Porphyrin-based hybrid silica-titania as visible-light photocatalyst
Julien Mahy, Carlos Paez, Carole Carcel, Catherine Bied, Andrew Tatton, Christian Damblon, Benoît Heinrichs, Michel Wong Chi Man, Stéphanie Lambert

To cite this version:

HAL Id: hal-03096440
https://hal.archives-ouvertes.fr/hal-03096440
Submitted on 5 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Porphyrin-based hybrid silica-titania as visible-light photocatalyst

Julien G. Mahy a,*, Carlos A. Paez a, Carole Carcel b, Catherine Bied b, Andrew S. Tatton c, Christian Damblon a, Benoît Heinrichs a, Michel Wong Chi Man b, Stéphanie D. Lambert a

a Department of Chemical Engineering – Nanomaterials, Catalysis & Electrochemistry, University of Liège, B6a, Quartier Agora, Allée du six Août 11, 4000 Liège, Belgium

b Institut Charles Gerhardt Montpellier, UMR-5253, ENSCM, Université Montpellier, CNRS, 8 Rue de l’École Normale, 34296 Montpellier, France

c Structural Biological Chemistry Laboratory, University of Liège, Liège, Belgium

Keywords: Sol-Gel process; photocatalysis; bridged silsesquioxanes; p-nitrophenol degradation; hybrid silica-titania

Abstract

A silylated porphyrin derivative is co-hydrolyzed with Ti(OiPr)4 to produce a hybrid TiO2 photocatalyst, and three different ratios between porphyrin and TiO2 are made. In this way, the porphyrin fragments are held in the resulting matrix through strong Si-O-Ti covalent bonds to limit porphyrin leaching. Thanks to its photoactive character the porphyrin fragment can act as an actuator for the TiO2 to degrade organic pollutants using light from ultra-violet to the visible range. The photocatalysts are synthesized using an easy aqueous route allowing “green conditions” for synthesis. For comparative purposes, the corresponding pure TiO2 and a grafted catalyst are also synthesized and studied. For all samples, a mixture of anatase/brookite TiO2 is obtained, resulting in crystalline materials with low temperature synthesis. The three porphyrin-doped samples prepared in water prove to be efficient photocatalysts for the degradation of p-nitrophenol (PNP) under visible light, and an improvement in photoactivity is observed when the amount of porphyrin increases. The photocatalyst activity is very stable over time as the PNP degradation remains nearly constant after 264 h of testing, showing no leaching of porphyrin. In recycling tests, the grafted sample presents bond breaking between POR-Si and TiO2 and a decrease in photoactivity towards pure TiO2 sample activity. A comparison with the commercial Evonik P25 catalyst shows that the porphyrin-doped TiO2 is nearly 6 times more photoactive under visible light for PNP degradation.

1. Introduction

Environmental protection has become a major issue for our planet and this increases the urgency of finding and designing innovative materials that can limit and minimize environmental pollution. In this context, heterogeneous photocatalysis based on the illumination of semiconductor oxides (TiO2, ZnO, SnO2) or chalcogenides (CdS, ZnS) is a subject that has been widely studied for decades [1–4] and is a rapidly developing area of research with high potential for industrial applications [5], mainly in the case of TiO2 [6–8] such as dye-sensitized solar cells [9], electrochromic displays [10] and lithium-ion batteries [11]. As has been explained previously, when the semiconductor oxide is illuminated by photons of energy (hv) at or above the energy of the band gap (Eg), there is absorption of photons and creation of electron-hole pairs in the solid materials [6–8] which can degrade organic pollutants [5,7,8,12–14].

TiO2 was first reported to be an efficient photocatalyst for water splitting to produce hydrogen [15] and is the most prevalent photocatalyst that is used to decompose organic pollutants [6,12,14,16,17]. It represents a promising candidate photocatalyst thanks to its chemical inertness, non-toxicity, photostability and costeffectiveness [18,19]. Moreover it can be carefully designed for many other applications [20]. A Sol-Gel process is commonly used to prepare TiO2 in the form of a powder or film under mild synthesis conditions, and thus the anatase phase is selectively prepared, rather than the rutile phase [13,21–25]. It is well-known that the anatase phase has a higher activity than the rutile phase [26]. Anatase TiO2 has a band
gap energy, E_g, equal to 3.2 eV, and when it is illuminated electrons are photo-induced from the valence band to the conduction band if the radiation has a wavelength $\lambda<387$ nm, which corresponds to UVeA radiation. However, when illuminated by solar light only a small portion of the radiation (2 to 3%) is used for activation [27]. For economic and ecological reasons much effort is being devoted to developing the efficient use of solar light, targeting an increase in the sensitivity of TiO$_2$ to visible light [28–30].

