Control by social influence: durables vs. non-durables
Bary Pradelski

To cite this version:
Bary Pradelski. Control by social influence: durables vs. non-durables. 2019 IEEE 58th Conference on Decision and Control (CDC), Dec 2019, Nice, France. pp.3478-3483, 10.1109/CDC40024.2019.9030059. hal-03100218

HAL Id: hal-03100218
https://hal.archives-ouvertes.fr/hal-03100218
Submitted on 6 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Control by social influence: durables vs. non-durables

Bary S. R. Pradelski*

Abstract

Individual behavior such as the adoption of new products is influenced by taking account of others’ actions. We study social influence in a heterogeneous population and analyze the behavior of the dynamic processes. We distinguish between two information regimes: (i) agents are influenced by the adoption ratio, (ii) agents are influenced by the usage history. We identify the stable equilibria and long-run frequencies of the dynamics. We then show that the two processes generate qualitatively different dynamics, leaving characteristic ‘footprints’. In particular, (ii) favors more extreme outcomes than (i). This has direct implications for the control of policy interventions.

1. Introduction

A fundamental question about aggregate behavior of groups is how shifts between seemingly stable states occur almost instantaneously after long lags of low fluctuation. Social influence has been found to play an important role in such transitions. Social influence describes the process in which individuals are influenced by the behaviors of others in a group.

This paper studies two general families of dynamic processes of social influence dependent on the nature of information available. Agents update their actions at random points in time. Their decisions are influenced by the others’ previous actions previously. In some environments an agent chooses a durable action and adoption statistics are observable or public information. In such cases an agent essentially considers the adoption ratio. We denote this scenario by Adoption Ratio. In other environments, each agent chooses a non-durable action and the act of choosing is the critical information. Hence an agent considers the usage history. We shall thus denote this scenario Usage History.¹

Some environments are better described by one model and others by the other. Consider the use of bicycles for the daily commute to work. People have different personal reasons to use a bicycle or another means of transport, e.g., distance to work, personal fitness, or income. In addition, people are influenced by the behaviors of others and have a propensity to conform. Our study explores this latter influence in a heterogeneous population. On the one hand, the number of bicycle owners may be an important factor for an agent’s decision (Adoption Ratio). On the other hand, the time series of choices, i.e., how often bicycles are seen to be used to commute to work may well be an equally important factor (Usage History). Knowing which process of social influence, Adoption Ratio or Usage History, is at work is relevant to control the behavior and design interventions. If the observed process follows Adoption Ratio an incentive to purchase a bicycle would be the right intervention. Such an intervention was used in London, UK, where the Cyclescheme allows employees to purchase bicycles tax-free. If the observed process follows Usage History an incentive should aim at increasing the frequency of choices. Again, such an intervention was used in London, UK, where Boris Bikes allows people to use bicycles for free for the first 30 minutes.

The contribution of this paper is twofold. First, we identify the equilibria of the Adoption Ratio and Usage History process and study their stability in a stochastic environment. Second, we find that the long-run behavior of these seemingly similar processes differs and elaborate on the qualitative differences. We show that each process leaves a characteristic footprint – Usage History favors extremer outcomes than Adoption Ratio – and provide an empirical test.

2. Related literature

The discussion of social influence has a long history in the social sciences (see, e.g., [Ham71, Shi00]).²

¹Note that this differentiation has not gone unnoticed in marketing departments. Hardware providers such as Apple focus their reporting and marketing effort on the number of products sold (Adoption Ratio). Software providers, such as WhatsApp, focus their analysis and messaging on the frequency of usage of their products (Usage History).

