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Abstract

In the previous decade, dozens of studies involving thousands of children across several

research disciplines have made use of a combined daylong audio-recorder and automated

algorithmic analysis called the LENA® system, which aims to assess children’s language

environment. While the system’s prevalence in the language acquisition domain is steadily

growing, there are only scattered validation efforts, on only some of its key characteristics.

Here, we assess the LENA® system’s accuracy across all of its key measures: speaker

classification, Child Vocalization Counts (CVC), Conversational Turn Counts (CTC), and

Adult Word Counts (AWC). Our assessment is based on manual annotation of clips that

have been randomly or periodically sampled out of daylong recordings, collected from (a)

populations similar to the system’s original training data (North American English-learning

children aged 3-36 months), (b) children learning another dialect of English (UK), and (c)

slightly older children growing up in a different linguistic and socio-cultural setting (Tsimane’

learners in rural Bolivia). We find reasonably high accuracy in some measures (AWC, CVC),

with more problematic levels of performance in others (CTC, precision of male adults and

other children). Statistical analyses do not support the view that performance is worse for

children who are dissimilar from the LENA® original training set. Whether LENA® results

are accurate enough for a given research, educational, or clinical application depends largely

on the specifics at hand. We therefore conclude with a set of recommendations to help

researchers make this determination for their goals.

Keywords: Speech technology; human transcription; English; Tsimane’; Reliability;

Agreement; Method comparison; Measurement error; Child vocalization count; Adult word

count; Conversational turn count; LENA
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A thorough evaluation of the Language Environment Analysis (LENA) system

While nearly all humans eventually become competent users of their language(s),

documenting the experiential context of early acquisition is crucial for both theoretical and

applied reasons. Regarding theory, there are many open questions about what kinds of

experiences and interactions are necessary, sufficient, or optimal for supporting language

development. Moreover, the ability to accurately and quickly assess an infant’s state of

development at a given point in time is of central importance for clinical purposes, both for

children with known risks of language delays and disorders, and those who might not be

identified based on risk factors. Reliable assessments are also crucial for measuring

intervention efficacy.

One approach that has been making its way into the mainstream literature across basic

and applied research on language and cognition relies on day-long recordings gathered with a

LENA® audiorecorder (Gilkerson et al., 2017; e.g., Greenwood, Thiemann-Bourque, Walker,

Buzhardt, & Gilkerson, 2011; Oller et al., 2010; VanDam & De Palma, 2018), and further

analyzed using automated, closed-source algorithms. As we summarize below, this approach

has many advantages, which may explain its expanding popularity. While over a hundred

papers over the past two decades have used the output automatically provided by LENA®,

only a handful include validity estimates (d’Apice, Latham, & Stumm, 2019; e.g., Weisleder

& Fernald, 2013; Zimmerman et al., 2009), even fewer where validity estimation was the

primary focus of the paper (Bulgarelli & Bergelson, 2019; e.g., Busch, Sangen, Vanpoucke, &

Wieringen, 2018; Canault, Le Normand, Foudil, Loundon, & Thai-Van, 2016; Ganek &

Eriks-Brophy, 2018; Lehet, Arjmandi, Dilley, Roy, & Houston, 2018). As a result, few studies

report sufficient details about validation accuracy for one or more metrics, limiting the

interpretability of the results of a meta-analytic assessment (cf. A. Cristia, Bulgarelli, &

Bergelson, 2019). The work undertaken thus far also has some limitations, which are

described further in the “Previous Validation” section below. Bearing these in mind, we
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endeavored to conduct an evaluation that is fully independent of the LENA® algorithms’

automated assessment, permitting a systematic, extensive, and independent evaluation of its

key metrics, in a large sample of diverse infants, including (a) a sample of children similar to

the LENA® training set (i.e. infants and toddlers, growing up in North American

English-speaking homes, and aged 3-36 months), (b) a group of similarly aged children

learning a different dialect (UK English); and (c) slightly older children learning a different

language in a very different socio-cultural setting (Tsimane’-learning children in rural

Bolivia).

Brief introduction to LENA® products. The LENA® system consists of

hardware and software. The hardware component is a lightweight, sturdy, and easy-to-use

recording device worn by a child in specialized clothing. The software is a suite of

proprietary computer programs designed to provide automated quantitative analyses of the

children’s auditory environment and their own vocalizations. The latter was developed over

an extensive corpus of full day audio recordings gathered using their patented recording

hardware (D. Xu, Yapanel, & Gray, 2009). The original dataset included over 65,000 hours

of recording across over 300 American English-speaking families chosen for diversity in child

age (1-42 months) and socio-economic status (Gilkerson & Richards, 2008). Half-hour

selections from 309 recordings were transcribed and annotated for the purpose of developing

the algorithm, with an additional 60 minutes from 70 additional recordings for testing it

(Gilkerson, Coulter, & Richards, 2008).

The resulting LENA® software takes as input a new audio recording and processes it

incrementally in short windows, extracting a variety of acoustic features which are used to

classify the audio stream into segments of at least 600 ms in length (or longer for some of the

categories) using a Minimum Duration Gaussian Mixture Model (MDGMM; D. Xu et al.,

2009). Silence may be included to “pad” segments to this minimum duration. The segments

are classified according to a set of broad speaker and non-speaker classes. The speaker
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classes are: Male Adult, Female Adult, “Key” Child (i.e. the one wearing the recorder) and

Other Child. The non-speaker classes are: Noise, Television (including any electronics),

Overlap (speech overlapped with other speech or nonspeech sounds), and Silence (SIL). With

the exception of Silence, these classifications are then passed through a further likelihood

test between the original classification for a given segment and the Silence class, the result of

which determines whether they are “Near” (high probability of being that class) or “Far”

(low probability; i.e. they may be silence instead). Given the large number of acronyms and

labels of various kinds, we provide a listing of relevant LENA® abbreviations in Table 1.

After this broad speaker classification step, Female or Male Adult “Near” segments

(FAN and MAN) are further processed using an adaptation of the Sphinx Phone Decoder

(Lamere et al., 2003) in order to form an automated estimate of the number of words in each

segment (Adult Word Count, or AWC). Key Child (CHN) segments are further processed to

sub-classify regions in them into vegetative noises, crying, and speech-like vocalizations.

LENA® provides counts (child vocalization count, or CVC) and durations for this last

speech-like sub-segment category. A further metric, Conversational Turn Counts (CTC),

reflects the number of alternations between an adult and the key child (or vice versa),

bounded by a maximum 5s of non-speech.

Previous validation work. A recent systematic review (A. Cristia et al., 2019)

found 23 papers containing 28 studies that reported on the accuracy of the LENA® system’s

labels and/or derived metrics (AWC, CVC, CTC). They conclude that there are:

“reasonably good results [overall]: over 61% for recall and precision based on

11-12 non-independent studies; correlations for AWC mean r=.79, on n=11, with

a mean RER [what we call error rate]=10% on n=11; CVC mean r=.76, n=5,

with a mean RER=1% on n=5. The exception to this general trend towards

good performance was CTC, with a mean r=.31, n=5, RER=-64% on n=2.”



LENA EVALUATION 6

Table 1

A partial listing of common LENA abbreviations and their meanings.

Abbreviations Meanings

FAN, MAN, CHN, CXN Basic “meaningful speech” (near and clear speech) categories

used by LENA for further processing: Female Adult Near, Male

Adult Near, Key Child Near and Other Child Near categories

respectively.

NON, TVN, OLN, SIL Basic non-speech categories: Noise Near, Television Near,

Overlap Near, Silence.

FAF, MAF, etc. “Far” (low probability) versions of each Near category.

Key child Child wearing recorder

AWC Adult Word Count (estimated within FAN and MAN

vocalizations)

CVC Child Vocalization Count (estimated for non-cry, non-vegetative

portions of CHN)

CTC Conversational Turn Count (estimated for turns between FAN or

MAN and CHN)

The systematic review also identified several limitations of previous validation work.

First, for the majority of included studies, the validitation component was not fully

evaluated by peer review. Even if the study may have appeared in a peer-reviewed journal,

the validation in itself was often a secondary goal to support a different research objective,

and therefore often lacked methodological details or even full results. For instance, Seidl et

al. (2018) report on validation of LENA® labels among children at familial risk for autism in

a one-paragraph appendix to the paper, which only mentions confusions between female

adult and child. This leaves unclear whether confusions between Key child and any other
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category (Other child, Male adult, Silence, etc.) were ignored or considered to be errors.

While this approach may be reasonable for a given study’s research goals, it has the

undesirable side effect of creating the impression that LENA® metrics are widely validated,

while in fact validation methods may not have been reported or evaluated in detail.

Second, previous studies typically did not take silence, noise, or overlap into account in

the reported confusion matrices or other accuracy measures, particularly within segments.

