Oxidation resistance of Ti₃AlC₂ and Ti₃Al_{0.8}Sn_{0.2}C₂ MAX phases: a comparison

E. Drouelle^{1,2}, V. Brunet¹, J. Cormier¹, P. Villechaise¹, P. Sallot², F. Naimi³, F. Bernard³ and S. Dubois¹

¹ Institut PPRIME, CNRS/Université de Poitiers/ENSMA, UPR 3346 CNRS, Boulevard M. et

P. Curie, BP 30179, 86962 Chasseneuil du Poitou-Futuroscope Cedex, France

² Safran Tech, 1 rue Geneviève Aubé, CS 80112, 78772 Magny les hameaux Cedex, France

³ Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, 9 Av. Alain Savary, BP 47870, 21078 DIJON Cedex, France

Abstract

Ti₃AlC₂ and Ti₃Al_{0.8}Sn_{0.2}C₂ MAX phase powders are densified using Spark Plasma Sintering technique to obtain dense bulk materials. Oxidation tests are then performed over the temperature range 800-1000°C under synthetic air on the two different materials in order to compare their oxidation resistance. It is demonstrated that, in the case of the Ti₃Al_{0.8}Sn_{0.2}C₂ solid solution, the oxide layers consist in TiO₂, Al₂O₃ and SnO₂. The presence of Sn atoms in the A planes of the solid solution leads to an easy diffusion of Sn out of the MAX phase which promote the formation of the non-protective and fast growing SnO₂ oxide. Moreover, the small Al/Ti atom's ratio promotes the growth of a non-protective rutile-TiO₂ scale as well. In the case of the Ti₃AlC₂ MAX phase, the oxide layer consists in a protective alumina scale; a few TiO₂ grains being observed on the top of the Al₂O₃ layer. The parabolic oxidation rate constants are about 3 orders of magnitude smaller for Ti₃AlC₂ compared to Ti₃Al_{0.8}Sn_{0.2}C₂.

$\underline{I-Introduction}$

MAX phases are a family of nanolaminated ternary nitrides and carbides, with the general formula M_{n+1}AX_n (n=1 to 3), where M is a transition metal, A is an element from group A, and X is either carbon or nitrogen¹. Depending on the n value, they are now often named 413 (n=3), 312 (n=2) or 211 (n=1) MAX phase. These compounds were first discovered in the 1960s²⁻⁴, however, they were revived in 1995 when Barsoum *et al.* discovered that they exhibit unique physical and chemical properties⁵. The three compounds crystallize in a hexagonal P63/mmc lattice characterized by M₆X octahedra separated by A atomic layers. Their unique structure, combining both strong covalent M-X bonds and weaker M-A bonds, confers to MAX phases properties of both classes of materials. Like ceramics, they are stiff, lightweight, chemically stable and oxidation resistant. Like metals, they are relatively soft, machinable, resistant to thermal shock and they exhibit good electric and thermal conductivity as well as good damage tolerance⁵⁻⁷.

Among the 312 phases, Ti₃AlC₂ and its solid solution have attractive properties. Ti₃AlC₂ possesses quite remarkable properties such as low density (4.25g/cm³), high Young's modulus (297 GPa), high strength at high temperature, self-lubrication, good machinability, high thermal and electrical conductivity *etc*⁸⁻¹⁰. Moreover, Alumina-forming MAX phases are well-known for their excellent oxidation resistance^{11-19b}, rivaling many metallic NiAl, NiCrAl, and FeCrAl counterparts and with upper temperature capability possible to ~1400 °C. Hence, these remarkable properties make Ti₃AlC₂ a promising material for various applications. However, before they can be used it is imperative to be able to predict the oxide thicknesses that would form after long times at elevated temperatures. This, in turn implies that the oxidation kinetics be well understood and documented. Pietzka and Schuster first synthesized bulk polycrystalline Ti₃AlC₂ by sintering cold-compacted powder mixtures of Ti, TiAl, Al₄C₃ and C at 1573 K under pure hydrogen for 20h²⁰. Tzenov and Barsoum prepared bulk

polycrystalline Ti₃AlC₂ (4 vol.% Al₂O₃ as impurity in the sample) by reactive Hot Isostatic Pressing (HIP) at 70MPa and 1400°C for 16h using a mixture of Ti, C and Al₄C₃ powders and investigated some properties of the as-synthesized samples⁸. Wang and Zhou produced fully dense Ti₃AlC₂ using a solid-liquid reaction synthesis and simultaneous in situ hot pressing process using a mixture of Ti, Al, and graphite as starting powders²¹. Zhou et al. fabricated Ti₃AlC₂ by Self-propagating High-temperature Synthesis (SHS) from elemental Ti, Al and C, followed by a densification step using the Spark-Plasma Sintering (SPS) method²². However, the purity of the Ti₃AlC₂ was not easy to control, because of the thermal explosion that occurred among the elemental raw materials. Zhu et al. synthesized Ti₃AlC₂ by hot pressing TiC, Ti, and Al powders at 1573–1673 K for 2 h under a pressure of 30 MPa²³. Finally, a variety of methods are implemented to prepare Ti₃AlC₂ bulk samples or Ti₃AlC₂ powder samples. Nevertheless, it is difficult to obtain a single-phase Ti₃AlC₂ material due to the narrow phase domain in the Ti-Al-C phase diagram. Impurities such as TiC, Ti_xAl_y intermetallics, Al₂O₃ or the 211 MAX phase (Ti₂AlC) are commonly detected in the end-products ^{10,24-30}. Especially, the presence of TiC invariably deteriorates the high electrical conductivity⁷, the oxidation resistance¹⁸ and some other properties of Ti₃AlC₂. Thus, several sintering additives such as Si³¹, Sn^{32,33} and B₂O₃³⁴ were introduced into Ti-Al-C system to avoid impurity formation and to get the Ti₃AlC₂ single phase. The former research work by Ai et al. 32 and Li et al. 33 has proved that Sn is an efficient additive to inhibit the TiC impurity formation. A nearly pure Ti₃AlC₂ was thus obtained in a relative wide temperature range by pressureless sintering 3Ti+Al+1.8C with 0.2 mol of added Sn. Ai et al.³² also detected some Sn in the final products by Energy Dispersive X-ray Spectrometry (EDXS) and reported more Sn distributed in the grain boundary rather than in the Ti₃AlC₂ structure. Bei et al. have studied, in details, the synthesis of Ti₃Al_{1-x}Sn_xC₂ solid solution by Hot Isostatic Pressing^{33b,33c}.