In numerous investigations various metals [1,22,28,31–33], alone or in combination with other semiconductors [34] and non-metallic elements [28,35–37], have been used to activate TiO$_2$ with visible light. For example, N-doped TiO$_2$ has been investigated and was shown to be significantly and photocatalytically active under visible light [35,38]. Moreover, dye photosensitization [39–41] in particular has been used to dope TiO$_2$ with photosensitive molecules such as porphyrins [40,41]. Porphyrins are photoactive compounds which are excited by the absorption of visible light causing the transfer of an electron from the HOMO (Highest Occupied Molecular Orbital) level to the LUMO level (Lowest Unoccupied Molecular Orbital). Photosensitization of TiO$_2$ results from the transfer of a photo-induced electron of the LUMO level of the porphyrin into the conduction band of TiO$_2$ [42–44]. Electrons of the TiO$_2$ conduction band react with electron-accepting molecules such as O$_2$. In the last couple of years, porphyrin derivatives have been explored for several fields. When incorporated into hybrid silica nanoparticles and complexed with Zn, they have been used as 2-photon photosensitizers for biomedical applications (imaging, drug delivery and particle degradation) [45,46]. They have also been used as photocatalysts [47] and electrocatalysts [48]. When complexed with Fe(III) ions, porphyrins could catalyze the epoxidation of cyclooctene and also the hydroxylation of alkanes with iodosobenzene (PhIO) [49].

Typically, 5,10,15,20-tetakis[p-(carboxy)phenyl]porphyrin (TCPP), which is composed of a porphyrin core and four meso-carboxyphenyl groups (C$_6$H$_5$COO$^-$), is often used as a TiO$_2$ photosensitizer [42,50,51] and is commonly grafted onto the surface of the TiO$_2$ particles via carboxylic groups. In the case of photocatalytic applications in aqueous media this sort of grafting method is not appropriate as the acidic or basic media may cause the cleavage of Ti-O-C bonds, leading to the desorption and leaching of TCPP from the TiO$_2$ matrix [52].

One way to overcome this drawback consists of binding TiO$_2$ to organics through strong covalent Ti-O-Si bonds. There are two approaches to achieve this: a cogelation of a TiO$_2$ source with an organosilane, or by grafting the latter onto the surface of TiO$_2$. Many commercial organotrialkoxysilanes are available and a coupling silane such as APTES (3-aminopropyltriethoxysilane) is easily grafted onto TiO$_2$ allowing it, for example, to bind biological substrates. This was demonstrated by the stepwise post-grafting of Streptavidin to Biotin/APTES-grafted TiO$_2$ [53]. Besides the APTES-derived materials, several organosilanes were also designed for cogelation with TiO$_2$. Recently P-doping based hybrid materials were reported to be efficient UV–vis photocatalysts [54,55] which when complexed with silver ions significantly increased the photocatalytic degradation of organic pollutants [29].

In this context, appropriately designed photoactive organoalkoxysilanes like silylated porphyrins can be used for sol-gel cogelation with titanium alkoxide to generate Ti-O-Si bonds which will hold the porphyrin fragment more tightly than the Ti-O-C bonds of TCPP grafted onto the surface of TiO$_2$ [52].

In this work we, for the first time, explore the possibility of covalently binding TiO$_2$ to a silylated porphyrin, 5,10,15,20-tetakis[p-(3-N-triethoxysilylpropyleideo) phenyl]porphyrin (POR-Si), with the aim of sensitizing TiO$_2$ to low energy light. The materials are synthesized by cogelification of POR-Si with Titanium IV Tetraisopropoxide, Ti(O-iPr)$_4$ (TTIP) and are produced following an aqueous synthetic route. Three molar ratios between porphyrin and TiO$_2$ will be assessed. A grafted sample, as is the case in most porphyrin-doped catalysts in the literature [50,56–60], is also synthesized for comparisons of activity and durability. The
performance of these materials is assessed for the degradation of p-nitrophenol (PNP, $\text{C}_6\text{H}_5\text{NO}_3$) under UV/visible light and low energy light. The corresponding porphyrin-free TiO$_2$ materials are also synthesized and tested for comparison. A comparison with commercial Evonik P25 will be made, as is a stability study of the catalyst photoactivity over 264 h of operation.

2. Materials and methods

2.1. Synthesis of silylated porphyrin material

The synthesis of 5,10,15,20-tetakis[p-(3-N-triethoxysilyl)propylureido]-phenyl]-porphyrin (POR-Si) is made following published methods [61,62] in three steps represented in Fig. 1. The complete synthesis protocol is described in Supplementary Materials.

2.2. Synthesis of pure and porphyrin-based TiO$_2$ materials

The process used for the cogelification of TiO$_2$ with POR-Si is an aqueous route using mostly water as solvent. The doping molar ratios, $n_{\text{POR-Si}}/n_{\text{TiO}_2}$, are equal to 0.001, 0.003 and 0.006, with $n_{\text{POR-Si}}$ representing the molar amount of POR-Si (mol) in the sample and n_{TiO_2}, corresponding to the molar amount of TiO$_2$ (mol) in the sample. For comparison, the corresponding blank TiO$_2$ material with no POR-Si is also synthesized in the same conditions and is called pure TiO$_2$. For comparison with other works [50,56–60], a grafted sample is also synthesized with a doping molar ratio of 0.006. When required, experiments are carried out with standard high vacuum and Schlenk techniques under a N$_2$ atmosphere using dry solvents which are degassed and cannula- or syringe-transferred.