²For further studies see [You09, CMP18].
Numerous applications have motivated the study of social influence, e.g., political and social movements [Sch78, Cab12], control of diffusion processes such as innovation adoption [Rog62, Bas69, MI06, NS15], and financial herding [Ban92, You93]. Consequently, there is broad experimental evidence for social influence. [Asc55] conducted a series of enlightening experiments showing that a considerable proportion of subjects trust the majority over their own senses. More recently [SDW06] show the effects of social influence in a study on music taste. Other applications studies include human fertility [BW96], diffusion of information technologies [TGG02], mobile phones [dSRZ11], and bicycle usage for the work commute [GR11].

Our model follows [Sch78] and [Gra78]. They describe the class of critical mass models of social interaction. [Sch78] notes that “though perhaps not in physical and chemical reactions, in social reactions it is typically the case that the ‘critical number’ for one person differs from another’s.” Thus the tipping value determines, for each player, the critical mass of the aggregate information about the population’s actions at which a player will ‘tip over’ from playing one action to another. We study a threshold model where heterogeneous players repeatedly revise their binary action. Our model is in discrete time with asynchronous updating.

The processes we consider are Markovian. On the one hand, we use the concept of stochastic stability [FY90, KMR93, You93]. The idea is to study a perturbed version of the original process, such that the resulting Markov process is irreducible and ergodic and therefore the process has a unique stationary distribution. By letting the level of noise approach zero one can identify those states that will be observed in the long-run with a frequency bounded away from zero. On the other hand, we also make use of recent work on reinforced random walks [Pins13]. Pinsky analyzes a random walk on \(\mathbb{Z} \) whose probability of moving left or right depends on the recent history. By an appropriate translation we find the unique limit proportion of play even though all states are stochastically stable and thus stochastic stability does not allow any selection result.

3. The model

We shall first introduce the general framework for analyzing social influence. Let \(P = \{1, \ldots, p\} \), \(p \in \mathbb{N} \) be the set of players. Let \(A = \{0, 1\} \) be the actions available to each player \(i \in P \).\(^4\) Let \(u_i : [0, 1] \times A \to \mathbb{R} \) be the utility of agent \(i \in P \) when observing the aggregate statistic about the society \(s \in [0, 1] \) and playing action \(a \in A \). We shall define two specific functional forms for \(s \) later but for now it suffices to think of some aggregate statistic about the players’ actions. Suppose that the utility of an action is separable into a component arising from a player’s inherent preference for an action and a component specifying the utility he derives from social conformity. After normalizing, let \(\pi_i \in \mathbb{R}^+ \) be player \(i \)'s direct utility difference when playing action 1 over action 0. Further let \(\rho_i \in \mathbb{R}^+ \) be a player’s index of social conformity. Finally, suppose that the impact of social influence is linear. A player’s utility from playing action \(a \) is then given by

\[
 u_i(s, a) = \left\{ \begin{array}{ll}
 \pi_i + \rho_i s & \text{if } a = 1, \\
 \rho_i(1 - s) & \text{if } a = 0.
\end{array} \right.
\]

This is a coordination game when \(s \) is increasing in the number of players playing 1. A player is indifferent between the actions when \(u_i(s, 1) = u_i(s, 0) \). That is, agent \(i \) is indifferent iff

\[
 s = \frac{\rho_i - \pi_i}{2\rho_i} =: \mu(i)
\]

We shall call \(\mu(i) \) player \(i \)’s tipping value. If \(s > \mu(i) \) player \(i \) wants to play 1 and if \(s < \mu(i) \) he wants to play 0. A player with \(\mu(i) \in (-\infty, 0) \) always prefers to play action 1 and a player with \(\mu(i) \in (1, \infty) \) always prefers action 0. We shall make the simplifying assumption that for all players \(i \), \(\mu(i) \) is not a multiple of 1/\(p \) which will ensure that a player always has a unique best response (BR). Given the list of different tipping values \(\mu_1, \ldots, \mu_n \) (players may have the same tipping values, hence \(n \leq p \)) let \(q_j \) be the fraction of players with tipping value \(\mu_j \), i.e., \(q_j = \frac{\sum_{i=1}^p \mathbb{1}_{\mu(i) = \mu_j}}{p} \) (for \(j = 1, \ldots, n \)).