The first paper describing the oxidation behaviour of Ti_{n+1}AlC_n has been published in 2001¹⁴. Since that date, the high-temperature oxidation behavior of Ti₃AlC₂ has been extensively studied^{11-19c}; a review paper can also be found¹⁵. However, to our knowledge, the oxidation behaviour of Ti₃Al_(1-x)Sn_xC₂ solid solution has not been studied. Barsoum studied the oxidation behavior of Ti_3AlC_2 at 1073-1373 K in air for exposure times up to $100\ h^{8,14}$. The oxide layers mainly consist in a rutile-based solid solution, (Ti_{1-v}Al_v)O_{2-v/2} with v< 0.05, and some Al₂O₃. Barsoum's specimens formed thick and highly striated oxide layers during hightemperature oxidation. Barsoum further explained that the subjection of the (Ti_{1-v}Al_v)O_{1-v/2} layer to an oxygen chemical potential gradient resulted in its demixing, with the dissolution of the Al³⁺ into the rutile at a lower oxygen partial pressure and its precipitation as Al₂O₃ at a higher partial pressure. When the demixing occurred extensively, the resulting microstructure became highly striated, consisting of three layers, an Al₂O₃-rich layer, an (Ti_{1-v}Al_v)O_{1-v/2}-rich layer, and a porous layer, which repeated numerous times⁸. The C atoms were presumed to diffuse through the reaction layers and oxidize. The rate-limiting step was thought to be the diffusion of oxygen and/or Ti⁸. Wang and Zhou studied Ti₃AlC₂ oxidation behavior at 1273– 1673 K in air for exposure times up to 20h11. The results indicated that Ti₃AlC₂ oxidized following parabolic kinetics, and its excellent oxidation resistance was attributed to the formation of an adherent, continuous inner Al₂O₃ layer, which formed below an outer TiO₂ layer. It is proposed that the inner Al₂O₃ layer might has been formed by the inward diffusion of oxygen through the outer TiO2 layer, and the outer TiO2 layer by the outward diffusion of Ti. In 2006, Lee and Park^{19b} reported that the oxidation kinetics can lead either to the predominant formation of TiO₂ layers or to the predominant formation of α-Al₂O₃ layers. Needless to add, the samples that formed an Al₂O₃ layer were quite oxidation resistant. In such a case, an inner, thick Al₂O₃ barrier layer formed below the outer, thin TiO₂ layer^{11,15,17,19b}. However, when the oxide layers formed were TiO₂-based, the resulting oxidation resistance

was poor. In such a case, either alternating (thick TiO₂ layer)/(thin Al₂O₃ layers) or a thin, intermediate Al₂O₃ barrier layer plus a thick, (TiO₂+Al₂O₃)-mixed layer formed^{14,15,19b}. In all cases, the outermost scale is consistently composed of TiO₂^{14,15,19b}. It has been demonstrated that the thin Al₂O₃ layer forms first due to the fast diffusion of Al in the basal plane of the MAX phase^{19b-19e}. The TiO₂ layers that forms on top of the Al₂O₃ layer results from an outward diffusion of Ti atoms through the grain boundary of preformed Al₂O₃^{19b,19d}. Finally, the (TiO₂+Al₂O₃)-mixed layer results from an inward diffusion of oxygen^{19b}.

In this context, the present study takes the advantage of the comparison of Ti_3AlC_2 and $Ti_3Al_{0.8}Sn_{0.2}C_2$ solid solution synthesized by SPS in order to better understand the role of Sn substitution on A sites on oxidation properties. Hence, oxidation products, kinetics and resistance of the Ti_3AlC_2 and $Ti_3Al_{0.8}Sn_{0.2}C_2$ compounds are compared to finally conclude on the influence of the Al substitution by Sn on the oxidation resistance of 312 MAX phases.

II- Experimental procedures

Ti₃AlC₂ samples were synthesized by powder metallurgy. Titanium, aluminum and titanium carbide powders were blended in quasi stoichiometric proportions (i.e. 1.9TiC-1.05Al-Ti) for 20 min in a Turbula® mixer. The reactant powder mixture is encapsulated in a glass container in vacuum and thus, sintered in argon atmosphere for 2h at 1450°C to produce porous Ti₃AlC₂ bulk material which is subsequently crushed into powder. After the Ti₃AlC₂ synthesis, XRD analysis was systematically performed; the corresponding X-Ray diffractograms (not shown) do not show any impurity at the X-Ray scale. The same is true for the Ti₃Al_{0.8}Sn_{0.2}C₂ commercial solid solution provided by Jinghe Technology Co., Ltd. Beijing. For comparison, this in-house Ti₃AlC₂ powder and a commercial Ti₃Al_{0.8}Sn_{0.2}C₂ batch were densified by Spark Plasma Sintering (SPS, model HPD 125 FCT system installed in a "Flash Sintering platform" within the University of Burgundy) in vacuum at 1315°C for 2 min at a pressure of 75 MPa with a cooling rate adjusted to 70°C/min. The sample diameters were 60 mm.

X-Ray Diffraction (XRD) analyses were performed using a Bruker D501 diffractometer with Cu-K α radiation in order to identify the impurities contained in bulk materials and also to identify the oxidation products. XRD data were refined using the MAUD software in order to extract the composition of the different Ti₃AlC₂ and Ti₃Al_{0.8}Sn_{0.2}C₂ samples³⁵. After an appropriate mechanical polishing of the SPSed samples, Polarized Light Microscopy method (PLM, Zeiss Imager Vario Z2) was used to investigate the grain size distribution and to quantify the amount of the different impurities. The porosity content was measured using the Archimedes method.

The microstructure of the Ti₃AlC₂ and Ti₃Al_{0.8}Sn_{0.2}C₂ bulk samples (grain size, distribution of porosity, location and composition of secondary phases) and the one of the oxidation products (morphology and composition of the oxide scale) were examined by Scanning Electron Microscopy using a high resolution field-emission gun scanning electron

microscope (FESEM, Jeol 7001F-TTLS) coupled with energy-dispersive X-ray spectrometer (EDXS, Oxford Energy) for chemical analyses.

Cylindrical (diameter: 6-10mm, thickness: 0.5-2mm) and parallelepiped (2.5x2.5x3 mm³) specimens were polished with SiC paper up to 2400 grade prior to oxidation tests. Oxidation tests were performed under isothermal conditions over the temperature range 800-1000°C. The oxidation kinetics of Ti₃AlC₂ and Ti₃Al_{0.8}Sn_{0.2}C₂ MAX phase compounds were measured using isothermal thermogravimetric tests (Setaram Setsys TG16 and Setaram Setsys Evolution) under synthetic dry air for 30 to 100h. Heating and cooling were performed in argon atmosphere.

III - Results and discussion

III-1- Ti₃AlC₂ and Ti₃Al_{0.8}Sn_{0.2}C₂ microstructural characterization

Figure 1 shows the XRD patterns obtained on the Ti₃AlC₂ and Ti₃Al_{0.8}Sn_{0.2}C₂ bulk samples. Rietveld refinement of the XRD data underlines the presence of about 0.1-0.2 wt. % of titanium carbide in the sintered samples. As shown in figure 1, the X-ray peaks of the solid solution are displaced to smaller angles reflecting an increase of the cell parameters. Rietveld refinement allows determining the cell parameters (a=3.0747(6) Å and c=18.5720(5) Å) and (a=3.0841(6) Å and c=18.5865(5) Å) of the Ti₃AlC₂ and Ti₃Al_{0.8}Sn_{0.2}C₂ compounds respectively. The cell parameters of Ti₃AlC₂ and of Ti₃Al_{0.8}Sn_{0.2}C₂ are in very good agreement with the ones published previously^{20, 33b, 33d, 33e}.

