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`1-spectral clustering algorithm: a spectral clustering method
using `1-regularization

Camille Champion · Magali Champion · Mélanie Blazère · Rémy

Burcelin · Jean-Michel Loubes

Abstract Detecting cluster structure is a fundamental

task to understand and visualize functional characteris-

tics of a graph. Among the different clustering methods

available, spectral clustering is one of the most widely

used due to its speed and simplicity, while still being

sensitive to perturbations imposed on the graph. In this

paper, we present a variant of the spectral clustering

algorithm, called `1-spectral clustering, based on Lasso

regularization and adapted to perturbed graph models.

Contrary to the spectral clustering, this procedure does

not require the use of the k-means: it detects the hid-

den natural cluster structure of the graph by promoting

sparse eigenbases solutions of specific `1-minimization

problems. The effectiveness and robustness to noise per-

turbations of the `1-spectral clustering algorithm is con-

firmed through a collection of simulated and real bio-

logical data.

Keywords Unsupervised learning · Spectral cluster-

ing · `1-penalty · Biological networks
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Université Paul Sabatier (UPS), UMR1297, Institut des Mal-
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1 Introduction

Graphs play a central role in complex systems as they

can model interactions between variables of the system.

They are commonly used in a wide range of applica-

tions, from social sciences (e.g. social networks (Hand-

cock and Gile, 2010)) to technologies (e.g. telecommu-

nications (Smith, 1997), wireless sensor networks (Aky-

ildiz et al., 2002)) or biology (gene regulatory networks

(Davidson and Levin, 2005), metabolic networks (Jeong

et al., 2000)). One of the most relevant features when

analyzing graphs is the identification of their underlying

structures, such as cluster structures, generally defined

as connected subsets of nodes that are more densely

connected to each other than to the rest of the graph.

These clusters can provide an invaluable help in under-

standing and visualizing the functional components of

the whole graph (Girvan and Newman, 2002; Newman

and Girvan, 2004; Abbe, 2017). For instance, in genet-

ics, groups of genes with high interactions are likely to

be involved in a same function that drives a specific

biological process.

Since the pioneering exploratory works in the early

50s, a large number of clustering methods have launched.

Among them, partitioning algorithms, which include

the well-known k-means (MacQueen, 1967), classify the

present nodes into a predefined number of groups based

on a similarity measure and hierarchical clustering algo-

rithms (Hastie et al., 2001) build a hierarchy of clusters

using dendrogram representations. More recently, spec-

tral clustering algorithms, popularized over years by Shi

and Malik (2000); Ng et al. (2002), particularly draw

the attention of the community research due to their

speed, simplicity and numerical performances. As their

name suggest, spectral clustering algorithms mainly use

the spectral properties of the graph by (i) computing

the eigenvectors of the associated Laplacian matrix (or
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one of its derivatives), which gives information about

the structure of the graph, and (ii) performing k-means

on it to recover the induced cluster structure. As pre-

sented in Luxburg (2007), a large number of extensions

of the original spectral clustering algorithm have been

proposed, with applications to different fields (Zelnik-

Manor and Perona, 2005; Wang and Davidson, 2010; Li

et al., 2019).

While spectral clustering is widely used in prac-

tice, handling noise sensitivity remains a tricky point

(Bojchevski et al., 2017), mainly due to the k-means

algorithm, which is highly sensitive to noise. This is-

sue has been considerably studied with extensions of

the k-means to noisy settings so that it recovers the

cluster structure in spite of the unstructured part of

the input data (Tang and Khoshgoftaar (2004); Pelleg

and Baras (2007)). More generally, the robustness of

spectral clustering algorithms has recently been inves-

tigated for perturbed graphs derived from Stochastic

Block Models (SBM) (Stephan and Massoulié (2019);

Peche and Perchet (2020)).

In this paper, we develop an alternative method

of the spectral clustering, called `1-spectral clustering

algorithm and based on Lasso regularization (Tibshi-

rani et al., 2001). Note that research papers have ex-

plored regularized spectral clustering to robustly iden-

tify clusters in large networks. Although Zhang and

Rohe (2018) and Joseph and Yu (2016) show the effect

of regularization on spectral clustering through graph

conductance and respectively through SBM. Equally,

Lara and Bonald (2020), shows on a simple block model

that the spectral regularization separates the underly-

ing blocks of the graph. In our model, as in the spectral

clustering algorithm, we carefully explore the underly-

ing structure of the graph through the Laplacian ma-

trix spectrum to cluster nodes. However, by directly

promoting a sparse eigenvectors basis solution to an

`1-norm optimization problem, it does not require the

k-means step to extract clustering structures, making

it more robust in highly perturbed graph situations.

The paper is organized as follows: in Section 2, we

introduce some preliminary concepts about graph clus-

tering and more specifically spectral clustering. In Sec-

tion 3 and 4, we present the `1-spectral clustering we

developed, from a theoretical and an algorithmic point

of view. In Section 5, we finally show its efficiency and

accuracy through experiments on simulated and biolog-

ical real data set and compare it with state-of-the-art

clustering methods.

2 Reminders about graph and spectral

clustering

2.1 Graphs modeling and notations

This work considers the framework of an unknown undi-

rected graph G(V,E), with no retroactive loop, consist-

ing of n vertices V = {1, . . . , n} and a set of edges

E ⊆ V × V connecting each pair of vertices. As usual,

the graph G is represented by its associated adjacency

matrix A = (Aij)(i,j)∈E of size n × n, whose non-zero

elements correspond to the edges of G:

∀(i, j) ∈ J1, nK2, Aij =

{
1 if (i, j) ∈ E,
0 otherwise.

As G is undirected with no retroactive loop, the adja-

cency matrix A is symmetric with zero on its diagonal.

Before turning to the next section, we recall some useful

graph definitions.

Definition 1. The degree di of a node i ∈ V of G is

defined as the number of edges that are incident to i:

di =
∑n
j=1Aij. The induced degree matrix D is then

the n×n matrix containing (d1, . . . , dn) on its diagonal

and zero elsewhere:

D = diag (d1, . . . , dn).

