. They concentrate all the functionalities required to run
exclusively the applications and the user interface in user



mode. The kernel itself exposes a large API that surfaces
an important code base (Linux is composed by more than
36 millions of lines of code [6]). However, customization
can reduce drastically the code base (e.g. MuLinux [7]) and
modules can be loaded at runtime which makes it a modular
kernel.

Microkernels reject outside the kernel space most of the
core features of the monolithic kernels. Thus, they provide
only a minimal set of system calls, automatically reducing the
attack surface. These system calls are then used by outside
servers (programs) that will reproduce the lost features of the
monolithic kernels. This way, the kernel code base scales down
a lot. However, due to frequent privilege switches between
kernel and user spaces, the performances were quite low. The
L4 microkernel family [8] solved this issue by identifying
four major features: virtual memory management, threading,
scheduling and inter-process communication.

Many other kernel types exist, such as the experimental
pip ”protokernel” [9] that restricts even further the exposed
features. It only provides virtual memory management and
context switching, and leaves all the rest in userland.

B. Design of a secure kernel

Each kernel comes with its own set of strengths and
weaknesses and reasons to choose a particular design, but they
all share the desire to build a secure kernel.

Security by memory isolation for a kernel can be understood
in terms of confidentiality and integrity of the data between the
programs and with the kernel. Separation kernels [10] create
these isolated environments by simulating a distributed system
within a single physical machine.

However, in IoT, common security mechanisms like kernel
and process memory isolation are usually not employed.
Indeed, many IoT devices have real-time constraints that can’t
be met by using kernel memory isolation due to frequent
privilege switching, or don’t possess the required hardware
commonly used like the MMU (Memory Management Unit).
Yet, recent efforts made it possible to meet all expectations
of a real-time system together with the memory isolation
capability using the MPU (Memory Protection Unit) [11].
MPU has also already been showed important to ensure the
integrity and confidentiality of Java Card applets by confining
the executable code into sandboxed interpreters [12].

Programs don’t necessarily require hardware mechanisms to
be confined. For example, remote updates for low-end devices
can be provided in the form of Javascript runtime containers
[13].

C. Design of a formally secure kernel

Despite the trust we can put in all these systems, the bound
may still be broken by human mistakes during the design
or the use of outdated or insecure components (e.g. top 10
IoT vulnerabilties [14]), and vulnerabilities are still discovered
frequently [15].

Therefore, pip has been designed specifically to bring
the highest guarantees on memory isolation by providing

formal proofs. These proofs mathematically demonstrate the
announced security properties and the functional correctness
of the features exposed by the kernel, helped and stamped
”formally proven” by the Coq proof assistant [16]. The proofs
consist in a set of system invariants that should be present
before and after a kernel system call. They are all provided in
the form of Hoare triples.

Since the properties that emanate from the kernel are the
basis for the exposed security features, they also need to
be trusted. These are made simple enough to convince their
trustworthiness.

Memory isolation in pip is hardware-enforced by the use of
an MMU. Indeed, by controlling the memory pagination, the
system could implicitly build an access control mechanism,
restricting the use of the memory per running entity (kernel,
operating system, programs, threads...). Memory isolation is
thus dependent on the correct configuration of the MMU
tables, which is the only role assigned to pip as a protokernel.

The sole feature provided by pip creates a very small TCB
making the cost of proof to the minimum possible for a kernel.

III. DESIGN OF A FORMALLY SECURE KERNEL FOR
CONSTRAINED OBJECTS

IoT devices can be deployed for years and sometimes
in difficult reachable areas. Recent works regarding remote
accessibility and remote updates like SUIT [17] would benefit
from memory isolation guarantees. Indeed, such guarantees
would allow the coexistence of modules with different se-
curity and update needs. For example, one could design a
minimal isolated kernel with little update needs and sandboxed
applications with high update needs. Update of the business
logic in the sandboxed applications could be more performant
since a full update could be avoided. Such devices could also
have strong real-time requirements which should cohabit with
expected/needed security.

While the state-of-the-art proposals provide some suitable
solutions for IoT devices, they are usually not formally proven.
In the case they are, pip and other formally proven kernels like
seL4 [18] from the L4 family strongly rely on the hardware
mechanisms of the MMU to conduct their proofs. Due to
their constrained resources such as a minimal memory, these
IoT devices would most likely include an MPU instead of
an MMU, which implies that these formally proven solutions
can’t be totally usable in the pursued context. To the best of
our knowledge, MPU-based proofs are not openly provided
to the community (e.g. ProvenCore [19]) but convince us that
such solutions are reachable.

IV. CHALLENGES AND PERSPECTIVES

Several scientific challenges and perspectives arise from this
point.

Given the presented landscape, there is a possibility to bring
native security to IoT devices to replace the trust we have in
the kernel with a formal guarantee of security (in the sense of
memory isolation).



During this process, new properties required to assure
memory isolation in systems could be discovered. The for-
mal verification could follow already employed methods, or
explore other techniques like separation logic. Challenges are
also to be found in the formulation of the proofs that will
need to interface with the real-world, which includes hardware,
people and execution environments in the IoT context.

Furthermore, the cost of proof of current solutions is high.
IoT devices, even low-end devices with very constrained
resources, still are complex systems. Efforts and techniques to
bring down this cost of proof are needed to make it suitable
even for low-cost devices.