That is, if a LENA® segment labeled “key child” contained one second of silence and two

seconds of speech by the key child, the full three second clip may be tagged as “correct”

though it was only 67% correct, leading to an overestimation of the accuracy of the “key

child” label.

Third, a majority of previous validation studies used the LENA® output itself to select

the sections that would be annotated for validation (in A. Cristia et al., 2019, this held for

14/25 studies that specified the method of selection). For instance, clips may have been

selected for manual annotation on the basis of high AWC and/or CTC according to the

algorithm. This unfortunately leads to biased sampling: Since LENA® only counts words

within FAN and MAN segments and conversational turns involving FAN/MAN alternations

with CHN in close temporal proximity, high AWC or CTC can only occur in sections of the

recording that are “clean” enough for the algorithm to parse; otherwise, most of the section

would have been classified as overlap (OLN), which does not count towards AWC or CTC.

This would tend to bias these reports toward a higher level of accuracy than would be

obtained across the full recording.

Fourth, previous validation work has typically focused on a single corpus, participant

population, age range, and language. As a result, although considerable variation in

performance has sometimes been reported (Canault et al., 2016; e.g., Gilkerson et al., 2016)

it is difficult to assess whether a numerical difference in accuracy found is significant, and if

so, whether this is due to a difference in the way the corpus was constituted and annotated,
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rather than on how LENA® fares with that population, age range, and language.

The present work. We sought to assess the validity of the output provided by

LENA® through an approach that complements the preceding literature. Specifically, we

report an evaluation of all speech labels, also considering non-speech labels (notably silence,

overlap, and TV, with limitations in our approach to be discussed below); as well as the

system’s key derived metrics: Child Vocalization Counts (CVC), Conversational Turn

Counts (CTC), and Adult Word Counts (AWC). We aim to address several of the limitations

found in the body of previous work.

First, to maximally avoid potential bias in our annotations, we used random or

periodic sampling (detailed below) to choose which sections of daylong recordings to

annotate, and did not give annotators access to the LENA® output. Second, the fact that

annotators did not have access to the LENA® segmentation allowed an assessment of the

accuracy of the segmentation itself as well as categorical labeling. Specifically, LENA® and

human annotations were compared every 10 ms. This allows us to capture a much

finer-grained representation of the auditory environment (i.e., if LENA® classified a 2 s audio

segment as FAN, but .8 s of this was actually non-speech noise or a different talker, in our

analysis LENA® would be credited only for the proportion that was correct).

Third, to gain traction on generalizability, rather than focusing on a single sample that

either mirrors or diverges from LENA®s original population, we included five corpora. Three

corpora sampled from the same population, language, dialect, and age group the LENA®

software was developed with. A fourth corpus was chosen to allow an extension to a different

dialect of English. The fifth corpus constituted an extension to a totally different recording

condition (a rural setting, with large families and many children present, in a typologically

different language). The age range also varies a great deal, and it is slightly higher in this

last corpus. By and large, one could expect accuracy to decline in the sample of children

who spoke a different English dialect compared to the three samples that matched better the



LENA EVALUATION 9

data the LENA® software was developed with; and one could predict an even greater

reduction in accuracy for the group that is learning a completely different language and

which further mismatches in age (see other work on age- and language-mismatching samples,

Busch et al., 2018; Canault et al., 2016).

Finally, the present study relies on a collaborative effort across several labs. The

annotation pipeline was identical for four of the corpora, and conceptually comparable to the

fifth (as detailed below). This allows us to more readily answer questions regarding

differences in reliability as a function of e.g. child age and language. This approach also let

us better infer the likelihood with which our results will generalize to other corpora, provided

the annotation scheme is conceptually comparable.

Methods

This paper was written using RMarkDown (Baumer, Cetinkaya-Rundel, Bray, Loi, &

Horton, 2014) in R (Team & others, 2013) running on Rstudio (RStudio Team, 2019). It can

be downloaded and reproduced using the data also available from the Open Science

Framework, https://osf.io/zdg6s. These online Supplementary Materials also include a

document with the full output of all models discussed here as well as additional analyses.

Corpora. The data for the evaluation comes from five different corpora, annotated

in the context of two research projects. The largest one is the ACLEW project (E. Bergelson

et al., 2017; Soderstrom et al., 2019); in this paper we focus on four different corpora of child

daylong recordings that have been pooled together, sampled, and annotated in a coordinated

manner. These four corpora are: the Bergelson corpus (“BER”) from US English families

from the upstate New York area (E. Bergelson, 2016), the LuCiD Language 0–5 corpus

(“L05”) consisting of English-speaking families from Northwest England (C. F. Rowland,

Bidgood, Durrant, Peter, & Pine, 2018), the McDivitt and Winnipeg corpora (“SOD”) of

https://osf.io/zdg6s
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Canadian English families (McDivitt & Soderstrom, 2016), and the Warlaumont corpus

(“WAR”) of US English from Merced, California (A. Warlaumont, Pretzer, Walle, Mendoza,

& Lopez, 2016). Some recordings in BER, and all recordings in SOD and WAR are available

from HomeBank repository (VanDam et al., 2016). The second project contains a single

corpus collected from Tsimane’ speaking families in Bolivia (“TSI”; Scaff, Stieglitz, Casillas,

& Cristia, 2019). Socioeconomic status varies both within and across corpora. Key

properties of the five corpora are summarized in Table 2.

Table 2

Key properties of the five corpora

Corpus Children Clips Clip duration

(seconds)

Mean Age [range]

(months)

Location

WAR 10 150 120 6.3 [3-9] Western US

BER 10 150 120 11.2 [7-17] Northeast US

SOD 9 150 120 12.3 [2-32] Western Canada

L05 10 150 120 20 [11-31] Northwest England

TSI 13 272 60 34 [15-58] Northern Bolivia

Despite these differences, all five corpora consists of long (4–16 hour) recordings

collected as children wear a LENA® recorder in a LENA® vest throughout a normal day

and/or night. For the four ACLEW corpora, out of the 106 recorded participants, daylong

recordings from 10 infants from each corpus were selected to represent a diversity of ages

(0–36 months) and socio-economic contexts. In the SOD corpus, sensitive information was

found in one of the files, and thus one child needed to be excluded. The tenth day for this

corpus was a second day by one of the 9 included children. From each daylong file, fifteen

2-minute non-overlapping sections of audio (with a 5-minute context window) were randomly

sampled from the entire daylong timeline for manual annotation. In total, this lead to 20

hours of audio, and 4.6 hours of annotated speech/vocalizations (collapsing across all speaker
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categories).

The TSI corpus consisted of 1 or 2 recordings from 13 children, out of the 25 children

recorded from field work that year; the other 12 had been recorded using other devices (not

the LENA® hardware). From these files, 1-minute segments were sampled in a periodic

fashion. That is, for each recording, we skipped the first 33 minutes to allow the family to

acclimate to the recorder, and then extracted 1 minute of audio (with a 5-minute context

window) every 60 minutes, until the end of the recording was reached. This resulted in a

total of 4.5 hours of audio, and 0.7 hours of speech/vocalizations (collapsing across all

speaker categories).

We chose to sample 1 or 2 minutes at a time (TSI, and ACLEW corpora, respectively)

because conversations are likely to be bursty (Goh & Barabási, 2008). That is, it is likely the

case that speech is not produced at a periodic rate (e.g., one phrase every 20 seconds), but

rather it occurs in bursts (a conversation is followed by a long period of silence between the

conversational partners, followed by another bout of conversation, perhaps with different

interlocutors, followed by silence, and so on). In this context, imagine that you sample a

5-second stretch. If you find speech in that stretch, then it is likely you have by chance fallen

on a conversation bout; if you do not find speech, then you have likely found a silence bout.

If you were to extend that selection out to several minutes, then it is likely that you will

simply add more material from the same type (i.e. conversation bout or silence bout). As a

result, any sampling method that favors medium-sized stretches (5-15 minutes) will tend to

end up with samples that are internally homogeneous (throughout the 5-15 minutes, there is

a conversation, or there is silence throughout). If smaller clips are sampled out, this

heterogeneity is still captured, but (keeping the total length of audio extracted fixed) the

number of clips that can be extracted is larger, thus likely increasing the likelihood that

results will generalize to a new section of the audio.

In the 5 corpora, the 1- or 2-min samples were annotated for all hearable utterance
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boundaries and talker ID. In ACLEW corpora several talker IDs reflected unique individual

talkers, but were coded in such a way to readily allow mapping onto LENA®s talker

categories, e.g. key child, other child 1, female adult 1, female adult 2 (Bergelson et al., 2019

for the general annotation protocol; cf. Casillas et al., 2017; Soderstrom et al., 2019, for an

introduction to the databases). The ACLEW datasets also had other coding levels that will

not be discussed here. In the TSI corpus, only the key child and one female adult whose

voice recurred throughout the day were individually identified, with all other talkers being

classified on the basis of broad age and sex into male adult, female adult, and other children.