Definition 2. A connected component C of G is a sub-

set of nodes from V such that each pair of nodes of

C is connected by a path and there is no connection

between vertices in C and outside C. Connected com-

ponents C1, . . . , Ck are a k-partition of the set V of

vertices if the three following conditions hold:

1. they are non-empty: ∀i ∈ J1, kK, Ci 6= ∅,
2. they are pairwise disjoints:

∀(i, j) ∈ J1, kK2, Ci ∩ Cj = ∅,

3. their union forms the set of all vertices:
k
∪
i=1

Ci = V .

Definition 3. Let C1, ..., Ck be a k-partition of the set

of vertices V of G. Then, the indicators (1Ci)i∈{1,...,k}
of this partition are defined as the vectors of size n,

whose coefficients satisfy, for all i ∈ J1, kK and j ∈
J1, nK:

(1Ci
)j =

{
1 if vertex j belongs to Ci,

0 otherwise.

In the present paper, we assume that the graph G
is the union of k complete graphs, whose set of ver-

tices C1, . . . , Ck forms a k-partition of G. We denote

by c1, · · · , ck their respective size (
∑k
i=1 ci = n). To

simplify, we assume that the nodes, labeled from 1 to

n, are ordered with respect to their block membership

and the size of the blocks. From a matrix point of view,
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the associated adjacency matrix A is a k-block diagonal

matrix of size n× n of the form:

A =



0 1 · · · 1

1
. . .

. . .
.
.
..

.

.
. . .

. . . 1
1 · · · 1 0︸ ︷︷ ︸

c1

0

. . .

0

0 1 · · · 1

1
. . .

. . .
.
.
..

.

.
. . .

. . . 1
1 · · · 1 0︸ ︷︷ ︸

ck


. (1)

2.2 Graph clustering through spectral clustering

Graph clustering consists in grouping the vertices of the

graph G into clusters according to its edge structure.

Whereas some of the most traditional clustering algo-

rithms are based on partitions (e.g. k-means) and hi-

erarchies (e.g. hierarchical clustering algorithm), spec-

tral clustering takes advantage of the spectral proper-

ties of the graph. A large number of spectral clustering

algorithms exists in the literature. The most common

version, presented in (Luxburg, 2007) and recapped in

Algorithm 1 below, uses the properties of the Laplacian

matrix (Definition 4) to detect clusters in the graph.

Definition 4. Given a graph G, the Laplacian matrix

L is defined as:

L = D −A,

where A is the adjacency matrix and D the degree ma-
trix associated to G.

Algorithm 1 Spectral clustering algorithm

Require: G a graph, A its associated adjacency matrix, k̂
number of clusters to build.

1: Compute the Laplacian matrix L = D −A.
2: Perform the spectral decomposition of L and store the k̂

first eigenvectors U := (u1, · · · , uk̂).
3: Cluster U with the k-means algorithm into clusters

C1, · · · , Ck̂.
4: return Clusters C1, · · · , Ck̂.

By definition, the diagonal of L is equal to the de-

grees of the nodes. Moreover, in the ideal case where G
has an underlying partition form with k connected com-

ponents and a block diagonal adjacency matrix A, as

given in (1), the eigenvalue 0 of L is of multiplicity k and

the associated eigenvectors correspond to the indicator

vectors of the k components. These k components can

then be recovered only by performing spectral decom-

position of L. However, in noisy settings, any perturba-

tion caused by introducing and/or removing edges be-

tween and/or inside the components makes k−1 of the

k eigenvalues 0 slightly larger than 0 and changes the

corresponding eigenvectors. The final cluster structure

is thus no longer explicitly represented. The spectral

clustering algorithm then uses the k-means algorithm

on these eigenvectors to discover the hidden underlying

structure, which is hampered by perturbations.

Since the first development of the spectral clustering

algorithm, it has been studied a lot and extended many

times in different communities (Hagen and Kahng, 1992;

Hendrickson and Leland, 1995; Pothen, 1997; Shi and

Malik, 2000; Ng et al., 2002; Zelnik-Manor and Perona,

2005) with powerful results. Refinements include the

use of normalized versions of the Laplacian matrix, such

as the symmetric and the random walk normalized ones

(Luxburg, 2007). Nevertheless, the performances of the

spectral clustering have shown to be very sensitive to

perturbations, which often occurs when dealing with

real data (Bojchevski et al., 2017). To provide more

robustness with respect to perturbations, we thus de-

veloped the `1-spectral clustering algorithm, described

in Section 3.

3 An `1-version of the spectral clustering

In this section, we describe the `1-spectral clustering al-

gorithm we developed as an alternative to the standard

spectral clustering for clustering perturbed graphs. In

this noisy context, to ensure a good recovery of the

connected components, the eigenvectors basis should
be carefully defined. The key point is to replace the

k-means procedure, which fails while the perturbation

grows, by selecting relevant eigenvectors that provide

useful information about the graph structure. As the

spectral clustering algorithm, the `1-spectral clustering

focuses on the spectral properties of the graph.

Let G = (V,E) be a graph formed of k connected

components, as defined in Section 2, and A its asso-

ciated adjacency matrix. We denote by (λi)1≤i≤n the

n-eigenvalues of A, sorted in increasing order:

λ1 ≤ ... ≤ λn,

and v1, ..., vn their associated eigenvectors. We define

by Vk the eigenspace generated by the k largest eigen-

vectors:

Vk := Span(vn−k+1, ..., vn).

In the ideal case, where the graph is not perturbed,

the indicators (1Ci
)1≤i≤k of the connected components

C1, . . . , Ck correspond exactly to the eigenvectors of the
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Laplacian matrix L associated to the eigenvalue 0 of

multiplicity k (see Section 2.2). As regards the adja-

cency matrix A, by definition of L, these indicators cor-

respond this time to the k eigenvectors vn−k+1, . . . , vn,

associated to the k largest eigenvalues λn−k+1, ..., λn.

In the perturbed case, unlike the traditional spectral

clustering, the `1-spectral clustering algorithm does not

directly use the subspace Vk to recover the k connected

components but computes another eigenbasis that pro-

motes sparse solutions, as detailed in the next sections.