Figure 2 shows back-scattered SEM micrographs obtained on the Ti₃AlC₂ and Ti₃Al_{0.8}Sn_{0.2}C₂ SPSed samples. Figure 2 and EDXS analyses allow demonstrating the presence of small amount of Ti_xAl_y intermetallics (variable x and y contents) and Al₂O₃ grains randomly distributed at Ti₃AlC₂ and Ti₃Al_{0.8}Sn_{0.2}C₂ grain boundaries. EDXS analyses enable to confirm the presence of TiC. Al₂O₃ and Ti_xAl_y impurities are either formed during the powder synthesis

or during the densification by SPS. However, TiC is very likely formed during the SPS densification as its presence was not detected by XRD after the powder synthesis. As Al₂O₃ displays rather weak XRD lines and as some of the alumina may be amorphous, this alumina phase is not detected using XRD although the amount of Al₂O₃ is in the same range as the one of TiC. In the same vein, Ti_xAl_y may not be detected as a consequence of the large composition range of the formed Ti_xAl_y and also as a result of the superimposition of the main Ti_xAl_y peaks with the ones of the MAX phase. Using the light microscopy protocol, one can notice that:

- The amount of pores is about the same for both materials (in the range 1-2 vol.% in Ti_3AlC_2 and 1-3 vol.% in $Ti_3Al_{0.8}Sn_{0.2}C_2$)
- The amount of Al_2O_3 is slightly larger in Ti_3AlC_2 (in the range 1.2-1.4 vol.%) compared to $Ti_3Al_{0.8}Sn_{0.2}C_2$ (in the range 0-1.3 vol.%).
- The amount of Ti_xAl_y intermetallics is slightly larger in Ti₃Al_{0.8}Sn_{0.2}C₂ (in the range 1-5 vol.%) compared to Ti₃AlC₂ (0.2-1 vol.%).
- The grain size, as determined from the PLM method and from Electron Backscattered Diffraction, is 4.4 μ m for the Ti₃Al_{0.8}Sn_{0.2}C₂ grains and 3.9 μ m for the Ti₃AlC₂ ones (mean equivalent diameter).

III-2- Oxidation behaviors

Figure 3 shows the weight gain per surface area recorded as a function of the oxidation time and at different temperatures on the Ti_3AlC_2 and on the $Ti_3Al_{0.8}Sn_{0.2}C_2$ solid solution. One can notice that the weight gain is very high for the $Ti_3Al_{0.8}Sn_{0.2}C_2$ solid solution compared to the one obtained for Ti_3AlC_2 . As an example, it is about 3 g.m⁻² for Ti_3AlC_2 after 30h at 1000°C and around 300 g.m⁻² for the solid solution.

After a transient stage, the oxidation kinetics, $\Delta m/A = f(t)$, can be described either by a parabolic or by a cubic law as shown for the Ti₃AlC₂ SPSed samples in figure 4. It has to be noticed that M. W. Barsoum et al. and J. L. Smialek have shown that a cubic law better fits the experimental

results than a parabolic one^{15,16}. It thus makes more sense to assume the kinetics to be cubic. Nevertheless, in order to compare our results with other published results on more conventional alloys, a parabolic law was chosen to evaluate corresponding parabolic rate constants (k_p). The obtained values of the parabolic rate constant are given at different temperatures for Ti₃AlC₂ and Ti₃Al_{0.8}Sn_{0.2}C₂ in table 1. A comparison of the oxidation kinetics of Ti₃AlC₂ and Ti₃Al_{0.8}Sn_{0.2}C₂ shows that the parabolic rate constants of Ti₃Al_{0.8}Sn_{0.2}C₂ are, at the same temperatures, 2–4 orders of magnitude greater than those of Ti₃AlC₂. Such a result demonstrates that Ti₃AlC₂ has better oxidation resistance than Ti₃Al_{0.8}Sn_{0.2}C₂. Figure 5 shows the Arrhenius plot of k_p versus the inverse of temperature. For both materials, a linear fit is obtained. The slope of the straight line allows calculating the apparent activation energies which are 69 and 336 kJ.mol⁻¹ for Ti₃AlC₂ and Ti₃Al_{0.8}Sn_{0.2}C₂ respectively. Such a slope can be referred to a true activation energy only in cases where the rate-controlling step is well defined, unique and controlled by diff usion through the oxide scale. It may be the case for the fine-grained Ti₃AlC₂ where Al₂O₃ is the main formed oxide (see figure 8b and 9) however, it is unlikely the case for the solid solution. Thus, the slope of the straight line refers to an apparent activation energy. The apparent activation energy determined for the fine-grained Ti₃AlC₂ sample is smaller than the ones that have been published previously (in the range 136-258 kJ.mol⁻¹)^{11,17,18}. Thus, the apparent activation energy that is obtained for our fine-grained Ti₃AlC₂ specimens (69 kJ.mol⁻ 1) implies that the first stages of oxidation, which allows alumina formation, is easier than the ones implied for fine-grained Ti₃Al_{0.8}Sn_{0.2}C₂. One has also to notice that the parabolic rate constants are less temperature dependent for the former specimens.

Figure 6 shows a cross-section view of the oxide layer observed by SEM on the Ti_3AlC_2 SPSed specimen oxidized during 1000h at 1000°C. Ti, Al, C and O corresponding EDXS maps of the oxide layer are once more presented. After 1000h of oxidation, the thickness of the oxide layer, mainly composed of Al_2O_3 , is about 3 μ m. Some nodules of TiO_2 are observed on top of

the Al₂O₃ layer. Such a microstructure of the oxide scale has been observed in a lot of works^{11,12,15,19c,19d,19e} and is characteristic of a Ti₃AlC₂ with a good oxidation resistance¹⁵. The Al₂O₃ layer effectively inhibited the oxidation, the scale being dense and adherent; carbon is not detected in the oxide layer. As demonstrated by Rao et al.^{19e}, α-Al₂O₃ nuclei nucleate on the Ti₃AlC₂ matrix and grow in the initial stage of oxidation, forming the inner Al₂O₃ oxide scale. Once the depletion of Al atoms occurs in the surface layer of Ti₂AlC matrix, Ti atoms start to diffuse out and form the outer TiO₂ layer.