Processing. Several different time units are needed to clarify how each metric is

calculated (see Figure 1). Clips refer to the 1- or 2-minute samples extracted from recordings

(TSI corpus and ACLEW corpora, respectively). This is the basic unit at which CVC and

CTC can be established. In addition, since most previous work evaluating AWC did so at

the clip level, we do so here as well.

The other metrics require a more detailed explanation, conveyed graphically in Figure

1. The stretch of time that has been assigned to a speech or non-speech class by LENA® is a

segment. In one clip, there may be just one long segment (e.g., the whole clip has been

assigned to Silence by LENA®); or there may be more (e.g., the first 5 seconds are attributed

to the key child, then there is a 50-second Silence segment, and the final 5 seconds are

attributed to a Female Adult). In the LENA® system’s automated analysis, only one of these

categories may be active at a given point in time. In contrast, colloquially, “utterance” or

“vocalization” refers to stretches of speech detected by humans and assigned to different

talkers. To be clear: in what follows, clips may have zero or more utterances. Unlike in the

LENA® system, however, in the human annotation a given point in time may be associated

with multiple speakers.

Given that there need not be a one-to-one correspondence between LENA® segments

and human utterances, we need to define smaller time units that can be used to check for
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Recording Clip
SILLENA CHN FAN MAN SIL

Human Key child
Female Ad

Key child

AWC=2.3 AWC=1.3

AWC=6

Speech 
tech 
analyses

Missed 113f
False alarm 45f
Confusion 55f

Speech 443f

Precision 
& recall 
analyses CHN & Key child 107f

FAN & Female adult 143f

CHN 140f
FAN 140f

Key child 256f
Female adult 196f

MAN 104f

Male adult 0f

MAN & Male adult 0f

LENA CVC=1
LENA CTC=1
LENA AWC=3.6

Human CVC=2
Human CTC=2
Human AWC=6

miss rate = 113/443
false alarm rate = 45/443

confusion rate = 55/443

CHN Precision = 107/140
FAN Precision = 143/140
MAN Precision = 0/104

CHN Recall = 107/256
FAN Recall = 143/196
MAN Recall = NA

5 LENA segments

3 Human-tagged segments

Frame Counts Frame-level Computations

Derived ComputationsSegment Counts

Figure 1 . Levels at which performance is evaluated. Notice that there are multiple clips

extracted from each recording; each clip can have zero or more segments; frames (10ms) are

not shown because they would be too small in this scale. Adult Word Count (AWC), Child

Vocalization Count (CVC), and Conversational Turn Count (CTC) are calculated at the

level of the 1- or 2-minute long audio extracts (clips). Misses, false alarms, confusions as well

as class precision and recall depend on 10-ms frames, and are totalled both at the level of

individual clips and over the full audio extracts.“f” above indicates 10-ms frames. N.B. for

example’s sake we assume each child vocalization above has a single linguistic vocalization.

classification agreement. In this paper, we use 10 ms frames. This is the basic time unit used

for all classification accuracy estimations, which are introduced in more detail in the next

subsection.

LENA® classification accuracy. Our first goal was to establish LENA® talker tag

accuracy, particularly for the four broad LENA® talker categories (key child, other child,

female adult, male adult; or CHN, CXN, FAN, MAN), while taking into account other

categories (with some limitations on their interpretation clarified below). We calculated

accuracy in two complementary ways. First, we used three frame-based standard metrics of
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speech and talker segmentation to allow direct comparison with other systems in the speech

technology literature (False Alarm Rate, Miss Rate, Confusion Rate). We also use

Identification Error Rate, which is derived by summing the first three metrics; together these

provide a stringent and standard test of accuracy. Second, we used frame-based precision

and recall of each category to provide an intuitive representation of the error patterns shown

by this system.

Since these metrics establish errors relative to speech quantity, a problem emerges

when there is no speech whatsoever in a given file. This is never discussed in the speech

technology literature, because most researchers working on this are basing their analyses on

files that have been selected to contain speech (e.g., recorded in a meeting, or during a phone

conversation). We still wanted to take into account clips with no speech because this was

central for our research goals: We need systems that can deal well with long stretches of

Other (i.e., non-speech or silence), because we want to measure in an unbiased manner how

much speech (and silence!) children hear. Unfortunately, in the 30% of clips that had no

speech whatsoever, the false alarm, miss, and confusion rates are all undefined, because the

denominator is zero. To be able to take clips with no speech into account, we defined the

following rules. First, if a clip had no speech according to the human annotator, while LENA

said there was speech, then the false alarm rate was 100%, and the miss and confusion rates

were zero. Second, if on the contrary, both the human annotator and LENA said there was

no speech, then all the error rates were zero. Notice that in some cases there was just a little

speech; in this case, the denominator was very small, and therefore the ratio for these two

metrics ended up being a very large number, resulting in what may be outliers.

Speech and talker segmentation metrics.

The original coding was converted using custom-written python scripts into a standard

adaptation of the “Rich Transcription Time Mark” (rttm) format (Ryant et al., 2019), which

indicates, for each vocalization or segment, its start time, duration, and speaker. This
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representation was used in pyannote.metrics (Bredin, 2017) to compute four standard

identification metrics: rate of false alarm for speech, rate of misses for speech, rate of

confusion between talkers, and the derived identification error rate (IDER). These are

calculated with the following formulas at the level of each clip, where FA (false alarm) is the

number of frames during which there is no talk according to the human annotator but

during which LENA® found some talk; M (miss) is the number of frames during which there

is talk according to the human annotator but during which LENA® found no talk; C

(confusion) is the number of frames correctly classified by LENA® as containing talk, but

whose voice type has not been correctly identified (when the LENA® model recognizes

female adult speech where there is male adult speech for instance), and T is the total

number of frames that contain talk according to the human annotation:

• False Alarm rate = FA/T (T=Total # of frames that contain talk),

• Miss rate = M/T,

• Confusion rate = C/T,

• IDentification Error Rate (IDER) = (FA+M+C)/T

In the human annotation, there is no class representing overlapping speech as such. For

the sake of completeness and greater comparison with the LENA® model, if two or more

different sources were active at the same time according to the human annotators, these

frames have been mapped to the class “overlap” post hoc. This allows us to compare this

Overlap class to the LENA® system’s OLN (and, for the precision/recall analysis introduced

next, OLF).

However, our overlap category is not defined identically to the LENA® overlap category.

For LENA®, overlap between any two categories is labeled OLN – i.e., Noise + CHN would

be counted towards overlap as would FAN+FAN; whereas for us, only overlap between two

sources (e.g., key child and female adult, key child and electronic speech; but not key child +

noise since noise was not coded) counts as overlap. Similarly, the TVN LENA® class is not
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Table 3

Correspondances between LENA and our human annotation tags for each talker type.

Additional analyses remove one or both of the last two rows. *Electronic voices were only

annotated in the ACLEW dataset. N.B. Although some Tsimane’ families listen to the radio,

radio speech was not annotated in the TSI corpus.

Talker LENA Human

Key Child CHN CHI

Other Child CXN OCH

Female Adult FAN FEM

Male Adult MAN MAL

Electronics TVN* ELE*

Overlap OLN OVL

equivalent to the electronic speech tag in the ACLEW coding, because the former also

includes music, singing, crowd noise and any other sound coming from a TV or another

electronic source, whereas the latter only includes speech from an electronic source.

Therefore, Table 3 mentions some correspondances, but since these are not perfect,

additional analyses map overlap and electronic classes onto “Other” post hoc, so as to not

penalize LENA® due to a divergence in coding criteria.

Precision and recall.

This evaluation looks in more detail at the pattern of errors, by assessing how LENA®

and human annotators agreed and disagreed. In both precision and recall, the numerator is

the intersection between a LENA® tag and a human tag (e.g., the number of frames that

LENA® classified as CHN and the annotator classified as Key child). The denominator

differs: To calculate precision, we divide that number by the total number of frames
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attributed to a category by LENA®, whereas for recall, we divide by the total number of

frames attributed to a category by the human annotator.

Agreement.

When two or more annotators provide data on the same classification, one can

calculate agreement. We report on Cohen’s κ as a measure of the extent to which LENA®

and human annotators coincide in their labeling.

CVC and CTC evaluation. From the human annotation, each vocalization by the

key child counted towards the total Child Vocalization Count (CVC) for a given clip if and

only if the vocalization had been annotated as being linguistic (canonical or non-canonical in

the ACLEW notation).1 For the Conversational Turn Count (CTC), a sequence of key child

and any adult (or vice versa) within 5 seconds counted towards the clip total CTC. The

Pearson correlation across LENA® and human estimations was then calculated.