Pure and POR-Si TiO$_2$ samples are synthesized using titanium (IV) tetraisopropoxide (TTIP, $>97\%$, Sigma-Aldrich), nitric acid (HNO$_3$, 65\%, Merck), isopropanol (i-PrOH, 99.5\%, Acros Organics), POR-Si and distilled water as starting materials.

2.2.1. Pure TiO$_2$

Distilled water (50 mL) is acidified with HNO$_3$ to $pH=1$. In another vessel, TTIP (7 mL) is mixed with i-PrOH (3 mL), and the solution is stirred at room temperature for 30 min [14]. The mixture produced is added to the acidified water under vigorous stirring and maintained for 4 h at a temperature of 80 °C [14]. A light blue transparent liquid sol is obtained, which is dried under an ambient air flow to obtain a xerogel [14]. The xerogel is crushed to give a white-yellow powder of TiO$_2$ catalyst [14]. The powder is dried at 100 °C for 1 h.

2.2.2. Doped TiO$_2$ (TiO_2/P_x samples)

The same procedure as for pure TiO$_2$ is used, except that POR-Si (59.15, 118.3 mg or 236.6 mg depending the molar ratio) is added to the “TTIP + i-PrOH” mixture. After stirring, this mixture is added to acidified water. After reaction time, a dark liquid sol is obtained and dried under an ambient air flow to obtain a xerogel, which is crushed resulting in a violet powder of POR-Si covalently bonded to the TiO$_2$ catalyst. The powder is dried at 100 °C for 1 h. The doped samples are named TiO$_2/P_x$ where x is equal to 1, 3 or 6, in reference to the doping molar ratio values (0.001, 0.003 or 0.006). The amount of dopant remains low in order to limit the cost of the catalyst.

2.2.3. Grafted sample

For POR-Si grafted TiO$_2$ [50,56–60], 1 g of pure TiO$_2$ is mixed with 125 mg of POR-Si in 500 mL of ethanol (EtOH, Merck, $>99\%$). The mixture is stirred for 48 h, then the suspension is
centrifuged at 10,000 rpm for 10 min. The sample is washed in 50 mL of EtOH then in 50 mL of ultra-pure water. The sample is dried under an ambient air flow to obtain a xerogel, which is crushed resulting in a green powder. The obtained sample is denoted as TiO2/P6-Grafted.

2.3. Sample characterization

1H, 13C and 29Si NMR in solution are recorded on a Bruker instrument (AVANCE-III 400) and are referenced to solvent signals (DMSO-d6: δ=2.50 ppm). 29Si solid state NMR spectra are obtained from a Bruker Avance I spectrometer at an operating 1H Larmor frequency of 400.13 MHz (B0=9.4 T), corresponding to a 29Si Larmor frequency of 79.49 MHz. All experiments are obtained using a Bruker HXY 4mm probe operating in double resonance mode, and at a MAS frequency of 10 kHz. 29Si cross-polarisation experiments are performed using a ramped-contact (50% to 100% amplitude) for a duration of 5 ms, and a recycle delay of 1 s.

Nitrogen adsorption–desorption isotherms are measured at 77 K using a Micromeritics ASAP 2420 analyzer, after outgassing for 24 h at room temperature, and provide the specific surface area by the BET method, \(S_{\text{BET}} \), and the specific micropore volume is calculated using Dubinin–Radushkevich theory, \(V_{\text{DR}} \) [63].

X-ray diffraction patterns are recorded with a Siemens D5000 powder diffractometer (Cu-Kα radiation). The size of the TiO2 crystallites, \(d_{\text{XRD}} \), is calculated from XRD measurements by the Scherrer equation (Eq. (1)) [14]:

\[
d_{\text{XRD}} = 0,9\lambda/(B \cos \theta)
\]

where \(B \) is the full-width at half-maximum of the peak after correction of the instrumental broadening (rad), \(\lambda \) is the wavelength (nm) and \(\theta \) is the Bragg angle (rad) [27,64].

The reparation of the crystallographic phases is estimated with the Rietveld method using “Profex” software [65]. The amount of crystalline phase is estimated using a CaF2 internal standard (calcium fluoride, Sigma-Aldrich, anhydrous powder, 99.99% trace metal basis) also using “Profex” software [66].