3.1 General `0-minimization problem

Propositions 1 and 2 below show that the connected

components indicators (1Ci)i∈{1,...,k} are solutions of

`0-minimization problems.

Proposition 1. The minimization problem

arg min
v∈Vk\{0}

‖v‖0 (P0)

has a unique solution (up to a constant) given by 1C1
.

In other words, 1C1
is the sparsest non-zero eigen-

vector in the space spanned by the eigenvectors associ-

ated to the k largest eigenvalues of A.

Proof. We recall that, for all v ∈ Rn,

‖v‖0 = | {j ∈ J1, nK, vj 6= 0} |.

Let v ∈ Vk\ {0}. As (1Cj
)1≤j≤n ∈ Vk, v can be decom-

posed as v =
∑k
j=1 αj1Cj

where α = (α1, . . . , αk) ∈ Rk
and there exists j ∈ {1, ..., k} such that αj 6= 0. By def-

inition of the `0-norm, we then have:

‖v‖0 = 1α1 6=0c1 + · · ·+ 1αk 6=0ck, (2)

with c1 ≤ ... ≤ ck the sizes of the k connected com-

ponents. The solution of (P0), which minimizes Equa-

tion (2), is thus given by setting α = (α1, 0, . . . , 0) with

α1 6= 0.

Proposition 1 can then be generalized to iteratively

find the indicators associated to the largest connected

components introducing sparsity and orthogonality con-

straints. For i ∈ J2, kK, let Vik refers to:

Vik := {v ∈ Vk, ∀l = 1, . . . , i− 1, v ⊥ 1Cl
} .

Proposition 2. Let i ∈ J2, kK. The minimization prob-

lem

arg min
v∈Vi

k\{0}
‖v‖0 (Pi0)

has a unique solution (up to a constant) given by 1Ci
.

Solving (P0) and (Pi0)2≤i≤k is a NP-hard problem,

which is not computationally feasible. To tackle this

issue, the classical idea consists in replacing the `0-norm

by its convex relaxation, the `1-norm, defined for all

v ∈ Rn as ‖v‖1 =
∑

1≤j≤n |vj |.
In the next section, we show that the solutions of the

`0-optimization problems remain the same by replacing

the `0-norm by the `1-norm, at the price of slight con-

straints on the connected components.

3.2 Relaxed `1-minimization problem

From now on, we assume that we know one represen-

tative element for each component, that is a node be-

longing to each component, denoted by (i1, ..., ik) there-

after. Let Ṽk = {v ∈ Vk, vi1 = 1}. Then, it is straight-

forward to see that the indicator vector of the small-

est component is solution to the following optimization

problem:

Proposition 3. The minimization problem

arg min
v∈Ṽk

‖v‖1 (P1)

has a unique solution given by 1C1
.

Proof. We recall that, for all v ∈ Rn, ‖v‖1 =
∑n
j=1 |vj |.

Let v ∈ Ṽk. As (1Cj )1≤j≤n ∈ Vk, v can be decomposed

as v =
∑k
j=1 αj1Cj

where α = (α1, . . . , αk) ∈ Rk and

there exists j ∈ {1, . . . , k} such that αj 6= 0. By defini-

tion of the `1-norm, we then have:

‖v‖1 = |α1|c1 + · · ·+ |αk|ck, (3)

with c1 ≤ ... ≤ ck the sizes of the k connected com-

ponents. The solution of (P1), which minimizes Equa-

tion (3), is thus given by setting α = (α1, 0, . . . , 0) with

α1 = 1.

To simplify and without loss of generality, we as-

sume that i1 corresponds to the first node. We can then

rewrite (P1) as:

arg min
v∈Rn−1

(1,v)T∈Vk

‖v‖1.

Constraints in (P1) can be converted into the following

equality constraints:

Proposition 4. Let Uk := (v1, ..., vn−k) the matrix

formed by the eigenvectors associated with the n − k-

smallest eigenvalues. We denote by wT its first row and

WT the matrix obtained after removing wT from Uk:

Uk := (v1, ..., vn−k) =

b
wT

WT
b

 (4)
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The minimization problem

arg min
v∈Rn−1

Wv=−w

‖v‖1 (P̃1)

has a unique solution v∗ such that (1, v∗)T = 1C1 .

Proof. Since A is symmetric, its eigenvectors form an

orthogonal basis and, for all v ∈ Vk, we have UTk v = 0.

Let (1, v)T ∈ Vk. Using Equation (4), we deduce that:

UTk

(
1

v

)
= w +Wv = 0.

The constraint in (P̃1) is thus equivalent to the con-

straint in (P1), which ends the proof.

3.3 Generalization of the relaxed `1-minimization

problem

Obviously, the indicator vector 1C1
alone is not suffi-

cient to know the complete graph structure. However,

Proposition 4 can be extended to find the remaining

indicator vectors. To do so, as in Proposition 2, we add

the constraint that the target vector is orthogonal to the

previously computed vectors, which is done in practice

by applying a Gram-Schmidt orthonormalization pro-

cedure (see Section 4 below for more details about the

procedure).

4 The `1-spectral algorithm

4.1 Global overview of the algorithm

In this section, we present a global overview of the

`1-spectral clustering algorithm we implemented to re-

cover the components of a perturbed graph (see Algo-

rithm 2 below). It is available as an R-package on CRAN

at https://cran.r-project.org/web/packages/l1spectral.

In the next paragraphs, details about the algorithm and

parameters setting are given.

4.2 Solving the `1-minimization problem

This section is devoted to the resolution of the con-

strained `1-optimization problem (P̃1) (line 6 of Algo-

rithm 2). To be simplified, it can be equivalently written

as the following penalized problem:

arg min
v∈Rn−1

‖Wv + w‖22 + λ‖v‖1, (PLasso)

where, for all v ∈ Rn−1, ‖v‖22 =
∑n−1
j=1 v

2
j and λ > 0 is

the regularization parameter that controls the balance

between the constraint and the sparsity. Two methods

are proposed thereafter to solve (PLasso).