Users may also wish to interpret the actual number of vocalizations or turns found by

LENA®. Therefore, it is important to also bear in mind errors, error rates, and absolute

error rates. Despite the similarity in their names, these three metrics provide different

information. We define error as follows: given a LENA® estimate, how close the

human-generated value is. This is calculated as NL-NH, where NL is the number according
1In a previous version of this analysis, we had calculated CVC as the number of CHN segments in

LENA®, and the number of linguistic vocalizations as tagged by human annotators. Further inspection

of LENA® documentation revealed this was incorrect, since LENA® counts can include several linguistic

vocalizations within one CHN segment, and also includes linguistic vocalizations from CHF segments. Given

the inaccuracy of CHF, the latter decision seems potentially problematic. The same issue affected our CTC

analyses. We now present analyses here that correctly represent LENA®’s reported CVC and CTC, since

these are the field-standard measures. In Supplementary Materials (https://osf.io/zdg6s), we show results of

the correlations and error analyses when CVC and CTC are calculated as the number of CHN/CHI segments

instead. For CVC the results are identical; for CTC results were slightly worse results than those reported

here.

https://osf.io/zdg6s
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to LENA® and NH is the number according to humans; this is done separately for each clip.

By averaging across clips, we then get an idea of the bias towards overestimation (if this

number is positive) or underestimation (if this difference is negative).

In contrast to error, error rate computes this bias in relation to the actual number of

vocalizations tagged by the human coder: (NL-NH)/NL. For instance, imagine that we find

that LENA® errs by 10 vocalizations according to the average error; this means that, on

average across short clips like the ones used here, the numbers by LENA® would be off by 10

vocalizations. By using the error rate, we can check whether this seemingly small difference

is indeed small relative to the actual number found. That is, an error of 10 vocalizations

would be less problematic if there were 100 vocalizations on average (in which case LENA®

would be just 10% off) than if there were 10 (LENA® would be doubling the number of

vocalizations). As with error, the sign of this difference indicates whether LENA® tends to

over- or under-estimate these counts.

Finally, the absolute error rate is calculated with the formula abs(NL-NH)/NL, where

abs indicates absolute value. As a result, it cannot be used to assess systematic under- or

over-estimation biases, but rather gives an idea of how accurate the estimates are at the clip

level (statistically speaking). To convey this intuitively, one could find an error of 0 together

with an error rate of 0 because half of the samples are -100 vocalizations off (for the error) or

-100% off (for the error rates), with the other half behaving in the exact opposite fashion.

The absolute error rate then avoids this kind of cancellation by removing the polarity (+/-)

of the error.

AWC evaluation. For the AWC portion of this evaluation, we could only use

transcriptions from the four ACLEW corpora, since the TSI corpus has not been transcribed

(and thus lacks human word counts). Annotators for the four ACLEW corpora were

proficient in the language spoken in the daylong recording, and transcribed all adult speech

in keeping with minCHAT format (e.g., “wanna”, not “want to”; MacWhinney, 2017).
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One child in the (otherwise English) SOD corpus was learning French. Given our

definition of orthographic words which is not language-specific, we have included this child to

increase power, but results without them are nearly identical. See online Supplementary

Materials, https://osf.io/zdg6s, for analyses excluding this child. In addition, a total of nine

clips from three different WAR children contained some Spanish. Since we are uncertain of

how accurate the transcriptions are for Spanish sentences, these clips were removed from

consideration altogether.

Human AWC were determined by counting all unambiguously transcribed words

spoken by adult talkers. This was achieved by first discarding all non-lexical transcript

entries such as non-linguistic communicative sounds, paralinguistic markers, and markers

indicating incomprehensible speech. In addition, all utterances from the key child and other

children were omitted from the human AWC. The remaining orthographic entries separated

by whitespaces were then counted as gold standard target words for LENA® to detect.

The 1- or 2-minute clips sampled for manual annotation were not guaranteed to

perfectly align with LENA® segments (i.e. talker onsets and offsets), posing a potential issue

for comparing LENA® AWC relative to the human annoted word count. Of all LENA®

segments found within the extracted clips, 14% straddled a clip boundary (i.e., the segment

began before the clip started; or it ended after the extracted clip ended). To match LENA®

AWCs with the annotated word counts, words from these straddling LENA® segments were

included proportionally. That is, if 10% of the duration of a LENA® segment fell within a

clip, 10% of the LENA® AWC estimate for that segment was included in the LENA® word

count estimate for that clip. AWC was evaluated using Pearson correlations and error

analyses, similarly to CVC and CTC.

https://osf.io/zdg6s
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Table 4

Number of frames, percentage of frames,

and number of minutes attributed to each

category by the human annotators.

Frames Percentage Minutes

CHI 588,236 7 98

FEM 891,717 10 149

MAL 234,199 3 39

OCH 262,702 3 44

OVL 271,636 3 45

ELE 218,535 3 36

Other 6,112,975 71 1,019

Results

Before starting, we provide some general observations based on the manual human

annotations. The “Other” category (meaning no speech, potentially silence but also

non-human noise) was extremely common, constituting 71% of the 10 ms frames. In fact,

30% of the 1-2 minute clips contained no speech by any of the speaker types (according to

the human annotators). As for speakers, female adults made up 10% of the frames, the child

contributed to 7%, and male adult voices, other child voices, and electronic voices were only

found in 3% of the frames each. Overlap made up the remaining 3% of frames. The following

consequences ensue. If frame-based accuracy is sought, a system that classifies every frame

as Other (i.e., absence of speech) would be 71% correct. This is of course not desirable, but

this fact highlights that systems well adapted to this kind of recording should tend to have

low false alarm rates, being very conservative as to when there is speech. If the system does

say there is speech, then a safe guess is that this speech comes from female adults, who
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provide a great majority of the speech, nearly 1.5 times as much as the key child and 2 times

more than other children or male adults. In fact, given that speech by male adults and other

children is relatively rare, a system that makes a lot of mistakes in these categories may still

have a good global performance, because males and other children jointly accounted for only

6% of the frames.

LENA® classification accuracy: False alarm, miss, confusion rates. The

analysis that yields the best LENA® performance (Table 5, Speakers) focuses on the clean

human speaker categories while mapping electronic voices and overlap in the human

annotation onto Other, so that the categories considered in the human annotation are FEM,

MAL, CHI, OCH, alongside using only CHN, FAN, MAN, and CXN as speakers in the

LENA® annotation, (with all “far” categories, TVN, and OLN all mapped onto Other; see

Tables 1 and 3). Calculated in this way, LENA®’s false alarm rate (i.e., tagging a speech

category when there was none) and confusion rate (i.e., providing the wrong label) were

lowest. Notably, however, the miss rate (i.e., the system returns a judgment that no sound

label is activated) was double that found with the other analysis alternatives.

In the second-best performing case (Table 5, +Electronic), overlap found in the human

annotation is still mapped onto Other but Electronic voices are not, so that the human

categories considered were CHI, FEM, MAL, OCH, and ELE; and the LENA® categories

considered were CHN, FAN, MAN, CXN, and TVN (with all “far” classes and OLN mapped

onto Other).

Finally, performance was worst when included also overlapping regions (Table 5,

+Overlap), such that the human categories considered were CHI, FEM, MAL, OCH, overlap,

and electronic; and the LENA® categories considered were CHN, FAN, MAN, CXN, OLN,

and TVN. It is likely that these differences are partially due to OLN and TVN not being

defined similarly across the LENA® system and human annotators.
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Table 5

False Alarm Rate (FAR), Miss Rate (MR), Confusion Rate, and total Identification Error Rate

(IDER, sum of the medians of the other three categories), as a function of which categories are

considered. Speakers indicates that only speaker categories are considers (all others are mapped

onto Other); + Electronic that also electronic was scored; + Overlap that electronic and overlap

in both human and LENA annotation were also scored. To be maximally informative, we report

results in three ways: (1) *weighted by speech*: Overall false alarm, miss, and confusion rates

over all clips together, thus giving more weight to clips with more speech; (2) *equal weight per

clip*: means across clips, which represent central tendency when giving equal weight to clips with

more versus less or no speech; and (3) *accounting for potential outliers*: since means are not

robust to outliers, we also report the median across all clips.

Overall Mean Median

FAR MR CR IDER FAR MR CR IDER FAR MR CR IDER

Speakers 13 56 11 79 26 39 12 73 6 39 8 73

+ Electronic 44 24 38 106 86 20 36 132 20 12 35 88

+ Overlap 58 22 42 122 126 17 42 172 30 9 41 98

LENA® classification accuracy: Precision and recall. By now, we have

established that the best performance emerges when “far” labels such as CHF and OLF are

mapped onto Other, as are TVN/ELE and OLN/OVL. False alarm, miss, and confusion

rates are informative but may be insufficient for our readers for two reasons. First, these

metrics give more importance to correctly classifying segments as speech versus non-speech

(false alarms + misses) than confusing talkers (confusion). Second, many LENA® users are

particularly interested in the key child. The metrics reported thus far do not give more

importance to certain classes (such as key child), and they do not give us insight into the
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patterns of error made by the system.