The sample optical properties are evaluated using diffuse reflectance spectroscopy measurements in the region of 300–800 nm with a Varian Cary 500 UV–Vis-NIR spectrophotometer, equipped with an integrating sphere (Varian External DRA-2500) and using BaSO4 as reference [67]. The UV–Vis spectra recorded in diffuse reflectance (\(R_{\text{sample}} \)) mode are transformed by using the Kubelka–Munk function (Eq. (2)):

\[
F(R_\infty) = (1 - R_\infty)^2 / 2 R_\infty
\]

where \(R_\infty \) is defined as \(R_\infty = R_{\text{sample}}/R_{\text{reference}} \) [27,67–69], with \(R_{\text{reference}} \) the diffuse reflectance measured for the BaSO4 reference. To compare to each other, all spectra are normalized to 1.0 by dividing each spectrum by its maximum intensity [27,70]. Using the well-known equation (Eq. (3)):

\[
(F(R_\infty)h\nu)^{1/m} = C (h\nu - E_g)
\]

where \(C \) and \(m \) are constants, which depend on the optical transitionmode. The direct and indirect optical band-gap values \(E_{g,\text{direct}} \) (eV) and \(E_{g,\text{indirect}} \) (eV) are obtained by plotting, respectively, \((F(R_\infty)h\nu)^2 \) and \((F(R_\infty)h\nu)^{1/2} \) as a function of the photon energy \(h\nu \) and by determining the intersection of the linear part of the curve and the x-axis [27,67,71].

The UV/vis spectrum of the ethanolic solution of POR-Si is obtained using a Genesys 10S UV/vis (Thermo Scientific). Fourier transform infrared (FT-IR) spectra in the region of
500–4000 cm$^{-1}$ are recorded at room temperature with a Spectrum Equinox 55 from Bruker. All catalyst powders are dispersed in KBr (1 wt % for all samples).

2.4. Photocatalytic tests

The photocatalytic activity of all the samples is evaluated by monitoring the degradation of p-nitrophenol (PNP) after 0, 5, 8 and 24 h, in triplicate. For each test, the degradation percentage of PNP, D_{PNP}, is evaluated following Eq. (4) [14,67]:

$$D_{\text{PNP}}(\%) = \left(1 - \frac{[\text{PNP}]}{[\text{PNP}]_0}\right) \times 100$$

where $[\text{PNP}]_i$ represents the residual concentration of PNP at time $t = i$ h and $[\text{PNP}]_0$ represents the initial concentration of PNP at time $t = 0$ h.

The experimental procedures are performed similarly to those of reported literature [27,72]. The residual concentration of PNP is measured by UV/Vis spectroscopy (GENESYS 10S UV–Vis from Thermo Scientific) at 318 nm. Each synthesis is made three times and, for each of these three syntheses, three flasks with catalyst are exposed to light to calculate the PNP degradation (nine PNP degradation tests measured overall), one is exposed to light without catalyst to evaluate PNP natural decomposition under UV/visible light and one is kept in the dark to evaluate PNP adsorption on the catalyst [14,67]. In each flask, the initial concentrations of catalyst (if present) and PNP are equal to 1 g L$^{-1}$ and 10$^{-4}$ M respectively. Experiments are conducted in test tubes fitted with a sealing cap [14,67]. These tubes are placed in a cylindrical glass reactor with a halogen lamp in the center. The halogen lamp has a continuous spectrum from 300 to 800 nm (300 W, 220 V), which is measured with a Mini-Spectrometer TM-UV/vis C10082MD from Hamamatsu [14,67]. The reactor is maintained at a constant temperature (20 °C) by a cooling system, operating with recirculating water. The lamp is cooled by a similar system. Aluminum foil covers the outer wall of the reactor to prevent any interactions with the room lighting [14,67]. The reactor is maintained at a constant temperature (20 °C) by a cooling system, operating with recirculating water. The lamp is cooled by a similar system. Aluminum foil covers the outer wall of the reactor to prevent any interactions with the room lighting [14,67]. The volume of each flask is equal to 10 mL, stirred by a magnetic stirrer. Each catalyst is tested under UV/visible light (the halogen lamp) and under low energy light (the halogen lamp is covered by an UV filter, which removes the wavelengths <390 nm) [14,67]. Commercial Evonik P25 catalyst is also assessed as reference material for comparison.

2.5. Durability study

To test the stability of the photoactivity of samples and the stability of the porphyrin, photocatalytic recycling tests are made on all samples under UV/visible light and under visible light. The same protocol as explained in the above paragraph (Section 2.4) is performed on all catalysts. After this, the samples are recovered by centrifugation (10 000 rpm for 1 h) followed by drying at 120 °C for 24 h. A total of 10 photocatalytic tests as described above are applied to the re-used catalysts. So, each tested catalyst undergoes eleven catalytic tests (264 h of operation), and a mean PNP degradation over the three recycling tests is then calculated.

For the highest porphyrin-loaded sample (TiO$_2$/P6), after the eleven photocatalytic cycles the recovered catalyst is characterized by diffuse reflectance spectroscopy measurement and 29Si NMR to check that porphyrin is still present. A macroscopic observation of the color of the photocatalyst samples is also made to ensure that no discoloration happens.