In addition to that, no current formally proven kernels
seem to fully cover all existing architectures composed by a
different hardware (MMU and MPU together for example).
Generalization efforts are needed to cover other hardware-
enforced access control mechanisms.

Lastly, the ARMv8-M architecture is currently under a
formal verification process [20] and gives the opportunity to
explore the proof even beneath the software stack and bridge
the proof across the hardware.

V. CONCLUSION

Security in kernels is of uppermost important to make any
assumption about the overall security of a system. Being
the first fundamental software component which interfaces
with the hardware, the kernel is expected to have strong
security guarantees. This can be achieved by applying for-
mal methods as current solutions propose, however they are
usually hardware dependent, not transferable between different
architectures and hardware compositions, and not applicable
in the context of IoT and its constrained devices because of
limited resources or without compromising with the required
performances. Future challenges thus include to identify the
minimum set of required features to build-up a secure kernel,
to push forward and extend current formal proofs to cover dis-
tinct architectures at the same time in a cost of proof effective
manner, and to trim down the assumptions by exploring the
potentials with on-going hardware verification efforts.

ACKNOWLEDGMENT

The authors would like to address their heartful thanks to
Narjes Jomaa.

REFERENCES

[1] P. Radanliev, D. C. D. Roure, J. R. C. Nurse, R. Nicolescu, S. Cannady,
and R. M. Montalvo, “New developments in Cyber Physical Systems ,
the Internet of Things and the Digital Economy – discussion on future
developments in the Industrial Internet of Things and Industry 4 . 0,”
Preprints, no. March, 2019.

[2] Gartner, “Top strategic iot trends and technologies through 2023,”
https://www.gartner.com/en/documents/3890506-top-strategic-iot-
trends-and-technologies-through-2023, 21 September 2018, [Online;
January 17, 2020].

[3] D. T. Nguyen, C. Song, Z. Qian, S. V. Krishnamurthy, E. J. Colbert, and
P. McDaniel, “IotSan: Fortifying the safety of IoT systems,” CoNEXT
2018 - Proceedings of the 14th International Conference on Emerging
Networking EXperiments and Technologies, pp. 191–203, 2018.

[4] Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated
IoT Safety and Security Analysis,” Proceedings of the 2018
USENIX Annual Technical Conference, 2018. [Online]. Available:
http://arxiv.org/abs/1805.08876

[5] N. Dejon, L. Verderame, C. Davide, A. Armando, and A. Merlo,
“Automated security analysis of iot software updates,” 2019.

[6] Openhub, “Website of : Linux statistics,”
https://www.openhub.net/p/linux, 2020, [Online; accessed January
17, 2020].

[7] Michele Andreoli, “Website of : Linux statistics,”
http://micheleandreoli.org/public/Software/mulinux/, 2020, [Online;
accessed January 17, 2020].

[8] J. Liedtke, “Towards real microkernels,” in Proceedings of the 13th
International Conference on Information Security Theory and Practice,
ser. WISTP ’19. CACM, Sep 1996.

[9] N. Jomaa, D. Nowak, and P. Torrini, “Formal Development of the Pip
Protokernel,” 2018.

[10] J. M. Rushby, “Design and verification of secure systems,” Proceedings
of the 8th ACM Symposium on Operating Systems Principles, SOSP
1981, vol. 15, no. 5, pp. 12–21, 1981.

[11] C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu, “Se-
curing Real-Time Microcontroller Systems through Customized Memory
View Switching,” no. February, 2018.

[12] G. Bouffard and L. Gaspard, “Hardening a Java Card Virtual Machine
Implementation with the MPU,” 2018.

[13] E. Baccelli, J. Doerr, S. Kikuchi, F. A. Padilla, K. Schleiser, and
I. Thomas, “Scripting Over-The-Air: Towards Containers on Low-end
Devices in the Internet of Things,” 2018 IEEE International Conference
on Pervasive Computing and Communications Workshops, PerCom
Workshops 2018, no. March, pp. 504–507, 2018.

[14] OWASP, “Website of : Owasp,” https://owasp.org/www-project-internet-
of-things/, 2020, [Online; accessed January 17, 2020].

[15] CVE, “Website of : Cve, linux kernel vulnerabilties,”
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel, 2020,
[Online; accessed January 17, 2020].

[16] INRIA, “Website of : Coq,” https://coq.inria.fr, [Online; accessed Jan-
uary 17, 2020].

[17] IETF, “Website of : Ietf suit draft architecture,”
https://tools.ietf.org/html/draft-ietf-suit-architecture, 2020, [Online;
accessed January 17, 2020].

[18] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “SeL4: Formal verification of an OS kernel,”
SOSP’09 - Proceedings of the 22nd ACM SIGOPS Symposium on
Operating Systems Principles, pp. 207–220, 2009.

[19] S. Lescuyer, “ProvenCore : Towards a Verified Isolation Micro-Kernel,”
no. January, 2015.

[20] A. Reid, “Who guards the guards? formal validation of the Arm v8-m
architecture specification,” Proceedings of the ACM on Programming
Languages, vol. 1, no. OOPSLA, pp. 1–24, 2017.


