Skip to Main content Skip to Navigation
Book sections

Key Passages : From statistics to Deep Learning

Laurent Vanni 1, 2 Marco Corneli 2 Dominique Longrée 3 Damon Mayaffre 1 Frédéric Precioso 4, 2
1 BCL, équipe Logométrie : corpus, traitements, modèles
BCL - Bases, Corpus, Langage (UMR 7320 - UCA / CNRS)
2 MAASAI - Modèles et algorithmes pour l’intelligence artificielle
CRISAM - Inria Sophia Antipolis - Méditerranée , Laboratoire I3S - SPARKS - Scalable and Pervasive softwARe and Knowledge Systems, UNS - Université Nice Sophia Antipolis (... - 2019), JAD - Laboratoire Jean Alexandre Dieudonné
Abstract : This contribution compares statistical analysis and deep learning approaches to textual data. The extraction of "key passages" using statitics and deep learning is implemented using the Hyperbase sofware.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03099658
Contributor : Damon Mayaffre Connect in order to contact the contributor
Submitted on : Wednesday, January 6, 2021 - 11:46:04 AM
Last modification on : Wednesday, November 3, 2021 - 6:42:19 AM

Identifiers

Collections

Citation

Laurent Vanni, Marco Corneli, Dominique Longrée, Damon Mayaffre, Frédéric Precioso. Key Passages : From statistics to Deep Learning. Domenica Fioredistella Iezzi; Damon Mayaffre; Michelangelo Misuraca. Text Analytics. Advances and Challenges, Springer, pp.41-54, 2020, 978-3-030-52679-5. ⟨10.1007/978-3-030-52680-1_4⟩. ⟨hal-03099658⟩

Share

Metrics

Record views

80