3. Results and discussion

3.1. Syntheses of silylated porphyrin
5,10,15,20-tetrakis[p-(3-N-triethoxysilylpropylureido)phenyl]-porphyrin (POR-Si) is synthesized in three steps (Fig. 1) starting from the synthesis of POR-NO$_2$ which is obtained from pyrrole and p-nitroformaldehyde at a 17% yield. The transformation of POR-NO$_2$ into POR-NH$_2$ is obtained by reduction with tin(II) chloride in water and concentrated HCl (yield: 31%). Reaction of the aminoporphyrine (PORNH$_2$) with 3-isocyanatopropyltriethoxysilane produces POR-Si (69%).

Fig. 1. Synthesis of POR-Si in three steps. More information on the synthesis in Supplementary Materials.

3.2. Synthesis and characterization of the materials

Five materials are prepared by the sol-gel process following the aqueous procedure as described above in section 2.2.: one pure TiO$_2$, three porphyrin-doped TiO$_2$ samples (TiO$_2$/P1, TiO$_2$/P3 and TiO$_2$/P6) and one material obtained by grafting POR-Si onto pure TiO$_2$ (TiO$_2$/P6-Grafted).

3.2.1. X-ray diffraction of the powdered materials

X-ray diffractogram of the five materials together with anatase (A) and brookite (B) diffractograms are presented in Fig. 2.
Of the five materials, it appears that all samples present crystalline TiO\textsubscript{2} materials as diffractograms exhibit anatase and brookite peaks. The addition of POR-Si has no influence on the crystallinity of the resulting TiO\textsubscript{2} materials as all patterns are quite similar. An estimation of the phase repartition is made with Profex software [65] and calibration with CaF\textsubscript{2} to obtain the crystalline and amorphous fraction [66], all the results are depicted in Table 1; in each aqueous material synthesis, approximately the same (distribution value ± 5\%) phase repartition is observed: the anatase phase is the main crystalline phase corresponding to 65–70\% of the samples, the brookite phase amount is around 5\% and the amorphous fraction corresponds to 25–30\%. The addition of porphyrin therefore does not modify the phase repartition and it is possible to obtain high crystalline materials with a low temperature treatment (T°<150 °C).

From Eq. (1), an estimated value of TiO\textsubscript{2} crystallite size is calculated (d_{XRD} in Table 1). The size of TiO\textsubscript{2} crystallites is similar in all samples, between 4 and 6 nm.

<table>
<thead>
<tr>
<th>Samples</th>
<th>S_{BET} (m2g-1)</th>
<th>V_{DR} (cm3g-1)</th>
<th>d_{XRD} (nm)</th>
<th>$E_{g,direct}$ (eV)</th>
<th>D_{PNP} under UV/visible (%)</th>
<th>D_{PNP24} under visible (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO\textsubscript{2}</td>
<td>± 5</td>
<td>± 0.01</td>
<td>± 1</td>
<td>3.28</td>
<td>50 ± 3</td>
<td>20 ± 3</td>
</tr>
<tr>
<td>TiO\textsubscript{2}/P1</td>
<td>180</td>
<td>0.09</td>
<td>4</td>
<td>52 ± 3</td>
<td>28 ± 3</td>
<td></td>
</tr>
<tr>
<td>TiO\textsubscript{2}/P3</td>
<td>180</td>
<td>0.09</td>
<td>6</td>
<td>55 ± 3</td>
<td>35 ± 3</td>
<td></td>
</tr>
<tr>
<td>TiO\textsubscript{2}/P6</td>
<td>180</td>
<td>0.09</td>
<td>5</td>
<td>61 ± 3</td>
<td>65 ± 3</td>
<td></td>
</tr>
<tr>
<td>TiO\textsubscript{2}/P6-Grafted</td>
<td>178</td>
<td>0.09</td>
<td>4</td>
<td>51 ± 3</td>
<td>30 ± 3</td>
<td></td>
</tr>
<tr>
<td>P25</td>
<td>55</td>
<td>0.02</td>
<td>22</td>
<td>3.16</td>
<td>80 ± 3</td>
<td>12 ± 3</td>
</tr>
</tbody>
</table>

S_{BET}: specific surface area determined by the BET method; V_{DR}: specific micropore volume determined by the Dubinin–Raduskevitch theory; d_{XRD}: mean diameter of TiO\textsubscript{2} crystallites measured by the Scherrer method; $E_{g,direct}$: the direct optical band-gap values calculated by using the transformed Kubelka–Munk function; D_{PNP}: the degradation percentage of PNP after 8 h of illumination; D_{PNP24}: the degradation percentage of PNP after 24 h of illumination.

3.2.2. Textural properties of TiO\textsubscript{2} based catalysts

The textural properties of the five materials are listed in Table 1 and the nitrogen adsorption-desorption isotherms are presented in Fig. 3.
All samples exhibit both isotherms of type I, characteristic of a microporous solid from the BDDT classification [63]. A sharp increase at low \(p/p_0 \) values followed by a plateau is observed, with \(S_{BET} \) values around 180 m\(^2\) g\(^{-1}\).

The addition of POR-Si has no influence on the textural properties of pure TiO\(_2\) materials.