Algorithm 2 `1-spectral clustering algorithm

1: Input: G a graph, A its associated adjacency matrix, k̂
number of clusters to recover and (ij)j∈{1,...,k̂} family

of representative elements of each cluster.
2: Perform the spectral decomposition of A, sort the eigen-

values by increasing order and store the associated eigen-
vectors: V := (v1, ..., vn).

3: for j = 1 to k̂ do
4: Define Uk̂,j as the matrix that contains the n−k̂−j+1

first columns of V :

Uk̂,j := (v1, ..., vn−k̂−j+1).

5: Split Uk̂,j into two parts:wT := U
ij

k̂,j
the ij-th row of Uk̂,j ,

WT := U
−ij

k̂,j
the other rows of Uk̂,j .

6: Solve the `1-minimization problem (P̃1):

v∗ := arg min
v∈Rn−1

Wv=−w

‖v‖1.

7: Recover the indicator of the j-th component:

1̂Cj
= (v∗1 , . . . , v

∗
ij−1, 1, v

∗
ij
, . . . , v∗n).

8: Update vj in V : vj ← 1̂Cj
.

9: Perform Gram-Schmidt orthogonalization on V to en-
sure orthogonality between vj and the rest of the
columns of V :

V ← Gram-Schmidt(V ).

10: end for
11: Output: (1̂Cj

)1≤j≤k̂ the indicators of the k̂ connected
components.

Lasso solution enrg

The most traditional method to deal with such an `1-

minimization problem is the Lasso procedure, devel-

oped by Tibshirani (1996). As for all regularizing meth-

ods, the choice of λ is of great importance. Here, espe-

cially, taking λ too large will lead to an over-constrained

problem and a large number of nodes of G may not be

clustered into components. In practice, K-fold cross-

validation, as implemented in the glmnet R-package,

can be used to optimally set λ.

Thresholded least-squares solution enrg

Another method consists in solving the least-squares

problem:

v∗ := arg min
v∈Rn−1

‖Wv + w‖22,

https://cran.r-project.org/web/packages/l1spectral
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and then thresholding v∗ given some predefined thresh-

old t:

∀j ∈ J1, n− 1K, v∗j =

{
1 if v∗j > t,

0 otherwise.

Of course, this thresholding step imposes sparsity

on the solution. However, we can wonder if nodes with

large coefficients should really be clustered together. In

our model, the ideal parameters to recover (indicators

of the components) do not take continuous values. En-

forcing the coefficients of all representative elements to

be equal to 1, under small perturbations, the coeffi-

cients of all other nodes belonging to the same com-

ponents should then be close to 1. This specific be-

havior is underlined in Figure 1. In this example, we

generated a graph G with 50 nodes, split into 5 con-

nected components. We perturbed the structure of the

graph by adding and removing edges with a probability

p of 1%, 10%, 25% and 50%. We then solved (PLasso)

to recover the first component only. As can be seen

in Figure 1, the Lasso and thresholded least-squares

solutions give almost the same results: for small per-

turbations (p ≤ 10%, at the top), the whole compo-

nent is perfectly retrieved. For p = 25% (at the bottom

left), all coefficients are tighter but both methods still

work, wrongly adding few nodes. As the perturbation

becomes too large (p = 50%, at the bottom right), the

selection of nodes belonging to the first component fails.

4.3 Optimally tuning the number of clusters

Traditional clustering algorithms, such as k-means, re-

quire the user to specify the number of connected com-

ponents of the graph G to recover, which is, in practice,

unavailable. Determining the optimal number of com-

ponents k̂ thus becomes a fundamental issue. A large

number of methods have been developed in this sense:

the hierarchical clustering for example looks for a hi-

erarchy of components using dendrograms. The Elbow,

average silhouette and gap statistic methods (Tibshi-

rani et al., 2001) are also frequently used in addition to

clustering techniques.

In our work, as proposed by Luxburg (2007), we fo-

cus on the heuristic eigengap method, which consists in

choosing k̂ such that it maximizes the eigengap, defined

as the difference between consecutive eigenvalues of the

Laplacian matrix L. This procedure is particularly well-

suited in a spectral context. Indeed, in the ideal case,

perturbation theory ensures that there exists a gap be-

tween the eigenvalue 0 of multiplicity k and the next

k + 1-th one. In the perturbed case, while being less

strong, an eigengap still exists.

4.4 Finding the representative elements

In addition to the number of connected components,

to run the `1-spectral clustering algorithm, we need to

know at least one representative element of each compo-

nent. This assumption may be restrictive when working

with real data. However, it makes sense in a large num-

ber of situations where clusters are chosen to classify

nodes around specific elements of the graph.

To avoid an arbitrary choice of such elements, one

solution consists in estimating them using a rough par-

titioning algorithm. Another solution is to explore the

structure of the graph to find hubs of densely connected

parts. In this work, this is done by computing the be-

tweeness centrality score of all nodes. In graph theory,

the betweeness score Sb measures the centrality of a

node based on the number of shortest paths passing

through it:

∀` ∈ J1, nK, Sb(`) =∑
1≤i,j≤n

# shortest paths from i to j

# shortest paths from i to j passing through `
.

In practice, the representative elements of the k com-

ponents are chosen to maximize this score.

Note that the nodes with the highest betweeness

scores should be those that connect the densest parts of

the graph. The risk of clustering two nodes from differ-

ent connected components may thus be high, especially

when the perturbation grows. To avoid this, at each

step of the algorithm, we check whether the nodes with

the k highest scores are clustered together. If so, they

are removed from the list of potential representative el-

ements and the algorithm is re-run using the k nodes

taken among the k + 1 ones with the highest scores,

and so on until stabilization of the list of representative

elements.