We therefore turn to precision and recall. Looking at precision of speech categories is

crucial for users who interpret the LENA® system’s estimated quantity of adult speech or

key child speech, as low precision means that some of what LENA® called e.g. key child was

not in fact the key child, and thus it is providing overestimates. Looking at recall may be

most interesting for users who intend to employ LENA® as a first-pass annotation: the lower

the recall, the more is missed by the system and thus cannot be retrieved (because the

system labeled it as something else, which will not be inspected given the original filter).

This subsection shows confusion matrices, containing information on precision and

recall, for each key category. For this analysis, we collapsed over all human annotations that

contained overlap between two classes into a category called “overlap”. Please remember that

this category is not defined the same way as the LENA® overlap category. For LENA®,

overlap was a trained class, and annotators had tagged overlap between two speakers of the

same kind (e.g., two female adults) as well as overlap between any of the non-speech classes

they were coding (e.g., overlap between noise and TV). We also define overlap as two active

classes activated at the same time, but only speech (human or electronic) has been tagged,

and can count as overlap in the human annotation.

LENA® classification accuracy: Precision.

We start by explaining how to interpret one cell in Figure 2: Focus on the cross of the

human category (i.e., row) FEM and the LENA® category (i.e., column) FAN; when LENA®

tagged a given frame as FAN, this corresponded to a frame tagged as being a female adult by

the human 60% of the time. The remaining 40% of frames that LENA® tagged as FAN were

actually other categories according to our human coders: 18% were Other (i.e., absence of

speech), 10% were in regions of overlap between speakers or between a speaker and an

electronic voice, and 12% were confusions with other speaker tags. Inspection of the rest of
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Figure 2 . Precision: Confusion matrix between LENA (x axis) and human annotations (y

axis). In each cell, the top number indicates the percentage of all frames in that LENA

category (column) that are labeled as a given class by the human (row); cells in a given

column add up to 100%. The number below indicates number of frames in that intersection

of LENA and human classes.

the confusion matrix shows that FAN and CHN are the LENA® tags with the greatest

precision (setting aside the Other class, i.e., lack of speech).

Indeed, precision for CHN is almost identical, at 61%; thus, over half of the frames

labeled as the key child are, in fact, the key child. The majority of the frames that LENA®

incorrectly tagged as being the key child are actually Other (that is, silence or more generally

lack of speech) according to the human annotator (20%), with the remaining errors being due

to confusion with other categories. Aboout 6% of them are actually a female adult; 4% are
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another child, and 8% are regions of overlap across speakers, according to our human coders.

Lower precisions are found for MAN (43%) and CXN (28%). The pattern of confusion

is somewhat different from the other two categories we looked at, due to greater confusion

with the other label within the same age class. That is, 22% of the frames LENA® tagged as

being MAN actually corresponded to female adult speech according to the human

annotation. It was also not uncommon to find a CXN tag for a frame human listeners

identified as a female adult (13%), but even more confusions involved the key child (28%). In

a nutshell, this suggests increased caution before undertaking any analyses that rely on the

precision of MAN and CXN, since most of what is being tagged with these talker codes by

LENA® is other speakers or Other (i.e. silence, absence of speech).

Another observation is that the “far” tags of the speaker categories do tend to more

frequently coincide with regions where humans did not detect speech (i.e., Other; 67%) than

the “near” tags (35%), and thus it is reasonable to exclude them from consideration for most

purposes.

The relatively high proportion of near LENA® tags that correspond to Other (i.e.,

absence of speech) regions (range 18-75%) could be partially due to the fact that the LENA®

system, in order to process a daylong recording quickly, does not make judgments on short

frames independently, but rather imposes a minimum duration for all speaker categories,

padding with silence in order to achieve it. Thus, any key child utterance that is shorter

than .6 s will contain as much silence as needed to achieve this minimum (and more for the

other talker categories). Our system of annotation, whereby human annotators had no access

whatsoever to the LENA® tags, puts us in an ideal situation to assess the impact of this

design decision. That is, any manual annotation that starts from the LENA® segmentation

would likely bias the human annotator to ignore such interstitial silences to a greater extent

than if they have no access to the LENA® tags. We inspected how often this padding by the

LENA® system occurred and found that it was quite common: About half of the key child’s
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linguistic and non-linguistic vocalizations tagged in any given clip were shorter than 600

milliseconds long, and thus, if alone, would have been padded by LENA® with silence

automatically.

These precision analyses shed light on the extent to which the LENA® tagged segments

contain what the speaker tag name indicates, relative to human coders. We now move on to

recall, which indicates a complementary perspective: how much of the original annotations

humans attributed to a given class was captured by the corresponding LENA® class.
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Figure 3 . Recall: Confusion matrix between LENA (x axis) and human annotations (y axis).

In each cell, the top number indicates the percentage of all frames that a human labeled as a

given class (row) which were recovered in a given LENA category (column); cells in a given

row add up to 100%. The number below indicates number of frames in that intersection of

LENA and human classes.
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LENA® classification accuracy: Recall.

Again, we start with an example to facilitate the interpretation of Figure 3. As seen at

the intersection of human CHI (last row) and LENA® CHN (first column), the best

performance for a talker category for recall is CHN: 50% of the frames humans tagged as

being uttered by the key child were captured by the LENA® under the CHN tag. Among the

remainder of what humans labeled as the key child, 11% was captured by the LENA®

system’s CXN category and 20% by its OLN tag, with the rest spread across several

categories.

This result suggests that an analysis pipeline that uses the LENA® system to capture

the key child’s vocalizations by extracting only CHN regions will get half of the key child’s

speech. If additional manual human vetting is occuring in the pipeline, researchers may find

it fruitful to include segments labeled as CXN, since this category actually contains a further

11% of the key child’s speech. Moreover, as we saw above, 28% of the CXN LENA® tags

corresponds to the key child, which means that human coders re-coding CXN regions could

filter out the 72% that do not, if finding key child speech were a top priority.

Many researchers also use the LENA® as a first pass to capture female adult speech

through the FAN label. Only 32% of the female adult speech can be captured this way.

Unlike the case of the key child, missed female speech is classified into many of the other

categories, and thus there may not exist an easy solution (i.e., one would have to pull out all

examples of many other categories to get at least half of the original female adult). However,

if the goal is to capture as much of the female speech as possible, a reasonable solution

would be to include OLN regions, since these capture a further 28% of the original female

adult speech and, out of the OLN tags, 20% are indeed female adults (meaning that if

human annotators are re-coding these regions to find further female adult speech, they would

filter out 80% of the segments, on average).
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For the remaining two speakers (MAL, OCH), recall averaged 31%, meaning that a

third of male adult and other child speech is being captured by LENA®. In fact, most of

these speakers’ contributions are being tagged by LENA® as OLN (mean across MAN and

CXN 26%) or TV (mean across MAN and CXN is 10%), although the remaining sizable

proportion of misses is actually distributed across many categories.

Finally, as with precision, the “far” categories show worse performance than the “near”

ones. It is worth noting that it is always the case that a higher percentage of frames is

captured by the near rather than the far labels. For instance, out of all frames attributed to

the key child by the human annotator, 50% were picked up by the LENA® CHN label

whereas essentially 0% were picked up by the LENA® CHF label. This result provides

further support that when sampling LENA® daylong files using the LENA® software, users

likely need not take the “far” categories into account.

LENA® classification accuracy: Agreement using Cohen’s κ.

Given results above suggesting that our coding of electronics may not have coincided

with the LENA® system’s, and that “far” categories are inaccurate, in this analysis we only

consider the following labels for LENA®: CHN, FAN, MAN, and CXN (all others are

collapsed into an Other category); and the following labels for human annotators: FEM,

MAL, CHI, OCH (all others are collapsed into an Other category). This analysis revealed a

Cohen’s κ estimated at K(8580000) = 0.44, weighted κ estimated at K(8580000) = 0.46.

Derived counts’ accuracy. The accuracy of derived counts (CVC, CTC, AWC) is

represented graphically in Figure 4, statistics are provided in Table 6, and error metrics in

Table 7.

For CVC, there is a strong association between clip-level counts estimated via the

LENA® system and those found in the human annotation, which is not much affected when

only clips with some child speech (i.e., excluding 345 clips with 0 counts in both LENA® and
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human annotations) were considered. This suggests that the LENA® system captures

differences in terms of number of child vocalizations across clips rather well. The error

analyses reveal that, generally speaking, LENA® has a slight tendency to underestimate

vocalization counts, particularly when only clips with some child speech are considered. This

understimation, however, is not systematic, and cumulating errors using the absolute error

rate suggests that the deviation from the actual counts might be quite significant.
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Figure 4 . Child Vocalization Counts (CVC), Conversational Turn Counts (CTC), and Adult

Word Counts (AWC) according to LENA (x axis) and humans (y axis). Each point represents

the counts totaled within a clip. The solid line corresponds to a linear regression fit to data

from all clips; the dashed line corresponds to an analysis excluding clips where both the

human and LENA® found zero counts. The x and y ranges have been adjusted to be equal

regardless of the data distribution.