3.2.3. Optical properties of TiO\(_2\) based catalysts

The UV/vis spectrum (Fig. 4) of an ethanolic solution of POR-Si shows absorption peaks at 425, 520, 558, 598 and 654 nm corresponding to the Q bands and Soret band of POR-Si [73].

The evolution of the normalized Kubelka–Munk function \(F(R_o) \) with wavelength, \(\lambda \), is presented in Fig. 5 for all the aqueous-made TiO\(_2\) materials. For pure TiO\(_2\), the maximum of absorption occurs in the UV region starting from 390 nm, while for porphyrin-doped TiO\(_2\) samples absorption peaks are also observed in the visible region indicating the presence of
porphyrin in the TiO₂ material. The absorption peak intensities increase when the content of POR-Si increases in the samples (Fig. 5) from TiO₂/P1 to TiO₂/P6.

Fig. 5. Normalized Kubelka–Munk function \(F(R\infty)\) calculated from DR-UV–Vis spectra for pure TiO₂ (▲), TiO₂/P1 (■), TiO₂/P3 (♦), TiO₂/P6 (●) and TiO₂/P6-Grafted (♠) samples.

For the grafted sample (TiO₂/P6-Grafted), absorption in the visible range is also observed, but the absorption peak positions are different from those of doped samples. These are much more similar to the peaks observed from the POR-Si ethanolic solution (Fig. 4). These differences in absorption spectra can result from a different bonding between PORSi and TiO₂. In the case of the TiO₂/P6-Grafted sample, POR-Si and TiO₂ materials can be linked with Ti-O-C bonding as found in other cases [50,56–60], leading to a small modification of light absorption by the porphyrin, as observed previously [42,50]. The grafted sample absorption is quite high as the porphyrin is located only on the surface of TiO₂, in contrast to the doped samples where porphyrin could be also anchored in the core of the material. This results from a different synthesis mode (grafting vs. cogelation). Moreover, macroscopically, the colors of the doped and grafted samples are different, violet and green respectively, obtaining different absorption spectra is therefore logical.

The direct and indirect band gaps are calculated for pure sample (Table 1) but it is not possible to calculate band gaps for porphyrindoped TiO₂ samples due to their great absorption in visible region. This visible region absorption can indicate that this material will be efficient under visible light (see below photocatalytic Section 3.2.6.).

3.2.4. FT-IR studies

For all materials, the FT-IR spectra between 500 and 4000 cm⁻¹ exhibit quite similar vibration peaks at 3300 cm⁻¹ and between 1300 and 1700 cm⁻¹, corresponding, respectively, to the vibration of hydroxyl groups and water molecules adsorbed on the TiO₂ surface (Fig. 6) [42]. The FT-IR spectra for pure TiO₂, TiO₂/P3 and TiO₂/P6 samples are represented in Fig. 6, but TiO₂/P1 and TiO₂/P6-Grafted samples are not shown as their adsorption spectra are exactly the same as the pure TiO₂ sample.
Fig. 6. FT-IR spectra for pure TiO$_2$ (▲), TiO$_2$/P3 (♦) and TiO$_2$/P6 (●) samples. Red arrow denotes the peak around 1370 cm$^{-1}$ (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

The pure TiO$_2$ and TiO$_2$/P3 FT-IR spectra present no appreciable differences owing to the low amount of POR-Si in the samples (molar ratio POR-Si/TiO$_2$ equal to 0.003), no characteristic peak is observed on the FT-IR spectra, as previously reported with low concentrations of porphyrin [42,73]. For the TiO$_2$/P6 sample, a peak around 1370 cm$^{-1}$ can be observed which could correspond to the porphyrin. The FT-IR spectrum of POR-Si, which is represented in Fig. 7, presents the same peak at 1370 cm$^{-1}$. In this case, the amount of POR-Si is the highest of the study and so could be detected with FTIR.

Fig. 7. FT-IR spectra for POR-Si material. Red arrow denotes the peak around 1370 cm$^{-1}$ (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

3.2.5. Solid state NMR studies
In our study, NMR measurement seems the most sensitive characterization to determine the bonding between TiO$_2$ and porphyrin.
The ^{29}Si CP-MAS solid state NMR experiments performed for PORSi, the porphyrin-doped TiO$_2$ samples and the grafted sample are presented in Fig. 8.

The relatively narrow lineshape observed for POR-Si indicates that the silicon environment is relatively crystalline, and the isotropic chemical shift at approximately -47 ppm is indicative of a T° [RSi(OEt)$_3$] silicon environment with no hydrolysis and no condensation at the silicon [74,75], where Tn denotes the rate of condensation at the silicon atom and where R denotes an organic group, corresponding in this case to the porphyrin core.