Figure 7a and 7b show a cross-section view of the oxide layer observed by SEM on the Ti₃AlC₂ SPSed specimen oxidized for 24h (a) and 500h (b) at 800°C. Ti, Al, C and O corresponding EDXS maps of the oxide layer are also presented. After 24h of oxidation, the thickness of the oxide layer is about 7 µm, on top of the Ti₃AlC₂ phase, the oxide layer consists in a mixture of Al₂O₃ and TiO₂. After 500h of oxidation, the thickness of the oxide layer is about 20 µm, the layer in contact with the Ti₃AlC₂ phase consists in a mixture of Al₂O₃ and TiO₂, the intermediate layer consists in Al₂O₃ and the external layer mainly consists in TiO₂. One can also notice that carbon is very likely present inside the oxide scale. Such a microstructure of the oxide scale has been observed and discussed by Lee and Park^{19b}. The authors have shown, using Pt marker on the Ti₃AlC₂ surface, that Al₂O₃ thin layer is primarily formed and that TiO₂ nodules are formed on top of the Al₂O₃ thin layer by outward diffusion of Ti⁴⁺. Song et al. ^{19d}, noticing that the amount of TiO₂ after 0.5 and 80 h oxidation remains the same, suggest that the TiO₂ nodule formation is terminated once a dense and continuous Al₂O₃ layer is formed. Lee and park^{19b} demonstrated that the mixed (Al₂O₃+TiO₂) layer results from the internal oxidation of Ti₃AlC₂ down to the thin Al₂O₃ layer; it is formed due to inward diffusion of O²- when the alumina scale is not dense enough.

Figure 8 shows a cross-section of the oxide layer observed by SEM on the Ti₃Al_{0.8}Sn_{0.2}C₂ SPSed specimen oxidized for 30h at 850°C, simultaneously with Ti, Al, C, O and Sn corresponding EDXS maps of the oxide layer. The oxide thickness is about 30 µm. It consists in six layers: the first one, adjacent to the MAX phase, is a mixture of TiO2 and Al2O3, the second one consits in a tin oxide whose stoechiometry has not been determined due to the proximity of the other oxides (it is nevertheless quite reasonable to assume that the tin oxide consists in SnO₂), the third layer is also a mixture of TiO₂ and Al₂O₃, the fourth one is a tin oxide, the fifth one is Al₂O₃ and finally the last one consists in TiO₂. Some pores are observed inside the oxide scale, mainly at the interface between the external TiO₂ layer and the Al₂O₃ adjacent layer. It is now well known that, during the oxidation of Ti₃AlC₂ and Ti₂AlC MAX phases, a protective α-Al₂O₃ layer forms first followed by a discontinuous TiO₂ layer formed on top after long time of oxidation 19b,19d,19e. The lower bond-breaking energy of Al–Ti bonds in the MAX phase is the driving force of this preferential oxidation process. During the oxidation of the Ti₃Al_{0.8}Sn_{0.2}C₂ solid solution, it is possible that a SnO₂ layer forms first. Indeed, *ab initio* calculations of the Al–Sn substitution predict a cohesive energy reduction of 21.7% which is supposed to contribute to a reduction in the thermal stability and to an easier mobility of Sn compared to Al in the A planes of the MAX³⁶. Once a first SnO₂ layer is formed, a continuous α-Al₂O₃ layer forms followed by the formation of the discontinuous TiO₂ upper layer. Due to the inward diffusion of oxygen through the grain boundary, the internal oxidation of the solid solution can continue and lead to the multilayered microstructure shown in figure 8.

After oxidation at 950°C for 30h, the same oxides are formed as shown in figure 9. The Al₂O₃ and TiO₂ external layers are mixed at this temperature to form a single layer consisting in a crystallite's mixture of the two oxides. Moreover, the adhesion of the oxide layer seems to be poorer than the one formed at 850°C; the external TiO₂, Al₂O₃ and SnO₂ layers are scaled (see

red arrow in figure 9) whereas microcracks and debonding are observed in the oxide layer and also at the interface between the 312 phase and the oxide layer (see blue arrow in figure 9).

Oxidation tests performed on Ti₃Al_{0.8}Sn_{0.2}C₂ solid solution demonstrate the harmful effect of Al substitution by Sn atoms. Although the tin oxide formation is thermodynamically less favourable than the Al₂O₃ or TiO₂ ones, the atomic position of tin atoms in the hexagonal structure of the MAX phase (in the A planes) and the weak M-A bonds lead to an easy outward diffusion of Sn (and Al) atoms to the interfaces (oxide/air, MAX/oxide). Moreover, a quite large amount of non protective rutile TiO₂ is formed on the surface of the Ti₃Al_{0.8}Sn_{0.2}C₂ solid solution. Such a deleterious TiO₂ formation likely results from the Al/Ti atom's ratio, about 0.27 in this case, which is far from 0.32. Indeed, Li et al. have shown that, for Al/Ti atom's ratio smaller than 0.32, aluminum atom supply at the MAX phase/oxide interface is insufficient to inhibit TiO₂ growth¹⁹.

IV-Summary

Highly pure (secondary phases in the range 2-5 weight %) and dense (porosity smaller than 2 vol.%) Ti₃AlC₂ and Ti₃Al_{0.8}Sn_{0.2}C₂ bulk samples have been synthesized by coupling natural sintering and SPS densification. The PLM method demonstrates that grain size is small (mean equivalent diameters are smaller than 5 μm). Finally, oxidation tests were performed on the Ti₃AlC₂ compound and on the Ti₃Al_{0.8}Sn_{0.2}C₂ solid solution. It is demonstrated that the substitution of Al atoms by Sn atoms in the A plane of the MAX phase has a harmful effect on the oxidation resistance. Indeed, the oxidation kinetics is very high for the solid solution compared to the one of the Ti₃AlC₂ compound (parabolic rate constant is 3 order of magnitude smaller in the case of Ti₃AlC₂). The presence of Sn atoms in the A planes of the solid solution leads to an easy diffusion of Sn atoms out of the MAX phase. As a result, tin oxide, a non-

protective oxide, is formed. Moreover, Al/Ti atom's ratio being small, non-protective rutile- TiO_2 is also formed. The oxide layer, on top of the $Ti_3Al_{0.8}Sn_{0.2}C_2$ solid solution thus consists in TiO_2 , SnO_2 and Al_2O_3 . On the opposite, the oxide layer formed on top of the Ti_3AlC_2 phase mainly consists in a protective Al_2O_3 layer; a few TiO_2 grains being observed on top of this oxide layer.

Acknowledgements:

The authors acknowledge SAFRAN for the financial support and for E. Drouelle PhD grant.

References

- 1 M. W. Barsoum, "The $M_{N+1}AX_{N}$ phases: A new class of solids thermodynamically stable nanolaminates," *Progress in Solid State Chemistry*, **28**[1-4] 201-81(2000).
- ²W. Jeitschko, H. Nowotny and F. Benesovsky, "Kohlen-stoffhaltige ternare Verbindungen (H-Phase)," *Monatshefte für Chemie*, **94**[4] 672-76(1963).
- ³W. Jeitschko, H. Nowotny and F. Benesovsky, "Die H-phasen Ti₂TlC, Ti₂PbC, Nb₂InC, Nb₂SnC und Ta₂GaC," *Monatshefte für Chemie*, **95**[2] 431-35 (1964).
- ⁴W. Jeitschko and H. Nowotny, "Die Kristallstructur von Ti₃SiC₂-Ein Neuer Komplxcarbid-Typ," *Monatshefte für Chemie*, **98**[2] 329-37(1967).
- ⁵M.W. Barsoum, T. El-Raghy, Synthesis and characterization of a remarkable ceramic: Ti₃SiC₂, J. Am. Ceram. Soc., 79 (1996) 1953–1956.
- 6 M.W. Barsoum, The $M_{n+1}AX_n$ Phases : A New Class of Solids, Prog. Solid State Chem. 28 (2000) 201–281.
- ⁷M.W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, in: Wiley VCH, Weinheim, 2013.
- ⁸N. V. Tzenov and M. W. Barsoum, "Synthesis and characterization of Ti₃AlC₂," *Journal of the American Ceramic Society*, **83**[4] 825-32 (2000).
- ⁹X. H. Wang and Y. C. Zhou, "Microstructure and properties of Ti₃AlC₂ prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process," *Acta Materialia*, **50**[12] 3141-49 (2002).