As for CTC, the association between clip-level LENA® and human CTC was weaker

than that found for CVC, particularly when only clips with some child speech (i.e., excluding

208 clips with 0 counts in both LENA® and human annotations) were considered. Inspection

of errors and error rates reveals that LENA® tends to underestimate turn counts, which is

particularly clear when excluding clips with no turns. As with CVC, the bias varied across

clips leading to a substantial cumulative absolute error rate.
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Table 6

Number of clips (N) and

corresponding Pearson r coeffecient

for CVC, CTC, and AWC. ’N all’

and ’r all’ are computed over all

clips. ’N’ and ’r’ represent non-null

clips only (i.e., having some

vocalizations, turns, and adult words

respectively).

N all r all N r

CVC 757 0.728 343 0.613

CTC 757 0.567 206 0.351

AWC 589 0.762 301 0.698

The association between clip-level LENA® and human AWC in the four English-spoken

corpora was strong, even when only clips with some adult speech (i.e., excluding 303 clips

with 0 counts in both LENA® and human annotations) were considered. This suggests that

the LENA® system captures differences in terms of number of AWC across clips well. Error

analyses for AWC reveal a different pattern from before, as the system exhibits a slight

tendency to over-estimate AWC. However, this trend was inconsistent, leading to the highest

absolute error rate metric among the three derived counts.

Effects of age and differences across corpora. The preceding sections include

overall results collapsing across corpora. However, it is possible that performance would be

higher for the corpora collected in North America (BER, WAR, SOD) than those collected in

other English-speaking countries (L05) or non-English speaking populations (TSI).

Additionally, our age ranges are wide, and in the case of TSI children, some of the children
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Table 7

Mean (range) for each type of error estimate for CVC, CTC, and AWC. Error

estimates are: E (error; NL-NH, where NL means the count according to LENA and

NH the count according to the human), E-0 (error excluding clips with a zero count

according to human or system analysis), ER (error rate; (NL-NH)/NH*100, in

percent of the total), and AER (absolute ER; abs(NL-NH)/NH*100, in percent of the

total, with abs meaning that we take the absolute); ER and AER exclude clips where

the human count is zero.

E (range) E-0 (range) ER % (range) AER % (range)

CVC -3 (-37,14) -6 (-35,14) -39 (-100,650) 74 (0,650)

CTC -2 (-41,15) -5 (-41,15) -29 (-100,1200) 94 (0,1200)

AWC -1 (-211,157) -1 (-211,157) 54 (-100,7400) 124 (0,7400)

are older than the oldest children in the LENA® training set. To assess whether accuracy

varies as a function of corpora and child age, we fit mixed models. We report on key results

here; for the full model output and additional analyses, please refer to our online

Supplementary Materials (https://osf.io/zdg6s).

Are there differences in false alarm, miss, and confusion rates as a

function of corpus and child age?

Figure 5 represents identification error rate as a function of age and corpus for

individual children. To test the possible impact of age and corpus statistically, we predicted

false alarm, miss, and confusion rates in the analysis with all “Far” categories, TVN/ELE,

and OLN/OVL mapped onto Other (which yielded the best results in Section “False alarms,

misses, confusion” above.) Our predictors were corpus, child age, and their interaction as

fixed effects, and child ID as a random effect. We followed up with a Type III ANOVA to

assess significance.

https://osf.io/zdg6s
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Figure 5 . Identification error rate as a function of corpus and child age. Each point represents

the median over all clips extracted from the data of one child. Color and shape indicates

corpus: BER in blue circles, L05 is green triangles, SOD in black squares, TSI in gray pluses,

and WAR in purple crossed squares. A number of the children had a median identification

error rate of zero due to the fact that they had many clips in which there was no speech, and

LENA had no false alarms, pulling the median to zero.

Corpus, child age, and their interaction were never significant, with the exception of

confusion, where the interaction between corpus and age was significant at α=.05. To

investigate this effect further, we fit a mixed model predicting confusion rates from child age

as fixed and child ID as random effects on each corpus separately. This revealed a main

effect of age for SOD only (Chisq (1) = 14.53, p = < .001; all other chi-squares were smaller

than 14.53, p > .120).
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Table 8

Results of Type III ANOVAs on false alarms (FA),

misses (M), and confusions (C): Chi-square

(degrees of freedom), followed by * if the relevant

factor is significant (p<.05).

FA M C

Intercept 0.21 (1) 6.21 (1) * 4.88 (1) *

Corpus 1.98 (4) 3.16 (4) 3.65 (4)

Age 0.06 (1) 0.02 (1) 0.13 (1)

Corpus*Age 0.87 (4) 2.33 (4) 14.39 (4) *

Are there differences in CVC accuracy as a function of corpus and child

age?

For CVC, we fit a mixed model where manually-annotated CVC was predicted from

LENA® CVC, in interaction with corpus and age, as fixed factors, and child ID as a random

effect. Results are summarized in Table 9 (for CVC, CTC, and AWC). Only effects and

interactions involving the LENA® predictor are relevant to the present work, and will be

discussed here. A Type III ANOVA found a main effect of LENA® CVC, because this was a

good predictor of the human CVC.

Are there differences in CTC accuracy as a function of corpus and child

age?

For CTC, we fit a mixed model where CTC according to the human was predicted

from CTC according to LENA®, in interaction with corpus and age, as fixed factors,

declaring child ID as a random effect. This time our Type III ANOVA found a main effect of

the LENA® CTC estimates, as well as an interaction between this factor and corpus. We
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followed up on this by fitting a model where CTC according to the human was predicted

from CTC according to LENA® as fixed and child ID as random factor, for each corpus

separately. Inspection of these results (full output available from the Supplementary

Materials, https://osf.io/zdg6s) suggests that the interaction emerged because the predictive

value of LENA®’s CTC with respect to human counts was stronger for some corpora

(Chi-squares for ROW 174.71, BER 107.49, and TSI 99.80) than others (Chi-squares for

WAR 57.29, and SOD 30.91; all degrees of freedom are 1, and p < .001).

Are there differences in AWC accuracy as a function of corpus and child

age?

Finally, for AWC (which was only analyzable for the four ACLEW corpora), we fit a

mixed model where AWC according to the human was predicted from AWC according to

LENA®, in interaction with corpus and age, as fixed factors, declaring child ID as random

effect. The Type III ANOVA revealed, in addition to a main effect of the LENA® AWC

estimates, a three-way and both two-ways interactions involving the LENA® predictor, which

were investigated by fitting additional mixed models to each corpus separately. An

interaction between LENA® AWC and age was found for BER/WAR as well as SOD, due to

a decreased predictive value of the LENA AWC with respect to the human AWC for older

infants in BER and WAR but an increase with age in SOD. However, it should be noted

that the association between LENA and human AWC was significant and positive for all four

corpora.

Discussion

The aim of the present study was to assess LENA® accuracy across key outcome

measures: speaker classification accuracy, Child Vocalization Counts (CVC), Conversational

Turn Counts (CTC), and Adult Word Counts (AWC). We did this using an approach that

https://osf.io/zdg6s
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Table 9

Results of Type III ANOVAs when predicting human counts

(CVC, CTC, AWC) from LENA counts in interaction with

age and corpus: Chi-square (degrees of freedom), followed by

* if the relevant factor is significant (p<.05).

CVC CTC AWC

Intercept 5.34 (1) * 0.04 (1) 0 (1)

LENA 8.61 (1) * 19.1 (1) * 46.23 (1) *

Age 0.79 (1) 0.54 (1) 0.6 (1)

Corpus 8.18 (4) 3.41 (4) 1.71 (3)

LENA*Age 0 (1) 2.28 (1) 10.51 (1) *

LENA*Corpus 8.53 (4) 11.9 (4) * 15.7 (3) *

Age*Corpus 5.99 (4) 4.06 (4) 1.59 (3)

LENA*Age*Corpus 6 (4) 4.75 (4) 18 (3) *

sought to avoid inflating accuracy estimates in several ways. Methodologically, we used

random or periodic sampling to select portions of the files for manual annotation, and our

human annotators did not see the LENA® segmentation. Analytically, we considered both

speech and non-speech classes (including electronic sounds and silence/Other). This

permitted a systematic, extensive, and independent evaluation of LENA®’s key automated

metrics. We also tested generalizability by analyzing LENA®’s performance across five

different corpora: three based on the same population, language, dialect, and age group that

LENA® was established for, and trained on (North American English); one that allowed us

to test how accurately it captured a different dialect of English (UK English); and one that

tested its performance in a totally different recording situation (a rural setting with large

families and many children present, speaking a linguistically unrelated language, and where

the key children were, on average, somewhat older). We begin by recapping our key results.
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Our first set of analyses tested overall accuracy, using established speech and talker

segmentation metrics (false alarm rate, miss rate, confusion rate, and the composite

identification error rate), and evaluated the pattern of errors in more detail, by assessing how

LENA® and human annotators agreed (precision and recall). The identification error rate

was relatively high (global 79, 106, and 122%), mainly due to a high miss rate (missing or

excluding speech that was there; 56, 24, and 22%). The false alarm rate (identifying

non-speech/silence as speech; 13, 44, and 58%) and confusion rate (identifying voice type; 11,

38, and 42%) were low.

