Field Theoretical Approach for Signal Detection in Nearly Continuous Positive Spectra II: Tensorial Data - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Entropy Année : 2021

Field Theoretical Approach for Signal Detection in Nearly Continuous Positive Spectra II: Tensorial Data

Résumé

The tensorial principal component analysis is a generalization of ordinary principal component analysis focusing on data which are suitably described by tensors rather than matrices. This paper aims at giving the nonperturbative renormalization group formalism, based on a slight generalization of the covariance matrix, to investigate signal detection for the difficult issue of nearly continuous spectra. Renormalization group allows constructing an effective description keeping only relevant features in the low “energy” (i.e., large eigenvalues) limit and thus providing universal descriptions allowing to associate the presence of the signal with objectives and computable quantities. Among them, in this paper, we focus on the vacuum expectation value. We exhibit experimental evidence in favor of a connection between symmetry breaking and the existence of an intrinsic detection threshold, in agreement with our conclusions for matrices, providing a new step in the direction of a universal statement.
Fichier principal
Vignette du fichier
entropy-23-00795.pdf (1.11 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03098843 , version 1 (04-08-2021)

Identifiants

Citer

Vincent Lahoche, Mohamed Ouerfelli, Dine Ousmane Samary, Mohamed Tamaazousti. Field Theoretical Approach for Signal Detection in Nearly Continuous Positive Spectra II: Tensorial Data. Entropy, 2021, 23 (7), pp.795. ⟨10.3390/e23070795⟩. ⟨hal-03098843⟩
114 Consultations
29 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More