- ¹⁰H. Zhai, Z. Huang, M. Ai, Y. Zhou, Z. Zhang and S. Li, "Tribophysical properties of polycrystalline bulk Ti₃AlC₂," *Journal of the American Ceramic Society*, **88**[11] 3270-74 (2005).
- ¹¹X. H. Wang and Y. C. Zhou, "Oxidation behavior of Ti₃AlC₂ at 1000-1400°C in air," Corrosion Science, **45**[5] 891-907 (2003).
- ¹²X. H. Wang and Y. C. Zhou, "High-temperature oxidation behavior of Ti₂AlC in air," *Oxidation of Metals*, **59**[3-4] 303-20 (2003).
- ¹³M. Sundberg, G. Malmqvist, A. Magnusson and T. El-Raghy, "Alumina forming high temperature silicides and carbides," *Ceramics International*, **30**[7] 1899-904 (2004).
- 14 M. W. Barsoum, N. Tzenov, A. Procopio, T. El-Raghy and M. Ali, Oxidation of $Ti_{n+1}AlX_n$ (n=1-3 and X=C, N): II. Experimental Results, *J. Electrochem. Soc.* 148 (8), 2001, 551-562.
- ¹⁵D. J. Tallman, B. Anasori and M. W. Barsoum, A Critical Review of the Oxidation of Ti₂AlC, Ti₃AlC₂ and Cr₂AlC in Air, *Materials Research Letters*, 1, 3 (2013) 115-125.
- ¹⁶J. L. Smialek, Kinetic Aspects of Ti₂AlC MAX Phase Oxidation, *Oxidation of Metals*, 83, 3–4 (2015) 351-366.
- ¹⁷X. W. Xu, Y. Li, B. C. Mei, J. Q. Zhu, H. Liu, and J. Qu, "Study on the Isothermal Oxidation Behavior in Air of Ti₃AlC₂ Sintered by Hot Pressing." *Science in China Series E: Technological Sciences* 49 (5), 2006, 513–20.
- ¹⁸X. H. Wang and Y. C. Zhou, "Oxidation Behavior of TiC-Containing Ti₃AlC₂ Based Material at 500-900 °C in Air." *Materials Research Innovations* 7(6), 2003, 381–90.
- ¹⁹X. C. Li, Y. H. Qian, L. Zheng, J. J. Xu, and M. S. Li, "Determination of the Critical Content

- of Al for Selective Oxidation of Ti₃AlC₂ at 1100°C." *Journal of the European Ceramic Society* 36 (14) 2016, 3311-3318.
- ^{19b}D. B. Lee, S. W. Park, "High-temperature oxidation of Ti₃AlC₂ between 1173 and 1473 K in air.", *Mater. Sci. Eng A.* 434 (2006) 147–154.
- ^{19c}H. J. Yang, Y. T. Pei, J. C. Rao, J. Th. M. De Hosson, S. B. Li and G. M. Song, "High temperature healing of Ti₂AlC: On the origin of inhomogeneous oxide scale", Scripta Materialia 65 (2011) 135–138.
- ^{19d}G. M. Song, V. Schnabel, C. Kwakernaak, S. van der Zwaag, J. M. Schneider and W. G. Sloof, "High temperature oxidation behaviour of Ti₂AlC ceramic at 1200°C », Materials at high temperatures, 29, 3 (2012) 205-209.
- ^{19e}J. C. Rao, Y. T. Pei, H. J. Yang, G. M. Song, S.B. Li, J. Th. M. De Hosson, TEM study of the initial oxide scales of Ti₂AlC, Acta Materialia 59 (2011) 5216–5223.

- ²⁰M. A. Pietzka and J. C. Schuster, "Summary of constitutional data on the Aluminum-Carbon-Titanium system.", *Journal of Phase Equilibria*, **15**[4] (1994) 392-400.
- ²¹X. Wang and Y. Zhou, "Solid-liquid reaction synthesis of layered machinable Ti₃AlC₂ ceramic," *Journal of Materials Chemistry*, **12**[3] (2002) 455-60.
- ²²A.G. Zhou, C.A. Wang, Y. Huang, "Synthesis and mechanical properties of Ti₃AlC₂ by spark Plasma Sintering", J. Mater. Sci., 38 (2003) 3111.

- ²³J.Q. Zhu, B.C. Mei, X.W. Xu, J. Liu, "Synthesis of single-phase polycrystalline Ti₃SiC₂ and Ti₃AlC₂ by hot pressing with the assistance of metallic Al or Si", Mater. Lett. 58 (2004) 588-592.
- ²⁴J. H. Han, S. S. Hwang, D. Lee and S. W. Park, "Synthesis and mechanical properties of Ti₃AlC₂ by hot pressing TiC_x/Al powder mixture," *Journal of the European Ceramic Society*, **28**[5] 979-88(2008).
- ²⁵W. Zhou, B. Mei, J. Zhu and X. Hong, "Synthesis of high-purity Ti₃SiC₂ and Ti₃AlC₂ by spark plasma sintering (SPS) technique," *Journal of Materials Science*, **40**[8] 2099-100(2005).
- ²⁶G. Liu, K. Chen, H. Zhou, J. Guo, K. Ren and J. M. F. Ferreira, "Layered growth of Ti₂AlC and Ti₃AlC₂ in combustion synthesis," *Materials Letters*, **61**[3] 779-84(2007).
- ²⁷C. L. Yeh and Y. G. Shen, "Combustion synthesis of Ti₃AlC₂ from Ti/Al/C/TiC powder compacts," *Journal of Alloys and Compounds*, **466**[1-2] 308-13(2008).
- ²⁸C. Peng, C. A. Wang, Y. Song and Y. Huang, "A novel simple method to stably synthesize Ti₃AlC₂ powder with high purity," *Materials Science and Engineering A*, **428**[1-2] 54-58(2006).
- ²⁹S. B. Li, H. X. Zhai, G. P. Bei, Y. Zhou and Z. L. Zhang, "Formation of Ti₃AlC₂ by mechanically induced self-propagating reaction in Ti-Al-C system at room temperature," *Materials Science and Technology*, **22**[6] 667-72(2006).
- ³⁰S. B. Li, H. X. Zhai, G. P. Bei, Y. Zhou and Z. L. Zhang, "Synthesis and microstructure of Ti₃AlC₂ by mechanically activated sintering of elemental powders," *Ceramics International*, **33**[2] 169-73(2007).