Let \(f_i : \mathbb{R} \to [0, 1] \) be the response function for player \(i \). Let \(s(t) \in [0, 1] \) be the aggregate statistic about society at the beginning of period \(t \). For each player \(i \), let \(\alpha_i(t) \) be the action he plays at time \(t \). Then for all \(i \in P \)

\[
 \alpha_i(t) = \mathbf{1}_i \cdot B[f_i(u_i(s(t), 1), u_i(s(t), 0))] + (1 - \mathbf{1}_i) \alpha_i(t-1)
\]

for all \(t \geq 1 \), where \((B^t)_{t \in \mathbb{N}} \) is a family of independent Bernoulli RVs taking values in \(A \). Let \(\delta_t = \sum_{j=1}^p \alpha_j(t) / p \in \mathbb{R}^+ \)
[0, \frac{1}{2}, \ldots, 1] be the population’s average action in period t. We consider two processes of social influence, arising from responding to different observations about society:

Adoption Ratio. The state at the beginning of period t is given by the action profile \(a^{t-1} = (a_i^{t-1})_{i \in P} \). An active player responds to the Adoption Ratio:

\[
s^{AR}(t) = \bar{a}^{t-1}
\]

Usage History. The state at the beginning of period t is given by the last k actions, i.e., \((a_{act(t-k)}, \ldots, a_{act(t-1)})\). An active player responds to the Usage History in the past k (constant) periods:\(^5\)\(^6\)

\[
s^{UH}(t) = \frac{\sum_{i=t-k}^{t-1} a_{act(i)}^v}{k}
\]

When unambiguous we shall sometimes omit the specification of the time period. To illustrate, suppose there are four players. Player 1 initially plays 1 and all other players play 0. Suppose we are in time step \(t = 7 \) and play unfolded as shown in table 1. For Adoption Ratio the observation in period \(t = 7 \) of prior adopters of action 1 is \(s^{AR}(7) = 50\% \) (the relevant actions are circled in Table 1). For Usage History (with \(k = 5 \)) the observation in period \(t = 7 \) of the frequency of choices of action 1 is \(s^{UH}(7) = 80\% \) (the relevant actions are boxed in Table 1). Note that in our example player 3’s previous actions have no influence on the observed time series while player 1 and 2’s are counted twice.

We analyze the two processes for several regimes where all players play a BR and \(\bar{a}(a^*_a) = x^*_a \) and \(x^*_a \in \{x^*_1, \ldots, x^*_t\} \) is a fixed point of Agg (in increasing order).

4.1. Adoption Ratio

In this section we consider the social influence process Adoption Ratio. An active player bases his decision on the number of current adopters (see Eq. (6)).

\[
s^{AR}(t) = \bar{a}^{t-1} = \frac{\sum_{i \in P} a_i^{t-1}}{p}
\]

Theorem 3. The unperturbed Adoption Ratio dynamic has at least one absorbing state. The absorbing states of the dynamic process coincide with the fixed points of Agg and each absorbing state is associated with exactly one fixed point of Agg and vice versa. The set of absorbing states which can be reached is dependent on the initial state (when multiple absorbing states exist).

4.1.1. Perturbed dynamics

We now consider the perturbed process with uniform error (see Eq. 8).

Theorem 4. Suppose players have uniform action trembles in the Adoption Ratio dynamic. The stochastically stable states are those states in \(a^*_a \in \{a^*_1, \ldots, a^*_t\} \) which are associated with \(x^*_a \in \{x^*_1, \ldots, x^*_t\} \) of Agg that minimize

\[
a^*_a : \gamma_a = \min_{\beta=1, \ldots, l} \gamma_{a\beta}
\]

\(^5\)For Usage History, we need to define \(s(t) \) differently for \(t < k \). We can simply assume the average of the past \(t \) actions.