To put these numbers in context, we asked the ACLEW project members to share with

us preliminary results of their ongoing inter-rater reliability study. This study covers six

corpora, including the four ACLEW corpora used here. For their reliability analyses, they

considered the “gold” to be the original complete annotations, and the “system” the

reliability annotations, which were done later and in only a subset of the corpus (one minute

per day-long recording, for a total of 60 minutes across their six corpora). While we cannot

report on these results in full because their publication is intended elsewhere, we can state

the following overall observations. Among two human annotators, the ACLEW team

reported an identification error rate of 56% (due to 20% false alarms, 19% miss rates, and

17% of confusion); for the four databases included here, the average identification error rate

was 47%. This is considerably lower than the identification error rates reported for LENA®

here (best case scenario yielding a identification error rate of 79, 106, and 122%), mainly due

to a much lower miss rates, whereas both false alarm rates and confusion rates are higher

across the two human coders. Inspection of false alarms and misses suggests the

disagreement across humans emerges when there is background speech, that one coder may

pick up on and not the other.2

2Taking all categories together, Cohen’s κ agreement was .64 (weighted κ .65) for the ACLEW inter-rater

reliability coding on all six ACLEW datasets, which is higher than the best case scenario for LENA (.46).
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Another question is how LENA® fares compared to other automatic systems. Our

thorough review of the literature revealed that no previous report is comparable: Most often,

the data used is considerably different (and overall easier; e.g., recorded in formal settings,

with a small number of speakers, who produce long vocalizations); moreover, previous

research tends to overestimate performance by using lax evaluation criteria (e.g., allowing

errors in a “collar” around each vocalization). The most comparable data point comes from

the DIHARD Challenge (Ryant et al., 2019). DIHARD employed data from a range of

domains, including daylong recordings; in fact, they used a different selection of data from

the BER corpus used here. The subset of BER used for DIHARD is likely to lead to lower

error rates because they selected only files that contained some speech; by excluding files

with little to no speech, they prevent the appearance of very high diarization error rates

(which emerge when the numerator, i.e. the amount of speech, is very small). Thus, the

DIHARD reanalyses are likely to overestimate the systems’ performance in terms of data

selection. Their evaluation, however, was as strict as ours, with no leeway or collar.

Diarization error rates for the BER subset by systems submitted to DIHARD 2019 varied

between 48% and 121%, with a median around 70%. Thus, LENA® is competitive with

respect to state-of-the-art systems, although some of them do score considerably better.3

Returning to the LENA® system results, the overall error rate can be fruitfully

interpreted by considering performance on individual speaker tags. In terms of precision (to

what extent do LENA® tags contain what they say they contain), the system performed

relatively well at identifying female voices (60% of frames tagged by LENA® as FAN were

coded as female adult by the human coders), and the target child (61% of frames tagged by

LENA® as CHN were correct). However, the system performed substantially worse with

3DIHARD uses diarization error rate on individual speakers’ identities, rather than identification error

rates on speaker types as we do here. There is no mathematical procedure to derive one from the other,

except in the case when there is one speaker per speaker type, in which case diarization error rate is most

likely identical to identification error rate.
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other talker types (e.g. 43% and 28% for MAN and CXN, respectively); that is, less than a

half of the frames that LENA® tagged as being speech spoken by these speakers actually

correspond to them.

To get a sense of how these results compare to multiple human coders, we also asked

about precision and recall in the reliability data from the ACLEW team. Across all six

corpora, precision for key child was the highest, at 80%; for the other speakers it was: 72%

female adult, 72% male adult, and 65% other child. Precision is higher and more similar

across speaker types in the ACLEW reliability data than in our LENA®-human comparison

here.

In terms of recall (how accurately LENA® captured the human annotations),

performance for the key child’s vocalizations was moderately robust: 50% of the frames

humans attributed to the key child were captured by LENA® under the CHN tag. However,

recall was poorer for the other three talker types, at around 31-32%. As for recall in the

ACLEW reliability data, the key child score was 79%; for the other speakers it was: 71%

female adult, 63% male adult, and 55% other child. Thus, although we see lower recalls for

male adults and other children in both, the overall level of recall is much higher across two

human coders than between LENA® and human, mainly due to LENA®’s tendency to miss

speech more than humans do. This is, however, sensible for a system aimed at analyzing

day-long recordings, which contain long stretches of silence.

Our second set of analyses tested the accuracy of three of the aggregated counts

automatically provided by LENA®, namely CVC, CTC and AWC. We found relatively high

correlations between clip-level counts estimated via the LENA® system and those from the

human annotations for AWC and CVC, with weaker performance for CTC.

However, such correlational analyses do not establish whether LENA® systematically

over- or under-estimates. For this we examined several types of error estimates. For overall

error estimates (i.e., how far was the LENA® count from the human annotators’), the means
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across clips for CVC, CTC, and AWC was an encouraging -3.32,-1.85, and -1.04, respectively.

These low errors were not solely due to many clips lacking vocalizations, turns, or adult

words altogether, because when we exclude such clips we still get what seem to be low errors:

means were -6.46,-5.08, and -0.67 for CVC, CTC, and AWC respectively.

We also put these error patterns in context by taking into account how large the

counts were to begin with. Such error rates, however, are only defined for files which,

according to the human, contain at least one unit (otherwise, we divide an error of a certain

size by zero, which is undefined). We find error rates suggesting that LENA® counts are off

by between a third or a half of the original counts. Inspection of the sign in these rates

indicates that, by and large, LENA® systematically underestimates the raw counts of its

main quantitative measures - particularly child vocalizations and conversational turns, and

to a lesser extent, adult words, which showed more erratic error patterns. In addition, the

absolute error rate analysis, which prevents under- and over-estimations from cancelling each

other out, reveals rather considerable errors.

Finally, we also inspected the extent to which LENA® performance was affected by

dialect, language, and child age in a final set of analyses. We would like to be tentative about

the interpretation of these results, because we only have about 10 children, often varying

widely in age, in each corpus, with some mismatch in age range across corpora (see Table 2).

This means that we did not have a great deal of power to capture true differences across

corpora and that we may have some spurious effects or interactions due to chance differences.

With all these caveats in mind, we predicted that performance would be higher for the

corpora collected in North America (BER, WAR, SOD) than for corpora collected in other

English-speaking countries (L05) or non-English speaking populations (TSI), and that

accuracy would decrease with age, since our sample contains children older than those

included in the LENA® training set. This is not what we found. For instance, we found an

interaction between corpus and age for the confusion rate, due to an increase in confusion
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rates for older infants within the SOD corpus but not in any of the others, a result that we

have no ready explanation for, and which may be a spurious result given the sample size (10

recordings from 9 children, in this corpus). Similarly, LENA® counts predicted human counts

in the CVC, CTC, and AWC analyses, and although we did observe some interactions, none

of them were easy to interpret and none explained away the predictive value. As just

mentioned, we are cautious when interpretating these results, and invite further work on

bigger samples (more data per child, more children per corpus) to ensure sufficient power

and precision.

In general, whether LENA® results are “good enough” depends largely on the goals of

each particular study. For example, we can describe precision rates of 60% (i.e., 60% of

frames tagged by LENA® as FAN were coded as female adult by human coders) and 61%

(i.e., 61% of frames tagged as target child were also tagged as such by human coders) as

being reasonably good, because they are much higher than the system’s precision rates for

other speakers (MAN 43%, CXN 28%). Although they are lower than what may be found

across two human raters, some additional level of error may be expected in an automatic

system. Notice saliently that, despite having been created over a decade ago, the global

performance of LENA® was competitive when compared to state of the art diarization

systems. That said, whether a particular accuracy rate can be considered sufficient will

depend on the purpose of the study. As a result, we next provide a set of recommendations

to help researchers make this determination for their goals.