5 Numerical experiments

This section is dedicated to experimental studies to as-

sess numerical performances of the `1-spectral cluster-

ing algorithm through two kinds of data sets. First, we

show that it behaves well on simulated data with a va-

riety of different settings and in comparison with state-

of-the-art spectral clustering methods. Then, using a

gene expression data set from breast cancer tissues, we

demonstrate the ability of our algorithm to discover rel-

evant groups of patients that characterize breast cancer

subtypes.
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Fig. 1: Evolution of the coefficients of v, solution of (PLasso), with respect to ‖v‖1 for different perturbations of the

ideal graph (from top left to bottom right p = 1%, 10%, 25% and 50%). Red lines correspond to the coefficients

belonging to the component we aim at recovering, in contrast with black ones. Dotted lines are related to the

`1-norm-threshold (vertical), associated with the Lasso solution, and the threshold on the value of the coefficients

(horizontal), associated with the thresholded least-squares solution.

5.1 Application to toy data sets

5.1.1 Numerical settings

To explore the capabilities and the limits of the `1-

spectral clustering algorithm with respect to state-of-

the-art methods, we first considered simulated data,

whose settings are detailed in the next paragraph.

Simulated data set zoej

We generated random ideal graphs for a given num-

ber of nodes n (n = 50, 100, 500 and 1, 000) and a

given number of connected components k depending

on n (k/n = 1%, 2%, 10% and 20%). The compo-

nent sizes (cj)1≤j≤k were chosen in a balanced way:

∀j ∈ J1, k − 1K, cj = bn/kc, with
∑k
j=1 cj = n. With

a probability pin and pout of removing an edge from

a component and of introducing an edge between two

components varying from 0.01 to 0.5, we created 100

perturbed versions of the same graphs.

Algorithm parameters oeruh

As some of the methods we compare with require the

number of components to form, we focus on two ver-

sions of the `1-spectral clustering: the one presented in

Algorithm 2, for which the number of clusters is as-

sumed to be known, and the self-tuned one, for which

it is directly extracted from the graph (see Section 4.3).

Note that for both versions of the algorithm, the repre-

sentative elements are selected as explained in Section

4.4. The results being very similar, we choose to fo-

cus on the thresholded least-squares solution to solve

the `1-minimization problem (P̃1) in Algorithm 2. The

corresponding threshold parameter t is fixed using 5-

fold cross-validation when the number of samples is

large enough (greater than 50) or leave-one-out cross-

validation otherwise, on a grid of 100 values ranging

from 0 to 1.

Comparison with state-of-the-art zrizi

We compare both versions of the `1-spectral clus-

tering with two types of graph-based clustering algo-

rithms: (i) non self-tuned algorithms, which require the

number of clusters as input, and (ii) self-tuned algo-

rithms, which, by contrast, automatically detect the

optimal number of clusters. The first category of clus-

tering methods we compare with include the original

spectral clustering, presented in Algorithm 1 and imple-

mented in the function specc of the R-package kernlab

and a regularized version of the spectral clustering from

Qin and Rohe (2013), which allows more flexibility of

the nodes degree and is available in the R-package greed

(function spectral).

For the self-tuned methods, we first choose to com-

pare our `1-spectral clustering algorithm with the self-

tuned version of the spectral clustering from Zelnik-

Manor and Perona (2005), which improves the origi-
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nal one by removing the final post-processing step (k-

means) and carefully analyzing the eigenvectors’ struc-

ture to infer the number of clusters. The associated

Python code is available on Github at https://github.

com/wOOL/STSC. We also compare our results with the

hybrid algorithm of Côme et al. (2021), implemented in

the function greed of the R-package greed, which uses

a genetic algorithm to maximize the integrated classi-

fication likelihood and to find the best partition of the

graph. We finally run the Markov clustering Algorithm,

developped by van Dongen (2000) in the context of clus-

tering bioinformatics data and available in the function

mcl of the R-package MCL. The latter finds natural clus-

ter structures by performing random walks calculated

using Markov chains upon the graph.

Performance metrics ieojr

Performances are measured by comparing the learned

components with the true ones, which are known in the

context of simulated data. Among the large number of

existing scores, we focus on the Adjusted Mutual Infor-

mation (AMI) score, a corrected for chance version of

the mutual information score, for its ability to compare

clusters that could be of different sizes. The closer to

1 the AMI score, the better the classification. We also

compare the percentage of missclassified nodes for the

non self-tuned algorithms, where the true number of

clusters is available, and the estimated number of clus-

ters for the self-tuned versions of the algorithms. We

finally report the computational times, obtained after

running these algorithms on one core of an Intel Xeon

E5645 2.40GHz processor with 66Go of RAM.

5.1.2 Effect of the dimension and cluster sizes on

perturbed graphs

First, we aim at exploring the effect of the dimension

and cluster sizes on the performances of the self-tuned

version of the `1-spectral clustering algorithm. For n

ranging from 50 to 1, 000 and k/n from 1% to 20%,

results, in terms of AMI scores and number of estimated

clusters are summarized in Table 1 (a) and (b). Note

that all results are averaged over the 100 replicates of

the perturbed graphs.

First of all, one can obviously note that, for small

perturbations (pin, pout < 0.25), the `1-spectral cluster-

ing works quite well. However, increasing the perturba-

tions makes the clustering problem more complex to

solve and the results’ quality lower. This phenomenon

is even more significant while the dimension increases

(from top left to bottom right for each value of n and

at k/n fixed). For perturbations of 0.5 (last line), the

AMI scores do not barely exceed 0.3, which means that

the `1-spectral clustering algorithm almost fails to re-

cover the components. However, we must keep in mind

that imposing such a perturbation on a graph strongly

affects its structure, with a probability of removing an

edge inside a component and introducing an edge be-

tween components of 50%. One can also note the huge

impact of the true number of clusters k on the perfor-

mances, which become really poor for large k (see for

example k = 50, 100, 200). In this case, Table 1 (b) in-

dicates that the number of clusters is hardly estimated.

Imposing a graph structure of 2 clusters (n = 100 and

k/n = 2%) also leads to weak results, with AMI scores

that do not exceed 0.6, a large quantity of nodes being

forgotten by the `1-spectral clustering. In contrast, a

good trade-off between k and n (e.g. k/n = 1% and, at

a little extent 2%) provides excellent results, even for

highly perturbed graphs.