\(^6\)Note that \(s(t) \) includes the active player’s action. This is reasonable when players are presented with the aggregate statistic, but the analysis also carries through if one excludes the active player’s action from \(s(t) \).

\(^7\)Set \(\mu_{n+1} = 1 \) for completeness.
where γ_{at} is the stochastic potential:

$$\gamma_{at} = \frac{a-1}{\beta-1} r_{a,t}^* r_{p,t+1}^* + \sum_{\beta=2}^{l} r_{p,t}^* r_{\beta-1,t+1}^* , \text{with}$$

$$r_{a,p,t} = \max_{x \in \{p_r^*, p_l^*\}} \{x-\text{Agg}(x)\} \cdot p + 1$$

$$r_{2,p,t} = \max_{x \in \{p_r^*, p_l^*\}} \{\text{Agg}(x)-x\} \cdot p + 1$$

For generic games there exists a unique stable state.

The former two equations describe the maximal number of trembles (i.e., non-BR) needed to exit the basin of attraction of a given fixpoint $x_{p,t}^*$ and to enter the basin of attraction of the neighboring fixpoint $x_{p,t+1}^*$.

4.2. Usage History

In this section we shall consider the social influence process Usage History. An active player bases his decision on the time series of choices (see Eq. (7)):

$$s^{UH}(t) = \frac{\sum_{i=t-k}^{t-1} a^\nu_{act}(v)}{k}$$

Theorem 5. The unperturbed Usage History dynamic has absorbing states if 0 or 1 are fixed points of Agg or the BR of all players is independent of social influence (i.e., for all players $i \in P$ the tipping value $\mu(i) \notin [0,1]$). In the former case all 0 and all 1 are the unique absorbing states. In the latter case the unique absorbing state is the unique fixed point of Agg.

4.2.1. Perturbed dynamics. We now consider the perturbed process with a uniform error (see Eq. 8). Recall that q_j is the fraction of players with tipping value μ_j.

Theorem 6. Suppose players have uniform action trembles in the Usage History dynamic.

If the unperturbed dynamic has an absorbing state 0 (1) is stochastically stable if $r_{0.1} \geq r_{1.0}$ ($r_{1.0} \geq r_{0.1}$).

Else, let $\bar{q}_k = \sum_j q_j$. For an action profile $a_{\hat{a}} \in \{a_1, \ldots, a_j\}$ associated with fixed point $x_{\hat{a}} \in \{x_1^*, \ldots, x_l^*\}$ (in increasing order), let

$$\arg\max_{j \in \{1, \ldots, a\}} \sum_{i=1}^{n} \mu_{j} \cdot \frac{1}{1-\mu_{i}} / \left(1-\bar{q}_{j}\right)^{1-\mu_{j}} \cdot \prod_{k=2}^{j} \left(1-\bar{q}_{k-1}\right)^{-1}$$

Then the limit proportion of play of action 1 is given by

$$\lim_{k \to \infty} \lim_{t \to \infty} \frac{\sum_{i=1}^{n} a_{act}(i)}{t} = \frac{\sum_{i=1}^{n} \mu_{i} \cdot \frac{1}{1-\mu_{i}} / \left(1-\bar{q}_{i}\right)^{1-\mu_{i}} \cdot \prod_{k=2}^{j} \left(1-\bar{q}_{k-1}\right)^{-1} \cdot q_{i}}{\sum_{i=1}^{n} \frac{1}{1-\mu_{i}} / \left(1-\bar{q}_{i}\right)^{1-\mu_{i}} \cdot \prod_{k=2}^{j} \left(1-\bar{q}_{k-1}\right)^{-1} \cdot q_{i}}$$

For generic games there exists a unique maximizer of Eq. (16), say j_*. The latter formula then reduces to:

$$\lim_{k \to \infty} \lim_{t \to \infty} \frac{\sum_{i=1}^{n} a_{act}(i)}{t} = q_{j_*}$$