- ³¹J. Zhu, B. Mei, X. Xu and J. Liu, "Synthesis of single-phase polycrystalline Ti₃SiC₂ and Ti₃AlC₂ by hot pressing with the assistance of metallic Al or Si," *Materials Letters*, **58**[5] 588-92(2004).
- ³²M. X. Ai, H. X. Zhai, Y. Zhou, Z. Y. Tao, Z. Y. Huang, Z. L. Zhang and S. B. Li, "Synthesis of Ti₃AlC₂ powders using Sn as an additive," *Journal of the American Ceramic Society*, **89**[3] 1114-17(2006).
- ³³S. B. Li, W. H. Xiang, H. X. Zhai, Y. Zhou, C. W. Li and Z. L. Zhang, "Formation of a single-phase Ti₃AlC₂ from a mixture of Ti, Al and TiC powders with Sn as an additive," *Materials Research Bulletin*, **43**[8-9] 2092-99(2008).
- ^{33b}G. P. Bei, V. Gauthier-Brunet, C. Tromas and S. Dubois, "Synthesis, characterization and intrinsic hardness of layered nanolaminate Ti₃AlC₂ and Ti₃Al_{0.8}Sn_{0.2}C₂ solid solution," J. Am. Ceram. Soc., 95[11] 102-107 (2012).
- ^{33c}S. Dubois, G. P. Bei, C. Tromas, V. Gauthier-Brunet and P. Gadaud, "Synthesis, microstructure, and mechanical properties of Ti₃Sn_(1-x)Al_xC₂ MAX phase solid solutions," *Inter. J. Appl. Ceram. Tech.*, **7**[6] 719-29(2010).
- ^{33d}Y. C. Zhou, J. C. Chen, J. Y. Wang, "Strengthening of Ti₃AlC₂ by incorporation of Si to form Ti₃Al_{1-x}Si_xC₂ solid solutions.", Acta Materialia 54(5) (2006) 1317-1322.
- ^{33e}X. H. Yin, M. Li, T. P. Li, Y. C. Zhou, "Diffusion Bonding of Ti3AlC2 Ceramic via a Si Interlayer", Journal of Materials Science 42(17):7081-7085.
- ³⁴C. Peng, C. A. Wang, L. Qi and Y. Huang, "Fabrication of Ti₃AlC₂ powder with high-purity by pressureless sintering," *Materials Science Forum*, **475-479** 1247-50(2005).

- ³⁵L. Lutterotti, S. Matthies, and H.-R. Wenk, MAUD: A Friendly Java Program for Material Analysis using Diffraction, *IUCr: Newsletter CPD*, 21, 1999, 14.
- ³⁶B. Liu, J. Y. Wang, J. Zhang, F. Z. Li, and Y. C. Zhou, "Theoretical Investigation of A-Element Atom Diffusion in Ti2AC (A=Sn, Ga, Cd, In, and Pb)," Appl. Phys. Lett., 94 [18] 181906, 3pp (2009).

Figures captions

- Figure 1: XRD patterns obtained on Ti₃AlC₂ and Ti₃Al_{0.8}Sn_{0.2}C₂ SPSed samples.
- Figure 2: Back-scattered SEM micrographs of (a) Ti_3AlC_2 and (b) $Ti_3Al_{0.8}Sn_{0.2}C_2$ SPSed samples.
- Figure 3: Weight gain per surface area unit ($\Delta m/A$) measured as a function of time at different temperatures and for (a) Ti₃AlC₂ and (b) Ti₃Al_{0.8}Sn_{0.2}C₂ SPSed samples.
- Figure 4: (a) $(\Delta m/A)^2$ and (b) $(\Delta m/A)^3$ versus time. Experimental data have been recorded on a Ti₃AlC₂ SPSed sample.
- Figure 5: Arrhenius plot of the parabolic rate constant as a function of the inverse of temperature for the Ti₃AlC₂ (blue squares) and the Ti₃Al_{0.8}Sn_{0.2}C₂ solid solution (orange circles) SPSed samples. Experimental results from references 11 (red squares), 17 (orange diamond) and 18 (black circles) are also plotted.
- Figure 6: Cross-section view of the oxide layer observed by SEM on the Ti₃AlC₂ SPSed specimen oxidized during 1000h at 1000°C. Ti, Al, C and O corresponding EDXS maps of the oxide scale. A schematic representation of the different oxide's layer is also given.
- Figure 7: Cross-section view of the oxide layer observed by SEM on the Ti₃AlC₂ SPSed specimen oxidized during 24h (a) and 500h (b) at 800°C. Ti, Al, C and O corresponding EDXS maps of the oxide scale. A schematic representation of the different oxide's layer is also given.
- Figure 8: Cross-section view of the oxide layer observed by SEM on the Ti₃Al_{0.8}Sn_{0.2}C₂ SPSed specimen oxidized during 30h at 850°C. Ti, Al, C, O and Sn corresponding EDXS maps of the oxide scale. A schematic representation of the different oxide's layer is also given.

Figure 9: Cross-section view of the oxide layer observed by SEM on the $Ti_3Al_{0.8}Sn_{0.2}C_2$ SPSed specimen oxidized during 30h at 950°C. The red arrow shows that the external TiO_2 , Al_2O_3 and SnO_2 layers are scaled whereas the blue arrow shows microcracks and debonding inside the oxide layer.