In contrast, the porphyrin-doped TiO$_2$ sample spectra exhibit broad peaks at around -58 ppm and -68 ppm. The peak at -58 ppm corresponds to a T2 configuration silicon site [RSi(OEt)$_1$(OTi)$_2$] [76] whereas the peak at -68 ppm corresponds to a completely condensed T3 configuration [RSi(OTi)$_3$] [76,77]. The broadness of the chemical shifts indicates that the silicon is amorphous. This result demonstrates the incorporation of POR-Si in TiO$_2$ and is typical in the aqueous pathway (TiO$_2$/Px samples). The signals for Si-O-Ti bonds seem to increase when the amount of POR-Si increases in the three samples.

For TiO$_2$/P6-Grafted sample, it is noteworthy that the signal to noise ratio is significantly lower than the other doped TiO$_2$ samples, indicating that the amount of silicon present is lowest in this sample. When the POR-Si is grafted, the ethanolic grafting solution is still colored after 48 h due to unreacted POR-Si, the grafted amount is probably lower than the ratio $n\text{POR-Si}/n\text{TiO}_2$ of 0.006. The peak at -47 ppm is relatively narrow and is of a similar chemical shift to that of POR-Si, therefore this peak may be due to POR-Si chemisorbed on TiO$_2$ with Ti-O-C bonding indicative of a T° [RSi(OC)$_3$] silicon environment [74]. This bonding is observed with “classical” grafting of porphyrin on catalysts [50,56–60].

![Fig. 8. ^{29}Si CPMAS solid state NMR spectra of POR-Si, TiO$_2$/P1, TiO$_2$/P3, TiO$_2$/P6, TiO$_2$/P6-Recycled and TiO$_2$/P6-Grafted samples.](image)

3.2.6. Photocatalytic activity

The photocatalytic activity of the five materials is given in Table 1 and Fig. 9 after 24 h under low energy light (D_{NPNP24}).

Pure TiO$_2$ degrades 50% of PNP after 8 h under UV/visible light (Table 1). Compared to pure TiO$_2$, porphyrin-doped TiO$_2$ samples show a slightly enhanced activity under UV/visible light: 52% for TiO$_2$/P1, 55% for TiO$_2$/P3, 61% for TiO$_2$/P6 and 51% for the
TiO$_2$/P6-Grafted sample. These improvements are more striking under low energy light (Fig. 9), especially for the significantly increased photoactivity for TiO$_2$/P6 of up to 65% compared to 20% for the porphyrin-free material (pure TiO$_2$ sample). This result demonstrates the important role of the porphyrin fragment in the material which enhances catalytic degradation under visible light. The TiO$_2$/P6-Grafted sample has activity that is more similar to TiO$_2$/P1 than TiO$_2$/P6, probably due to the lower amount of POR-Si grafted on the TiO$_2$ surface as observed with NMR measurements (Fig. 8).

The visible absorption observed in reflectance measurements (Fig. 5) is also demonstrated in the photocatalytic activity by the increased degradation under visible light compared to pure TiO$_2$. Evonik P25 photocatalyst is also tested for the degradation of PNP under visible light, the degradation after 24 h is 12 ± 3% (Fig. 9). This value is lower than the pure TiO$_2$ sample (20%). All the doped TiO$_2$ samples are between two and six times better than the commercial product (Table 1).

With these results, the classical mechanism [67] of porphyrin on the photocatalytic process can be considered.

![Fig. 9. PNP degradation (%) without catalyst and for all the samples under visible light after 24 h of irradiation.](image)

When the catalysts are exposed to UV/visible light, the main mechanism for PNP degradation is the classical TiO$_2$ mechanism (Fig. 10) [67]. Irradiation allows the formation of electron-hole pairs (e$^-$-h$^+$) in TiO$_2$. The reactions with O$_2$ and H$_2$O, generate %OH and O2%-radicals which can degrade the organic pollutant. The irradiated porphyrin is excited, transferring electrons from the HOMO to LUMO level, these electrons can be transferred to the conduction band of TiO$_2$ (Fig. 10) [44,50]. Bonds between POR-Si molecules and TiO$_2$ particles are observed with 29Si CPMAS NMR experiments (Fig. 8) but as the molar ratio of POR-Si/TiO$_2$ is very low (between 0.001 and 0.006), the amount of electrons transferred by the excited porphyrin remains negligible compared to those produced by the TiO$_2$ itself, leading to a low increase in photoactivity.
Fig. 10. Theoretical mechanisms of photocatalysis by the pure TiO$_2$ sample and TiO$_2$ doped with silylated porphyrin sample.

When only low energy light is used, the classical mechanism of TiO$_2$ producing radicals is less efficient as only a low percentage of UV rays are present to activate TiO$_2$ [67]. In this case, the porphyrin is still excited by the visible light and can thus transfer electrons towards TiO$_2$, which are useful in order to produce additional radicals and offset the decrease of activity of TiO$_2$ itself (Fig. 10).

3.2.7. Durability and comparison with previous studies

In order to show the stability of our samples, a durability study is made of the three doped catalysts and the grafted sample, with 11 consecutive photocatalytic tests which correspond to 264 h of operation (Fig. 11).