5. Adoption Ratio vs. Usage History: Example

We shall now formalize the example from the introduction. Consider bicycle usage and suppose that some commuters use the bicycle irrespective of its popularity, say innovators. Further, there is an early and late majority who may use the bicycle if enough others use it. Finally, there are some non-adopters who will never use a bicycle for their daily commute. In particular assume the following population shares and thresholds:

- 5% innovators, always use the bicycle for their commute to work (action 1), i.e., they play the innovation independent of social influence and hence their tipping value is ‘negative’ ($\mu_{\text{innovators}} < 0$).
- 45% early majority, who use the bicycle if at least ‘few’ use it (e.g., $\mu_{\text{early majority}} = 25\%$).
- 40% late majority, who use the bicycle if at least ‘many’ use it (e.g., $\mu_{\text{late majority}} = 75\%$).
- 10% non-adopters, who never play the innovation ($\mu_{\text{non-adopters}} > 1$).

Figure 1 shows the function Agg and the fixed points x_1^*, x_2^*, x_3^*. We invite the reader to verify that the fixed points of Agg are $x_1^* = 5\%$, $x_2^* = 50\%$, $x_3^* = 90\%$.
yield significantly different outcomes. Note that the example is generic in the following sense: We can define “close-by” distributions with the same outcome. To build intuition consider fixed point $x^*_1 = 5%$. To reach the basin of attraction of x^*_2 the time series of choices (over the last k periods) needs to be at least 25%. That is, in the last k periods, players for whom 1 is currently the BR (5% of the population) need to be activated at least 25% k-of the time. On average such a player needs to be activated at least 5 times as often as players whose BR is currently 0. That is, on average such a player needs to be activated at least 1.5 times as often as players whose BR is currently 1.\footnote{This follows from the simple calculation $(100% - 25%)/50% = 1.5.$} Since 1.5 is less than 5 it follows that the latter transition is more likely than the former.

6. Empirically discriminating between Adoption Ratio and Usage History

We here show characteristic footprints in the distribution of s^{AR} and s^{UH} for the perturbed dynamics that can be used to empirically discriminate which process is at work (as long as $x^* = 0.5$ is currently not the observed fixed point and s^{UH} has no absorbing states in the unperturbed process). It turns out that s^{AR} is not binomially distributed but s^{UH} is. In addition, the variance of the two processes are, in general, different. This enables us to empirically discriminate which process is at work and thus to inform policy interventions or marketing campaigns. We analyze the behavior of s^{AR} and s^{UH} around an interior fixed point x^* of the dynamic. We shall study the distribution of s^{AR} and s^{UH} conditional on remaining in the basin of attraction of x^*.

Distribution of s^{AR}. Suppose that $\varepsilon > 0$ is fixed. Note that within a basin of attraction a player’s BR remains constant. Then a player’s action, when activated to revise, is picked independently of the other players’ actions. Given his response function f_i, he plays his BR with probability $1 - \frac{\varepsilon}{2}$ and the other action with probability $\frac{\varepsilon}{2}$ (Bernoulli trial). That is, $p \cdot x^*$ players play d with probability $f_i = 1 - \frac{\varepsilon}{2}$ and m otherwise, and $p \cdot (1 - x^*)$ players play d with probability $f_i = \frac{\varepsilon}{2}$ and m otherwise. We thus have for s^{AR}:

$$s^{AR} \sim \frac{1}{p} \left(\sum_{i=p} B(1, 1 - \frac{\varepsilon}{2}) + \sum_{i=p} B(1, \frac{\varepsilon}{2}) \right)$$

$$\sim \frac{1}{p} \left(B(p \cdot x^*, 1 - \frac{\varepsilon}{2}) + B(p \cdot (1 - x^*), \frac{\varepsilon}{2}) \right)$$