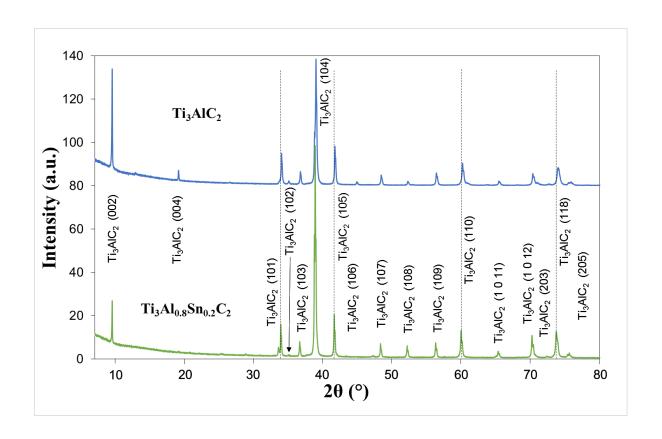
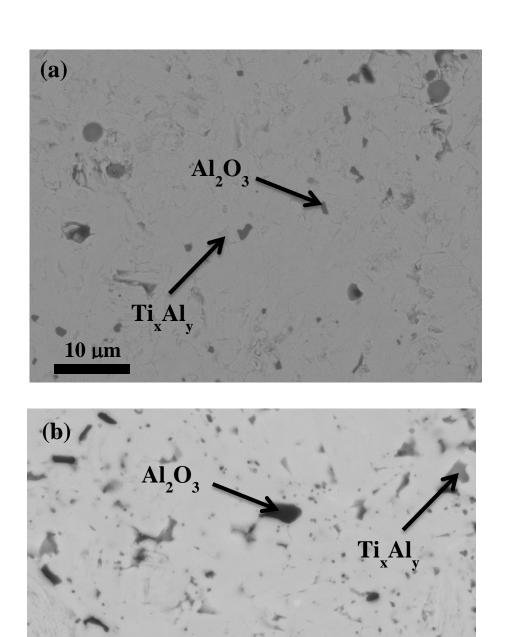
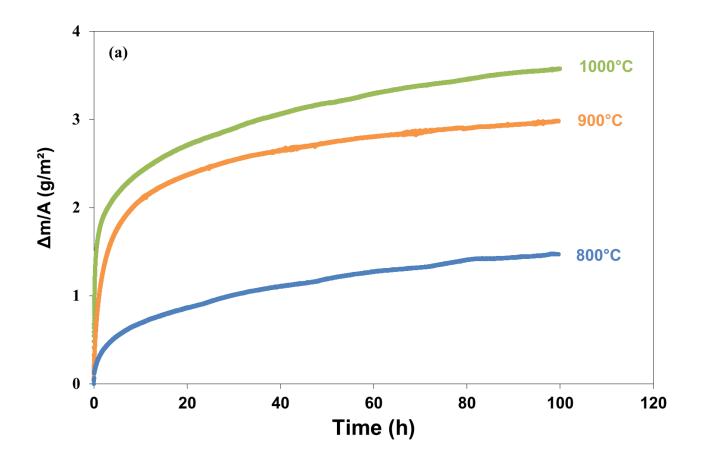
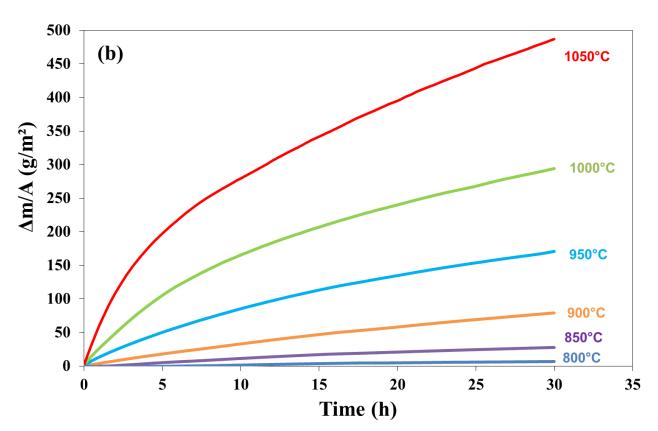





Figure 1: XRD patterns recorded on Ti_3AlC_2 and $Ti_3Al_{0.8}Sn_{0.2}C_2$ SPSed samples.

 $Figure~2:~Back-scattered~SEM~image~of~(a)~Ti_3AlC_2~and~(b)~Ti_3Al_{0.8}Sn_{0.2}C_2~SPSed~samples.$

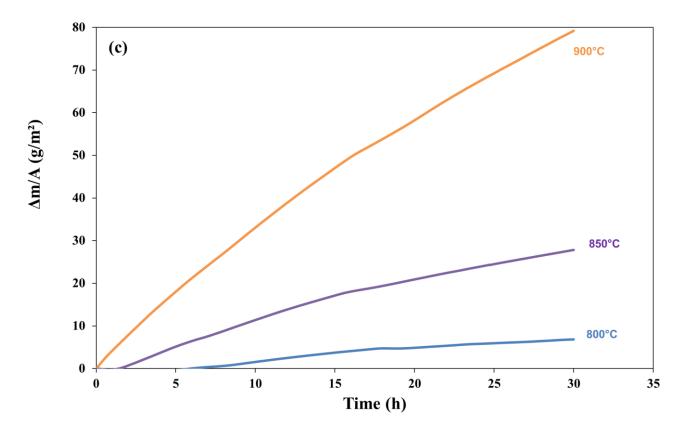


Figure 3: Weight gain per surface area unit ($\Delta m/A$) measured as a function of time at different temperatures and for (a) Ti_3AlC_2 and (b) $Ti_3Al_{0.8}Sn_{0.2}C_2$ SPSed samples.

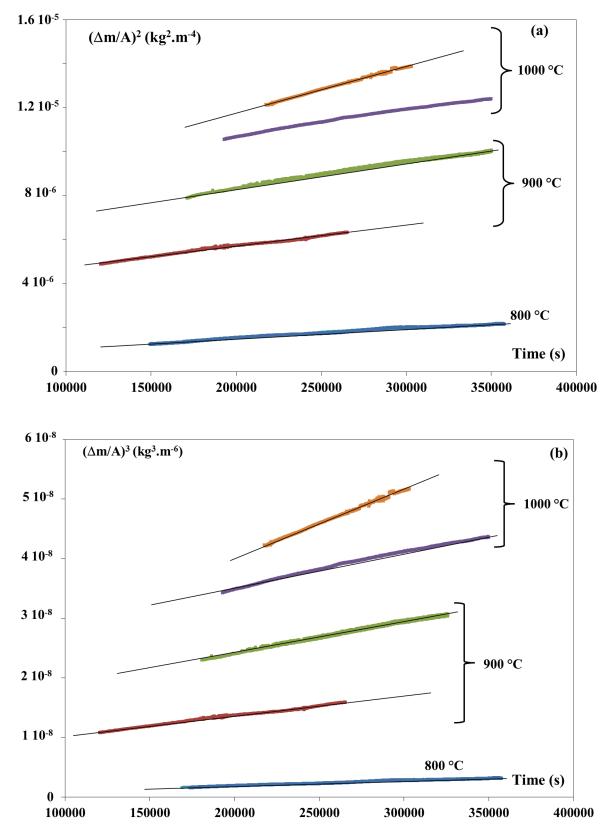


Figure 4: (a) $(\Delta m/A)^2$ and (b) $(\Delta m/A)^3$ versus time. Experimental data have been recorded on a Ti₃AlC₂ SPSed sample.

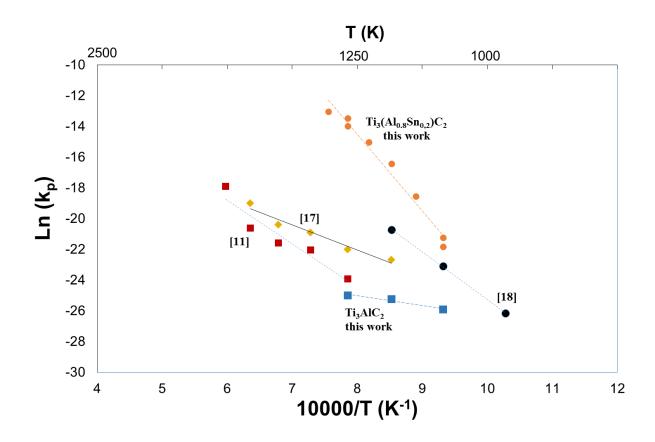


Figure 5: Arrhenius plot of the parabolic rate constant as a function of the inverse of temperature for the Ti₃AlC₂ (blue squares) and the Ti₃Al_{0.8}Sn_{0.2}C₂ solid solution (orange circles) SPSed samples. Experimental results from references 11 (red squares), 17 (orange diamond) and 18 (black circles) are also plotted.

