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Abstract

Clustering is impacted by the regular increase of sample sizes which
provides opportunity to reveal information previously out of scope. How-
ever, the volume of data leads to some issues related to the need of many
computational resources and also to high energy consumption. Resorting
to binned data depending on an adaptive grid is expected to give proper
answer to such green computing issues while not harming the quality of
the related estimation. After a brief review of existing methods, a first ap-
plication in the context of univariate model-based clustering is provided,
with a numerical illustration of its advantages. The issues of a trivial
multivariate extension are discussed and a marginal-binned strategy is
proposed to estimate bivariate Gaussian diagonal mixtures.
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1 Scalable clustering for huge datasets

Today, thanks to the technological development of the last decades, it is com-
mon to work on huge datasets, which are large collections of data whose volume
(both of observations and attributes) is still growing. But, despite the enormous
statistical information conveyed, any statistical analysis, such as clustering, con-
ducted with classical methods is difficult because it requests too much time, too
much memory and too much energy. This is also in contrast with the current
eco-friendly policies of many national governments and industries which are
searching for methods able to do suitable statistical analysis without employing
complex and wasteful technologies. We want to satisfy this need, proposing a
method capable to analyse big data employing limited computational resources,
like those of a standard laptop.



For the same reasons, scalable clustering algorithms for huge datasets flour-
ished in literature during the last two decades. Some algorithms employ data-
reduction techniques, like random subsampling [9] or data-compression through
the use of sufficient statistics [14]. Other authors transform the space of analysis
[11] or examine dense data units built imposing a grid on the original data [1].
It is also possible to reduce the number of operations, adopting particular data
structure, such as trees [14] or graphs [9], or imposing some criteria [1] to prune
irrelevant clusters that, thus, exit from the computational process. In addition,
the problem of dimensionality is usually tackled down by performing clustering
in subspaces of lower dimension [2].

The objective of the paper is to introduce scalability in model-based cluster-
ing [8], a statistical approach well appreciated because it enables a theoretically
well-posed framework where formal criteria to assess the quality of the cluster-
ing are available. It is in this context that we will propose our novel method
based on binned data, which, assuming observations with values belonging to
a real space X, correspond to a reduced dataset only containing the counts of
observations in given regions of X. In practice they usually appear as soon as
it is impossible to collect data with infinite precision, like in [7] and [3], but
we will use them with a different point of view. The key idea we defend is to
group original data in order to obtain artificially binned ones and reduce the
dimensionality of the problem working with them. We first consider the uni-
variate case (where X = R) to introduce the notation and highlight, through
a numerical example, how much promising is our method. Finally, we discuss
how to extend it to the multivariate context, pointing out possible issues of triv-
ial generalizations and presenting a new marginal-binned methodology able to
cope with them in a restrictive bivariate diagonal scenario, as a final simulation
shows.

2 Binned model-based clustering approach: uni-
variate case

Let x = (z1,...,2,), with z; € X = R, a raw sample of n observations arising
from a univariate K-Gaussian mixture of density

K K

f(I, 0) = Zk:1 ﬂk¢(x;ﬂk7al%) T > Ov Zk:1 T = 15 (1)

in which uj denotes the mean of the k-th component, a,% is its variance and @ is
the vector that contains all the parameters, thus @ = (71, ..., Tx, i1, - - - K,
0%,...,0%). The key-idea is to build a grid G made of R << n cut points
(a1,...,ag) that divides the real space R into R + 1 intervals [a,_1,a.[, T =
1,...,R+ 1, setting ag = —o0 and ary; = oco. In this way, binned data are
stored in a vector y = (y1,...,Yr+1), where each component is defined as

Yr = #{xl tapo1 < < ar}- (2)

As R < n, working with binned data instead of raw ones reduces the dimen-
sionality of the problem and also proposes interesting theoretical questions.
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Figure 1: Binned estimation of a simulated 3-class mixture: logarithm of
Kullback-Leibler divergence between the true mixture distribution and the esti-
mated one for different values of R and m in function of the required computer
memory (logarithmic scale).

In fact, the binned statistical model is a multinomial one M (n,p(@)) with
p(0) = (p1(0),...,pr+1(0)), where p,.(0) = f;il f(z;0)dz. It could be proved
(result not provided here) that this model remains identifiable under certain
(and weak) conditions on the grid G.

Here is a numerical example to motivate the fundamental interest of our
proposed “binned” method, which is compared to the subsampling strategy
(depending on the subsample percentage m) on a simulation sample of n = 10°
raw data i.i.d. arising from a univariate Gaussian mixture with three compo-
nents. Binned data are created through a grid with the tuning parameter R.
An EM algorithm [4] is performed respectively with different values of R and
m (thus different candidate subsample and binned datasets). In Figure 1 it is
possible to note that the loss of information (measured by the Kullback-Leibler
divergence) induced by binning is much lower than that obtained with subsam-
pling, even negligible if we use a grid moderately dense. This is in addition
accompanied by an evident gain in terms of computer memory. Such promising
results could be also obtained (but not displayed here) concerning gain in terms
of algorithm running time or model selection behaviour.