What research goals can one pursue given the performance of LENA®

segmentation and metrics? In the present corpora, the system’s false alarm rate (i.e.,

identifying speech where there was none) was very low while its miss rate (missing speech

that was actually there) was relatively high. This makes LENA® more suitable for studies in

which it is extremely important not to “invent” speech that is not there but less suitable for

studies in which capturing most, if not all, of the speech produced is crucial. Based on these
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findings, LENA® would be a good tool for finding “high talk volume” parts of the day for a)

careful further transcription (e.g. of low-frequency events like a certain grammatical

construction of interest), b) annotation of specific speech characteristics (e.g. mean length of

utterance), or c) comparing relative talk volume across samples. However, we advise caution

in using LENA® when raw quantity of speech is crucial for the research question, or when

small differences in talk volume might have very significant theoretical consequences; this is

often the case in clinical populations where children’s own vocalizations can be an important

diagnosis-relevant characteristic (e.g., in children who are deaf or hard of hearing, individuals

with ASD, speech apraxia, etc.).

Similarly, although the overall confusion rate (i.e. incorrectly identifying talkers, such

as giving a “female adult” tag for a “child” utterance) for LENA® was very low, this does

not fully convey the level of accuracy for speech, particularly when considering every talker

type. In terms of precision, the system’s female adult and key child categorization was quite

accurate, whereas precision was lower for male adults and other children: the majority of the

frames labeled as male adult or other children did not in fact contain speech by these

speaker types. In terms of recall, LENA® was fairly good at capturing speech by the key

child as such, but recall was lower for the other talker categories.

We, thus, recommend caution before undertaking any analyses that rely on the

accuracy (precision and/or recall) of male adult and other children’s speech. For example, if

the goal is simply to calculate an overall adult word count (AWC), summing over male and

female adult speakers, some confusion between MAN and FAN is likely not problematic.

However, if the goal of the study is to compare the relative input from fathers and mothers,

LENA® tags are relatively unreliable and in our view, merit further manual vetting in most

use cases.

As another example (detailed further in the “Recall” results above), if the goal is to

capture as many of the key child’s vocalisations as possible, it might be worthwhile to pull



LENA EVALUATION 42

out segments LENA® labelled as non-target child, CXN, (of which 23% was target child

speech) as well, with human coders brought in to filter out non-target child speech. Indeed,

we find that this kind of binary classification (key child or not) can be readily undertaken

with little training by research assistants in our labs, and would substantially boost data

quality and quantity for child vocalizations in this use case.

Notably, while we recommend LENA® users be cautious in their use of LENA®

identification and classification, especially for certain talker classes, our results for LENA®

count metrics suggest these derived counts may be accurate enough to serve well across a

large variety of uses. To begin with, as far as it is possible to generalize from a small sample

from a handful of corpora, it seems that the system does not perform a great deal worse for

children who do not correspond to the LENA® training set. Moreover, correlations between

human and LENA® clip-level counts were high, suggesting that the software accurately

captures differences in counts across clips (even when absolute error rates were also high).

Except for CTC, these correlations remained quite high even when clips with counts equal to

zero were removed from consideration, suggesting that LENA® captures gradience in

vocalization and adult word counts.

However, our finding that LENA® generally underestimates the quantity of child

vocalizations and child-adult turns deserves further consideration. Further work is needed to

fully understand the nature and extent of this limitation. Our clips were 1–2 minutes in

length, and therefore they either tended to have very little speech or a lot of it. Error rates

over hours could be smaller, because local errors average out; or greater, if the LENA®

system systematically underestimates counts. In a LENA® technical report, AWC accuracy

was variable across two 12-hour recordings: 1% lower than human transcription for one child,

but 27% lower for a second child. This same report notes that AWC accuracy quickly

plateaus as recording time increases beyond one hour, leveling to 5-10% in recordings greater

than 2 hours in length (D. Xu et al., 2009). If underestimates are systematic (as suggested
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by present results for CVC and CTC, but not AWC), it may be possible to develop a

correction factor to compensate for this bias.

How to test the reliability of the automated output provided by LENA®.

We hope the current paper inspires others to evaluate and report all aspects of the system,

rather than a subset of metrics. Similarly extensive evaluations of LENA® in other corpora

would bolster the validation literature, and be useful for the whole research community. In

fact, it would be ideal if researchers systematically test the reliability of LENA® counts in

their own samples, especially if they are collecting data from families living in different

environments from those assessed here. Next, we provide some guidelines for how to go

about this. Note that this requires downloading the audio (.wav) file generated by LENA® as

well as the corresponding LENA® output file.

First, we recommend a literature search [starting from A. Cristia et al. (2019)’s a

systematic review], to determine whether there exists reliability data for a similar sample. If

no reliability studies exist, draw 10 x 2 minutes randomly from 10 children. This is about

3h20min of data, which takes roughly 90h to annotate, in our experience. We recommend

training annotators using the ACLEW Annotation Scheme https://osf.io/b2jep/, which has

an online test annotators can go through to ensure reliability. Once the manual annotations

are complete, the LENA® annotations can be extracted and compared against the human

annotation using the code we provide in supplementary materials

(https://github.com/jsalt-coml/lena_eval). This will allow researchers to extract the

classification accuracy measures used here (false alarm rate, miss rate, confusion rate and the

derived identification error rate), as well as CVC, CTC, and AWC comparing LENA® and

human annotations. We note re-using our code is only possible “off the shelf” for manual

annotations made using the ACLEW Annotation Scheme, though in principle, it is

adaptable to other schemata by adept programmers.

One issue that may arise is whether data should be sampled differently to, for example,

https://osf.io/b2jep/
https://github.com/jsalt-coml/lena_eval
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make sure every class is represented the same amount of time and/or a minimum of time.

Our understanding is that class imbalance and data scarceness is an important issue for

training, and directly affects algorithm accuracy (this is a general problem, but to cite just

one example on GMMs, Garcia-Moral, Solera-Urena, Pelaez-Moreno, & Diaz-de-Maria, 2011).

However, it does not pose the same kind of problem for evaluation. That is, if there are no

samples of a given category, then accuracy cannot be evaluated; if there are only a few, then

it is possible that these are special in some way and accuracy estimates may not generalize

well to others. Thus, it would indeed be desirable to have enough samples of a given label to

reduce the impact of each individual instance, in case they are outliers. That said, almost

any strategy that attempts to boost the frequency of specific categories risks worsening

non-generalizability concerns. For instance, if one were to over-sample regions tagged by

LENA® as MAN in the hopes of having more male samples, one may only be capturing

certain types of male speech or acoustic properties. To take this example further, notice that

male speech is our smallest category, representing 3% of the data. Since we sampled

randomly or periodically, this represents the prevalence of male speech and the samples that

are included are unlikely to be acoustically biased.

Separately, researchers should reflect about the accuracy needed for their question of

interest. For instance, suppose we have an evaluation of an intervention where we expect

treatment children to hear 20% more speech than controls, or an individual difference study

where we expect that the lower fifth of the children hear 20% less speech than the top fifth.

If the intended measure used to compare groups has an error rate larger than the effect

predicted (such as the the CTC error rate we find here), a different algorithm or outcome

metric would be wise.
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Conclusions

In conclusion, in this study, we have provided a broad evaluation of accuracy across the

key outcome measures provided by LENA® (classification, Child Vocalization Counts,

Conversational Turn Counts, and Adult Word Counts), in a sample of data drawn across

different dialects, languages, ages, and socio-cultural settings. We have provided some

recommendations for how to use LENA® in future studies most effectively, and how to test

the accuracy of the LENA® algorithms on particular samples of data.

There are, however, a number of areas of research that we have not addressed. For

example, we have not investigated how accurately LENA® detects individual variation across

children or families. It would be particularly useful to know whether LENA® can classify

children with the sensitivity and specificity needed for accurate identification of language

disorders. Oller et al. (2010) used LENA® to differentiate vocalizations from 232 typically

developing children and children with autism or language delay with a high degree of

accuracy. However, key to this was the use of additional algorithms, not yet available from

LENA®, to identify and classify the acoustic features of “speech-related vocal islands”.

Further work (including shared code) would greatly bolster progress on this topic.

Even if it turns out that LENA® is not accurate enough to classify children precisely

for a given ability or diagnosis, it may be accurate enough to capture the rank order of

individual children’s language growth, which can provide useful information about the

relative language level of children in a sample or population (see, e.g., Gilkerson et al., 2017).

Similarly, LENA® may not accurately capture the precise number of child vocalisations

produced over time, but it may track developmental trajectory (e.g., the slope of growth)

relatively well. Finally, although our results suggest that aspects of the system’s output may

be relatively robust to differences across languages and dialects, we need more evidence of

how it fares across mono- and multi-lingual language environments (cf. Orena, 2019).
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It is undeniable that children learn language from the world around them. Naturalistic

daylong recordings offer an important avenue to examine this uniquely human development,

alongside other fundamental questions about human interaction, linguistic typology,

psychology, and sociology. Tools and approaches that allow us to tap such recordings’

contents stand to contribute deeply to our understanding of these processes. We look

forward to further work that addresses the many remaining questions within this area.
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