Fig. 11. Mean PNP degradation ($D_{\text{PNP24RECYC}}$ in %) under visible light for all samples after the ten recycling cycles (corresponding to 11 catalytic tests of 24 h each, with isolation of the sample and drying stages in between).
In Fig. 11 and Table 1, $D_{\text{PNP24RECYC}}$ shows the mean PNP degradation for the pure TiO$_2$, Evonik P25, grafted and porphyrin-doped TiO$_2$ samples after the eleven photocatalytic cycles under visible light. For each doped sample, the activity stays stable over time. The mean PNP degradation values on recycling are the same as the values obtained on the first catalytic test (Table 1). The TiO$_2$/P6 sample is characterized after the eleven cycles, the 29Si NMR spectrum is presented in Fig. 8 and the diffuse reflectance spectroscopy measurement is exactly the same as its initial spectrum represented in Fig. 5.

This stability of photoactivity, the Si NMR measurement and the diffuse reflectance spectroscopy measurement of the TiO$_2$/P6 recovered sample show that porphyrin stays attached to TiO$_2$. Furthermore, the macroscopic color of the samples is identical through the different tests.

In contrast, the TiO$_2$/P6-Grafted sample shows a decrease of photocatalytic activity which is similar to pure TiO$_2$ activity after three cycles (Fig. 11 and Table 1). The catalyst sample loses its coloration after three photocatalytic cycles (72 h). In this case, the link between POR-Si and the TiO$_2$ is broken and the porphyrin is probably removed with the washing step leading to an activity due to pure TiO$_2$ only.

In this study, the porphyrin is more strongly linked to the TiO$_2$ in doped samples than in other studies [40,51] due to the Si-O-Ti bond observed with NMR measurements. In a previous study, the porphyrin is found to be mainly linked to the TiO$_2$ through Ti-O-C bonds [42,50,52] which are not stable during photocatalytic tests. In Min et al. [57], the photoactivity decreases after 10 cycles of only 3 h of photocatalysis, losing 40% of activity. In Chen et al. [59], after 6 cycles of 150 min of photocatalysis, the activity gradually decreases. In Yao et al. [78], the activity decreases by 10% after 5 cycles of 2 h of photocatalysis. In Cherian et al. [52] and Hyeon et al. [40], porphyrin desorption occurs over time. In numerous studies [42,50,52,58,60], improvement in photoactivity is observed but no durability study was made. In these reports recycling tests are often missing.

In this paper, photocatalytic stability is shown for 264 h under visible light illumination for the doped samples, but not for the grafted one.

4. Conclusions

In summary, in an attempt to produce efficient sensitized TiO$_2$ photocatalysts with no leaching of the sensitizer molecule, silylated phophyrin is cogelified with TTIP. To add Si-porphyrin molecules directly into a TiO$_2$ matrix during synthesis by the cogelation method, only a low temperature treatment is possible in order to avoid the degradation of porphyrin fragments. This is why aqueous synthesis is used to produce three porphyrin-doped TiO$_2$ catalysts and the corresponding pure TiO$_2$ for comparison. A grafted sample is made for comparison with classical grafting methods used in the literature.

For all syntheses, anatase-brookite TiO$_2$ catalysts are obtained with a crystallite size around 5 nm, even at low temperatures. For the porphyrin- doped TiO$_2$ materials, the absorption spectra are modified leading to visible absorption of light. NMR measurements confirm the bonds between POR-Si and TiO$_2$ in doped samples. The grafted sample clearly shows different bonding between POR-Si and TiO$_2$.

Concerning the photoactivity of samples, the introduction of POR-Si in the material not only (slightly) increases the photoactivity under UV/visible illumination but it promotes the efficiency of the decomposition of PNP under low energy light. Porphyrin molecules are excited by the visible light and thus are capable of transferring electrons towards TiO$_2$, which are used to produce additional radicals and offset the decrease of activity of TiO$_2$ itself. Recycling tests show the stability of the photocatalytic activity of aqueous porphyrin doped TiO$_2$ samples,
which have no leaching of the porphyrin over 264 h of operation. The grafted sample shows a decrease of activity towards pure TiO$_2$ activity due to bond breaking between POR-Si and TiO$_2$.

In comparison with commercial Evonik P25 catalyst, the samples present better activity under visible light, especially for porphyrin doped catalysts which have a photoactivity 2–6 times higher than the commercial product.

Acknowledgements

S. D. L. and J. G. M. thank the Belgian National Funds for Scientific Research (F.R.S.-FNRS) respectively for her Associate Researcher position and for his financial support for a short stay at the Institut Charles Gerhardt Montpellier, Laboratoire Architectures Moléculaires et Matériaux Nanostructurés, in Montpellier, France. The authors are grateful to Prof. Dirk Poelman, from the University of Ghent, for diffuse reflectance spectroscopy measurements. The Ministère de la Région Wallonne Direction Générale des Technologies, de la Recherche et de l’Energie (DG06), the Fonds de Recherche Fondamentale Collective and the Fonds de Bay are gratefully acknowledged.