3 Issues of a trivial multivariate extension

Once analyzed the univariate case, extending the method to a D-variate situ-

ation seems straightforward. Let x = (z1,...,%,), ; € X = R” a sample
arising from a multivariate K-Gaussian mixture of density
K K

f(2;0) = > ) med(@s g, X)) 7w >0, Do T =1, (3)



where, for each component k = 1,..., K, pur = (ug1,...,4xp) is the vector of
means and Yy, is the variance-covariance matrix, with diagonal (02,,...,0%,).
It is immediate to define a multivariate grid G building it as a Cartesian prod-
uct between D one-dimensional grids. It means that G = G; x ... x Gp,
where each grid G4 has R, cut points (agi,...,aqr,). Assuming that R; = R,
for d = 1,...,D, we can define a (R + 1)P-dimensional binned vector y =
(Y15 -+ Y(ry1)P), where, for r =1,... (R+ 1)P:

Yy = #{(I:Z 14z + ZZ‘Q(R"' 1) + Zig(R—f— 1)2 ot ZZ‘D(R-F 1>D_1 = ’I“},
with zid:lifadlgxid<ad(l+1), [=0,...,R, Vd:].,...,D,

where ago = —00 and ag(ry1) = oo foreach d =1,..., D.
Despite the relatively simple formalization, using such a grid is not feasible.
Indeed, the following issues arise:

e It is impossible to obtain a manageable amount of binned data because the
number of non-empty bins increases exponentially increasing the number
of variables (proof not provided here).

e The related EM algorithm employs several multidimensional numerical
integrations. Thus, it would become too complex in terms of computing
time.

Consequently, we propose below a specific alternative strategy (called " marginal-
binned”) to estimate multivariate diagonal mixtures not affected by these prob-
lems. For simplicity, we will illustrate it in a restrictive bivariate scenario, where
X = R2, even if the proposal is more general.

4 A marginal-binned strategy for bivariate di-
agonal mixtures

Let consider a bivariate (D = 2) diagonal Gaussian mixture with K components.
Thus, the variances X in (3) are diagonal and the vector of parameters is simply:

2 2 2 2
0= (7T1""77rK7/’[/117'"’l’LKl’Ull?"'70K17M127"'7MK270-12’"'7O-K2)'

™ g a2

Denoting with x; and x5 the first and the second component of a sample
x = (1,...,2T,), ©; € R% and adopting a square grid G = G; x G5 with
R; = Ry = R, we define:

e y, : binned data vector of x; under Gy;
e y, : binned data vector of xo under Gs.

It means that, for each d = 1,2, y; = (Ya1, - - -, Yd(r+1)), where each component
is defined as yqr = #{zai : ag(r—1) < Tai < agr}. We name y; and y, as



the marginal counts of y. By construction, they are equivalent to the counts
obtained by binning the univariate marginals of the joint distribution. It can
be observed that each of them is a binned data vector arising from a univariate
mixture with density fq(zq4;04) = Zszl k(T a; ik, 05 y), With parameter 64 =
(71—7 ad)'

Given the one-dimensional binned log-likelihoods ¢1(01;y,) and ¢3(02;y5),
it is possible to obtain an estimate of 8 maximizing their sum cl(0;y;,ys) =
01(01;y,) +¢2(02;y,). This method is not new in literature: in fact, it is known
as composite likelihood estimation, firstly introduced in [6], who also gives in-
teresting theoretical properties of the estimators obtaining by maximizing the
composite likelihood cl(0;y4,y5), like consistency and asymptotic distribution.
Important contributions are given in [5] and [12], who furnished, in a composite
likelihood framework, a specific formulation of the EM algorithm and an ap-
plication with binned data, respectively. In a mixture model context, a similar
approach is followed by [10], but in a problem involving discrete data, with a
more complex formulation and without taking into account the computational
and memory issues mentioned in Section 3.

Combining the ideas contained in [5] and [12], we developed a new marginal-
binned EM algorithm maximizing cl(0;y,,y,) (details not displayed here) and
we tried it on simulated data sets of size n = 10°, generated by different bivari-
ate diagonal mixture models with, for simplicity, two components. In particular,
it is interesting to show results obtained in a difficult scenario, where the two
components are not well separated: this is useful to illustrate the goodness of
the proposed methodology. These ones are depicted in Figure 2, where the 0.95
density ellipses for the real and the estimated densities (with R = 40) of the
two components are shown. It is possible to note that they are very close, as
well as the respective means, denoting a good quality of estimation, despite the
difficulty of the situation. The outcomes regarding time and memory perfor-
mances confirm the results of the univariate simulation presented in Section 2,
thus they are not displayed here.

5 Ongoing works

The depicted methodology has proved to be efficient both from the point of view
of statistical quality and computational resources management. But, some prob-
lems remain open. Firstly, it is impossible to estimate non-diagonal mixtures
using only marginal counts. However, we wonder if it is possible to recover an
acceptable trade-off between computational savings and clustering quality using
our marginal-binned strategy. In the section dedicated to the multivariate sce-
nario we did not mention the problem of model selection: in [13] it is possible to
find some choice criteria specific for composite likelihood estimations but their
calculation could be too burdensome. So, it is important to find a criterion
demanding a lighter computational effort. Finally, the crucial point of the work
is grid selection. We aim to find a criterion able to select the grid providing an
optimal estimation (in terms of statistical quality) without neglecting the main
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Figure 2: 0.95 density ellipses and means for the two components of the real
density mixture (in red) and of the estimated one (in black). In background,
the levelplot of the true density.

purpose of this methodology: saving energetic resources.
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