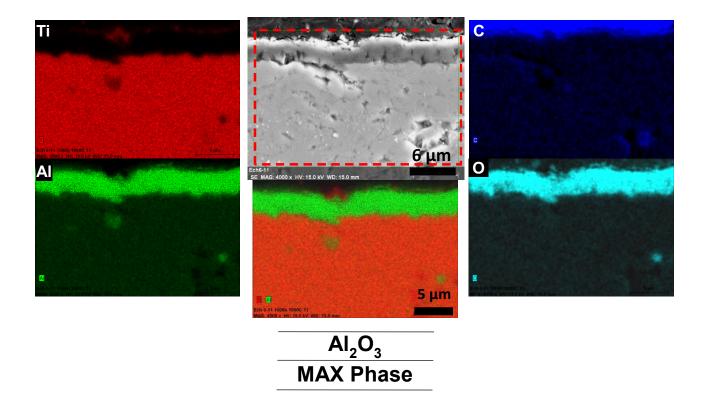


Figure 6: Cross-section view of the oxide layer observed by SEM on the Ti₃AlC₂ SPSed specimen oxidized during 1000h at 1000°C. Ti, Al, C and O corresponding EDXS maps of the oxide scale. A schematic representation of the different oxide's layer is also given.

(a) 800°C 24h

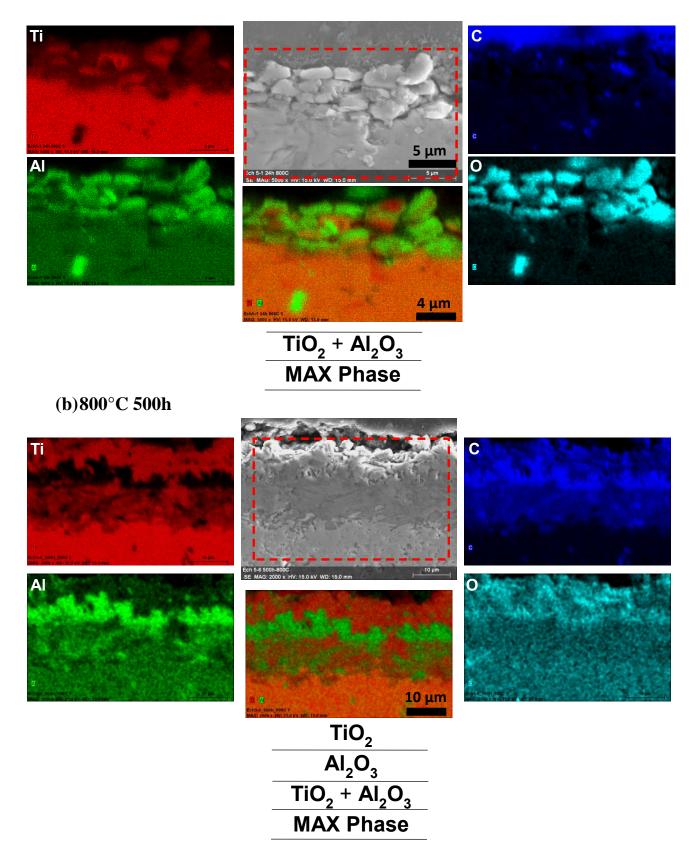


Figure 7: Cross-section view of the oxide layer observed by SEM on the Ti_3AlC_2 SPSed specimen oxidized during 24h (a) and 500h (b) at 800° C. Ti, Al, C and O corresponding EDXS maps of the oxide scale. A schematic representation of the different oxide's layer is also given.

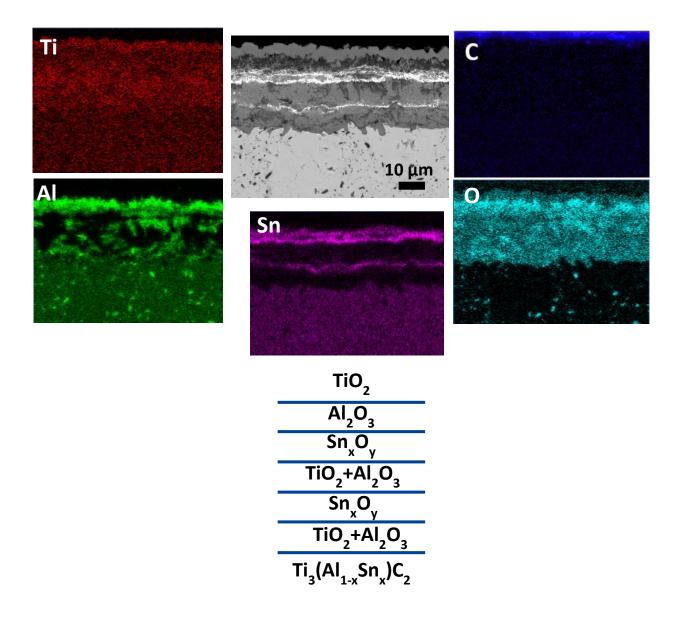


Figure 8: Cross-section view of the oxide layer observed by SEM on the Ti₃Al_{0.8}Sn_{0.2}C₂ SPSed specimen oxidized during 30h at 850°C. Ti, Al, C, O and Sn corresponding EDXS maps of the oxide scale. A schematic representation of the different oxide's layer is also given.

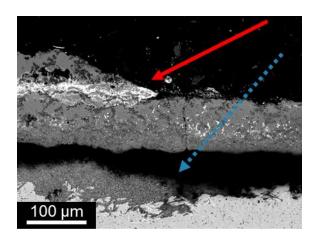


Figure 9: Cross-section view of the oxide layer observed by SEM on the $Ti_3Al_{0.8}Sn_{0.2}C_2$ SPSed specimen oxidized during 30h at 950°C. The red arrow shows that the external TiO_2 , Al_2O_3 and SnO_2 layers are scaled whereas the blue arrow shows microcracks and debonding inside the oxide layer.

		800°C	850°C	900°C	950°C	1000°C	1050°C
k _p (kg ² /m ⁴ /s)	Ti ₃ (Al _{1-x} Sn _x)C ₂	6,0.10 ⁻¹⁰	8,8.10 ⁻⁹	7,3.10 ⁻⁸	3,0.10 ⁻⁷	8,4.10 ⁻⁷	2,2.10 ⁻⁶
	Ti ₃ AlC ₂	5,6.10 ⁻¹²		1,1.10 ⁻¹¹		1,4.10 ⁻¹¹	

Table 1 : Kinetic rate constant determined at different temperatures on the $Ti_3Al_{0.8}Sn_{0.2}C_2$ and Ti_3AlC_2 MAX phase.