5.1.3 Performance results with respect to

state-of-the-art

To give more credit to the `1-spectral clustering algo-

rithm, we also evaluate its performances in comparison

with the algorithms described in Section 5.1.1. when

clustering different perturbed versions of a graph made

of n = 100 and 500 nodes and a fixed number of clusters

of 10. For each perturbation, we generated 100 graphs

and computed the clustering performances using the

AMI score. Results can be visualized in Figure 2.

For both values of n (n = 100 and 500), the per-

formances of the three non self-tuned methods are very

similar: quite good for small perturbations while ad-

versely affected by larger perturbations imposed on the

graphs. However, looking a little bit deeper, the per-

centages of missclassified nodes, indicated by red dia-

monds in Figure 2, are almost always in favor of the

`1-spectral clustering. This is a consequence of the `1-

constrained optimization form of the algorithm: it does

not cluster all the nodes, ensuring a smaller number of

missclassifications, while reducing sometimes the asso-

ciated AMI coefficients.

As regards the self-tuned methods, a huge discrep-

ancy can be observed in terms of AMI: the self-tuned

version of the spectral clustering seems to not work at

all for perturbed graphs with more than 100 nodes. The

three other algorithms work well until a certain level of

perturbation is reached (0.25 or 0.5 depending on the

number of nodes). For n = 100 and slightly perturbed

graphs (pout < 0.25), the performances of the self-tuned

`1-spectral algorithm are lower than those of the hybrid

and Markov ones (see Figure 2 (a)). However, removing

the non-classified nodes from the classification results

leads to the same performances, which are indicated by

https://github.com/wOOL/STSC
https://github.com/wOOL/STSC


`1-spectral clustering algorithm: a spectral clustering method using `1-regularization 9

Table 1: Performance results obtained after clustering perturbed graphs of different sizes using the self-tuned

version of the `1-spectral clustering algorithm in terms of AMI scores (a) and number of estimated clusters (b).

All results are averaged over 100 replicates.

n=50 n=100 n=500 n=1,000

k/n 10% 20% 2% 10% 20% 1% 2% 10% 20% 1% 2% 10% 20%
k 5 10 2 10 20 5 10 50 100 10 20 100 200

pin pout

(a) 0.01 0.01 0.82 0.95 0.54 0.92 0.82 0.93 0.99 0.65 0.09 1.00 1.00 0.68 0.083
0.1 0.81 0.53 0.51 0.88 0.40 0.95 1.00 0.19 0.19 1.00 0.99 0.09 0.10
0.25 0.61 0.38 0.46 0.40 0.39 0.94 0.97 0.10 0.13 0.99 0.89 0.07 0.10
0.5 0.38 0.28 0.15 0.23 0.33 0.91 0.51 0.09 0.11 0.72 0.17 0.06 0.09

0.1 0.01 0.80 0.84 0.65 0.97 0.63 0.94 1.00 0.65 0.09 1.00 1.00 0.05 0.08
0.1 0.69 0.54 0.52 0.78 0.33 0.94 1.00 0.18 0.13 1.00 0.98 0.09 0.10
0.25 0.54 0.37 0.23 0.40 0.34 0.92 0.94 0.10 0.13 1.00 0.24 0.07 0.10
0.5 0.30 0.28 0.15 0.20 0.33 0.85 0.38 0.07 0.12 0.41 0.12 0.06 0.09

0.25 0.01 0.78 0.75 0.62 0.93 0.62 0.94 1.00 0.08 0.08 1.00 1.00 0.04 0.08
0.1 0.64 0.50 0.56 0.55 0.29 0.95 0.99 0.12 0.13 1.00 0.65 0.08 0.09
0.25 0.44 0.41 0.42 0.32 0.25 0.93 0.66 0.09 0.13 0.89 0.24 0.06 0.10
0.5 0.30 0.28 0.29 0.28 0.21 0.53 0.14 0.07 0.12 0.24 0.04 0.05 0.09

0.5 0.01 0.69 0.50 0.58 0.63 0.58 0.95 0.99 0.07 0.08 1.00 0.94 0.07 0.09
0.1 0.42 0.45 0.40 0.39 0.21 0.93 0.78 0.09 0.11 0.96 0.22 0.06 0.08
0.25 0.31 0.44 0.28 0.26 0.20 0.86 0.21 0.08 0.12 0.34 0.06 0.05 0.09
0.5 0.28 0.31 0.06 0.25 0.18 0.61 0.02 0.07 0.11 0.08 0.01 0.05 0.09

(b) 0.01 0.01 4.37 9.94 2.00 9.28 17.2 5.00 10.0 40.5 2.41 10.0 20.0 105.6 2.74
0.1 4.96 5.58 2.00 10.0 9.89 5.00 10.0 15.7 38.1 10.0 19.7 4.09 4.11
0.25 4.63 4.88 2.00 15.0 27.3 5.00 9.81 4.20 4.75 10.0 19.7 4.38 4.63
0.5 4.35 4.97 6.21 4.73 4.84 5.01 6.06 4.67 4.65 7.82 4.30 4.44 4.36

0.1 0.01 4.45 9.47 2.00 10.0 19.0 5.00 10.0 42.0 2.53 10.0 20.0 2.50 2.73
0.1 4.07 6.02 2.00 9.52 9.60 5.00 10.0 4.28 4.32 10.0 19.4 4.24 4.23
0.25 4.25 5.41 5.35 16.8 21.8 5.00 9.56 4.53 4.73 10.0 4.42 4.45 4.40
0.5 18.9 5.22 6.07 5.64 23.0 5.01 5.32 4.30 4.92 4.92 4.30 4.72 4.55

0.25 0.01 4.75 8.16 2.00 9.73 30.9 5.00 10.0 2.66 2.60 10.0 20.0 2.13 2.97
0.1 4.18 6.65 2.00 11.0 6.91 5.00 9.96 4.24 4.32 10.0 12.3 4.06 4.21
0.25 4.84 21.5 2.00 24.7 8.51 5.00 7.20 4.55 4.98 9.08 5.02 4.27 4.76
0.5 23.6 4.85 6.19 33.1 6.93 2.96 4.92 4.59 5.00 4.38 4.16 4.34 4.32