where Eq. (20) holds since the sum of iid binomials is again binomial with the same parameter. By [BS93] there is no closed form for the distribution of a sum of binomials with different parameters, but they derive a recursive formula. For the reduced form in Eq. (19) of two binomials one easily finds for the mean of s^{AR}:

$$\mathbb{E}(s^{AR}) = x^* \cdot \left(1 - \frac{\varepsilon}{2} \right) + (1 - x^*) \cdot \frac{\varepsilon}{2}$$

$$= x^* + (1 - 2x^*) \cdot \frac{\varepsilon}{2}$$

and for the variance of s^{AR}:

$$\text{Var}(s^{AR}) = x^* \cdot \left(1 - \frac{\varepsilon}{2} \right)^2 + (1 - x^*) \cdot \frac{\varepsilon}{2} \cdot \left(1 - \frac{\varepsilon}{2} \right)$$

$$= \frac{\varepsilon}{2} \cdot \left(1 - \frac{\varepsilon}{2} \right)$$

Distribution of s^{UH}. As before, within a basin of attraction a player’s BR remains constant. Since we consider the case where the unperturbed process has no absorbing states we can assume that $\varepsilon = 0$. Then the next action (by the player activated in the next period) is given by a binomial distribution with parameter x^* (since players best respond with probability 1). The intuition, that s^{UH} follows the sum of k binomial distributions with parameter x^* is wrong, since the order of occurrence matters and thus $s^{UH}(t)$ is correlated with $s^{UH}(t + i)$ for all $i = 1, \ldots, k - 1$. By considering non-overlapping windows of length k we can recover independence and thus have that for $j = 1, 2, 3, \ldots$ $s^{UH}(k \cdot j)$ are independent Bernoulli trials with parameter x^*. Thus $s^{UH}(k \cdot t)$ is binomial distributed with parameter x^* and one finds for the mean of s^{UH}:

$$\mathbb{E}[s^{UH}(k \cdot t)] = x^*$$

and for the variance of s^{UH}:

$$\text{Var}(s^{UH}(k \cdot t)) = x^* \cdot (1 - x^*)$$

To summarize s^{AR} is not binomially distributed (for $x^* \neq 0.5$) and s^{UH} is binomially distributed. Further the variances of the two processes are, in general, different. Thus we can employ standard statistical tests to identify which process, Adoption Ratio or Usage History, is underlying a given sample of the aggregate observation data. Note that it is not necessary to have any additional information, in particular it is not necessary to know the players’ thresholds or order of activation. The first test we can use is whether the observed data is binomially distributed. If this yields a statistically significant result we are done. But if ε is very small it may be that the result of this test is not statistically significant. Then a second test can be used. The variance of Usage History depends on the fixed point (i.e., the mean) and we can use this fact to discriminate between the two processes. In particular, if the fixed point is not too close to all $- m$ or all $- d$ we can use this test. Finally, if data of the
behavior around two fixed points is available a third test can be performed. For Adoption Ratio the variance is the same around all fixed points whereas the variance for Usage History differs around each fixed point.

7. Conclusion

In this paper we have studied the dynamics of social influence. We considered two different processes of social influence. On the one hand, social influence arises from the Adoption Ratio of the agents’ actions. On the other hand, social influence arises from the Usage History of choices. We first identified the equilibria of the two processes and studied their stability in stochastic environments. We then showed that the outcomes may be very different. Thus one needs to carefully examine the specific process of social influence at hand in order to be able to control outcomes and design interventions. Returning to our example on bicycle usage discussed in the introduction the knowledge of which process is at hand may inform whether an intervention to promote the purchase of a bicycle (e.g., Cyclescheme) or an intervention to promote the usage of bicycles (e.g., Boris Bikes) is more apt.

8. ACKNOWLEDGMENTS

I thank D. Helbing, M. Maes, H. Nax, J. Ruf, B. Sandholm, P. Tarrès, H. P. Young, and various seminar participants for helpful comments.

References