0.5 0.01 5.29 14.3 2.00 11.3 62.4 5.00 10.0 2.51 3.27 10.0 18.5 3.19 3.34
0.1 5.50 18.6 2.00 15.4 5.04 5.00 8.19 4.13 4.19 9.62 4.42 3.79 4.15
0.25 23.9 23.7 8.20 23.6 5.33 4.36 5.09 4.73 4.80 4.92 4.26 4.40 4.75
0.5 23.5 17.5 28.2 31.7 5.04 5.04 4.75 4.70 4.57 4.00 4.28 4.20 4.49

the blue stars. This is also confirmed by the number

of estimated clusters (see Table 2), which is closed to

the true number of clusters (k = 10). For n = 500, the

clustering task is easier to solve: the results of the hy-

brid and Markov clustering algorithms become almost

binary, with an AMI of 0 for pout = 0.5 (0.25 for the

Markov clustering) and 1 otherwise (see for instance

Figure 2 (b)). As can be seen in Table 2, when the

problem becomes too complex, both algorithms only

create one group containing all nodes (averaged num-

ber of estimated clusters of 1.00), leading to an AMI of

0. In contrast, the self-tuned `1-spectral clustering al-

gorithm seems to cope with such perturbed situations.

Even if the results’ variances are quite large, which in-

dicates that the algorithm fails to recover the clustering

structure of some graphs, the results appear encourag-

ing.

In terms of computational time (Table 3), the `1-

spectral clustering algorithm and its self-tuned version

take an average of 8.75s/10.8s and 16.3/15.4s (n =

100/500) to run, which can be explained by the sta-

bilization step described in Section 4.4 that implies to

re-run the algorithm with more appropriate representa-

tive elements. The spectral clustering algorithm, its reg-

ularized version and the Markov clustering algorithm

are fast, performing in less than 0.05s for n = 100.
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(a) n = 100 and k = 10.

(b) n = 500 and k = 10.

Fig. 2: AMI scores obtained after clustering 100 versions of perturbed graphs with n = 100 (a) and 500 (b) nodes

and k = 10 clusters for the seven compared methods. Red diamonds indicate the percentage of missclassified nodes

for the non-self tuned methods only, whereas blue stars indicate the AMI scores of the self-tuned version of the

`1-spectral clustering algorithm after removing the non-classified nodes.
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Table 2: Estimated number of clusters after running the self-tuned algorithms on 100 versions of perturbed graphs

with n = 100 and 500 nodes and k = 10 clusters. All results are averaged over the 100 replicates.

n=100 & k=10 n=500 & k=10

Methods Self-tuned Self-tuned Hybrid Markov Self-tuned Self-tuned Hybrid Markov

pin pout l1 spectral clustering l1 spectral clustering

0.01 0.01 9.28 10.0 10.0 10.0 10.0 1.00 10.0 10.0
0.1 10.0 1.00 9.14 9.92 10.0 1.00 10.0 10.0
0.25 15.0 1.00 1.04 1.00 9.81 1.00 10.0 1.00
0.5 4.73 1.00 1.00 1.00 6.06 1.00 1.02 1.00

0.1 0.01 10.0 1.00 10.0 10.0 10.0 1.00 10.0 10.0
0.1 9.52 1.00 8.89 9.71 10.0 1.00 10.0 10.0
0.25 16.8 1.00 1.00 1.00 9.56 1.00 10.0 1.00
0.5 5.64 1.00 1.00 1.00 5.32 1.00 1.18 1.00

0.25 0.01 9.73 1.00 9.25 10.0 10.0 1.00 10.0 10.0
0.1 11.0 1.00 6.14 9.94 9.96 1.00 10.0 9.86
0.25 24.7 1.00 1.00 1.00 7.20 1.00 10.0 1.00
0.5 33.1 1.00 1.00 1.00 4.92 1.00 1.00 1.00

0.5 0.01 11.3 1.00 6.30 12.3 10.0 1.00 10.0 10.0
0.1 15.4 1.00 1.01 16.7 8.19 1.00 10.0 1.00
0.25 23.6 1.00 1.00 1.00 5.09 1.00 1.00 1.00
0.5 31.7 1.00 1.00 1.00 4.75 1.00 1.00 1.00

Table 3: Averaged computational time in seconds for

running each of the 7 methods on 100 versions of per-

turbed graphs with n = 100 and 500 nodes and k = 10

clusters (perturbations varying from 0.1 to 0.5).

Methods n=100 & k=10 n=500 & k=10

`1-spectral 8.75 10.8
Spectral clustering 0.041 1.96

Regularized spectral 0.0025 0.043
Self-tuned `1 16.3 15.4

Self-tuned spectral 13.7 16.2
Hybrid 3.46 16.2

Markov clustering 0.031 3.72

However, increasing the dimension multiplies by 20, 50

and 120 the computational times for the regularized

spectral, the spectral and the Markov clustering algo-

rithms respectively. The same holds at a little extent

for the hybrid algorithm, whereas the self-tuned spec-

tral, whose results are almost zero, and both versions

of the `1-spectral clustering don’t seem to be impacted.

5.2 Application to cancer data

This section is dedicated to the application of the `1-

spectral clustering algorithm on a real breast cancer

data set from The Cancer Genome Atlas project. After

describing the data (Section 5.2.1), results are presented

in Section 5.2.2 and followed by a discussion (Section

5.2.3).

5.2.1 The breast cancer data set

The Cancer Genome Atlas (TCGA) is a huge Ameri-

can project from the National Cancer Institute (NCI)

and the National Human Genome Research Institute

(NHGRI), which was launched fifteen years ago with
the aim of characterizing genetic mutations responsi-

ble for cancer using genome sequencing and bioinfor-

matics methods. Since then, millions of data have been

produced and made publically available. In this work,

we focused on BReast invasive CArcinoma, abbreviated

to BRCA thereafter. BRCA is the most common diag-

nosed cancer among women, affecting around 2 millions

of women worldwide each year. Risks of developing the

disease include increasing age but also lifestyle (absence

of physical activities, use of alcohol and smoking) and

genetic predispositions. Over the years, the develop-

ment of new treatments and prevention strategies have

increased the survival rates to around 90% but scientific

investigations are still needed to improve detection and

surgical management of patients. In this work, we ex-

tracted gene expression data for BRCA from the TCGA

data portal http://gdac.broadinstitute.org/. These

data were produced using RNA-sequencing for a total

number of 16, 021 genes and 1, 081 cancer patients. Af-

ter preprocessing the arrays by log-transformation and

http://gdac.broadinstitute.org/
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quantile normalization and filtering genes based on vari-

ance, we only kept 75% of them, i.e. 12, 015 genes.

5.2.2 `1-spectral clustering algorithm on breast cancer

data

Applying the `1-spectral clustering algorithm to cluster

patients into subgroups requires the knowledge of an

initial network that models the relationships between

them. To create such a network, we computed the corre-

lation matrix, based on Pearson’s correlation, between

all pairs of patients and then thresholded the matrix

by removing edges with correlation smaller in absolute

value than 0.7. We then applied the `1-spectral cluster-

ing algorithm on the adjacency matrix associated with

the network described above. Among the 1,081 patients,

1,028 were clustered into 4 components, from size 160

to 407 (see Section 5.2.3 for a more detailed description

of these groups). These components are represented in

Figure 3 with different colors.

Fig. 3: The 4 components discovered by applying the

`1-spectral clustering algorithm on the correlation net-

work.

5.2.3 Clusters as subtypes of breast cancer

In this section, we evaluate the performances of the

clustered network and investigate the biological hypothe-

ses that can be deduced from it. Obviously, perfor-

mances are rather hard to evaluate in the context of

real data as the true cluster structure is unknown. One

solution consists in measuring the mean silhouette coef-

ficient rather than standard metrics such that the NMI,

AMI or ARI, which requires the truth to be known.

Here, we chose to compare to a well-defined breast can-

cer classification of patients (The Cancer Genome At-

las, 2012), which was performed using PAM50, a 50

gene expression assay based on microarray and quan-

titative real time that was developed by analyzing a

set of 189 breast tumor samples (Parker et al., 2009).

Patients are classified into 4 subtypes:

– Luminal A, the most common breast cancer sub-

type, enriched in hormone-receptor positive tumors

with negative HER2 and low Ki67 (proliferating cell

nuclear antigen) and is associated with good prog-

nosis,

– Luminal B, similar to luminal A but with high levels

of Ki67, a more aggressive phenotype and a slightly

worse prognosis,

– Basal, also referred to as triple-negative, correspond-

ing to negative hormone-receptors (both estrogen

and progesterone) and negative HER2, the most ag-

gressive breast cancer type,

– HER2-positive, characterized by high expression of

HER2 and other genes associated with the HER2

pathway, high proliferation and more aggressive bi-

ological and clinical behavior.

Table 4 compares the 4 clusters identified using the

`1-spectral clustering with the PAM50 classification.

Note that a fifth subgroup, called normal, correspond-

ing to data from sample tissues, was added to fit with

the global data set. With an AMI of 0.3008, the results

seem very poor but the p-value obtained by running a

chi-squared independence test, which is under 10−16,

indicates its strength.

Table 4: Comparison between the PAM50 classification

(in rows) and the `1-spectral clustering classification (in

columns) of the BRCA patients.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Lum A 289 148 99 0
Lum B 63 38 95 0
Basal 17 5 1 154
HER2 22 41 14 3

Normal 16 19 1 3

In more details, the Basal subgroup, which is as-

sociated with the worse prognosis, is almost perfectly

recovered by cluster 4, with only 23 missclassified pa-

tients over 177. The three other clusters are combina-

tions of Lum A, Lum B and HER2. To go a little bit

further, we ran a Principal Component Analysis (PCA)

on the gene expression data set to identify differential
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gene expression patterns within the four breast cancer

patient profiles. Results in the form of a biplot are pre-

sented in Figure 4. As expected, cluster 4 is separated

from clusters 1, 2 and particularly 3 by the first dimen-

sion, which is highly correlated with genes MKi67 (also

referred to as Ki67 in the literature) and MCM2. These

two genes are highly expressed in breast tumors of high

histological grades (Yousef et al., 2017), confirming the

existing link between cluster 4 and the Basal subgroup.

Regarding the three other groups, cluster 3 slightly dif-

fers from the last two, separated by dimension 2, cor-

related with gene ETS1. ETS1 is a transcription factor

that contributes to tumor angiogenesis and invasion of

cancer cells (Fujimoto et al., 2002; Khatun et al., 2003).

Even if its role on the development of breast cancer is

still ambiguous, high expression of ETS1 is associated

with the presence of metastases and a poor prognosis

(Furlan et al., 2019; Kim et al., 2020). As can be seen

in Figure 4, cluster 3 thus corresponds to patients with

low expression of ETS1 and a better prognosis, mainly

belonging to luminal A and B sutbypes.

Fig. 4: Visualization of genomic variables by Principal

Component Analysis (PCA) according to the four `1-

spectral clustering clusters found.

Conclusion

In this paper, we propose a new spectral clustering algo-

rithm, called `1-spectral clustering, for detecting clus-

ter structures in perturbed graphs. To tackle the noise

robustness issue of the traditional spectral clustering,

the k-means is removed and replaced by writting the

indicators of the components as solutions of explicit `1-

constrained minimization problems. The performances

of the algorithm are highlighted through numerical ex-

periments, with competitive results when compared to

the state-of-the-art. Nevertheless, many opportunities

for further improvements can be considered. Firstly,

from an algorithmic point of view, it would be interest-

ing to better explore solutions for calibrating the opti-

mal number of clusters and its representative elements.

Secondly, future works include theoretical study of the

eigenvectors stability, in order to validate the perfor-

mances of the algorithm. A particular attention may be

paid to the more global Stochastic Block Model (SBM),

where the edge probabilities depend on the community

membership.
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