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Abstract
The scattering of scalar waves by a periodic row of inclusions is theoretically and numerically
investigated. The wavelength in the background medium is assumed to be much larger than the typical
sizes of the inclusions. The latter are also much softer than the matrix, yielding localized resonances
within the microstructure. Previous works in the inviscid case have concerned: (i) the derivation of
effective resonant jump conditions, that are non local in time (Touboul et al., J. Elasticity, 2020); (ii)
the introduction of auxiliary fields along the interface, providing a time-domain formulation of the
scattering problem (Touboul et al., J. Comput. Phys., 2020). The present contribution extends the
analysis to dissipative cases, which allows to be closer from real devices. The effective jump conditions
with damping are obtained, both in the frequency domain and in the time domain. An exact plane-wave
solution is proposed. A balance of energy is written, and new auxiliary fields are introduced. Practical
implementation of the simulation methods is discussed. Then, numerical experiments are proposed to
validate the auxiliary-field approach. The effect of dissipation is examined, and the relevance of the
homogenized simulations in comparison with full-field simulations of transient waves is assessed. As
an application, a numerical experiment of Coherent Perfect Absorption is finally proposed: at critical
values of the attenuation parameter and close to the resonant frequencies, the waves impacting the
dissipative resonant interface are fully absorbed.

Keywords: resonant microstructures, dissipation, homogenization, matched-asymptotic expansions,
time-domain numerical methods.

1. Introduction

The design of microstructured media allows to control wave propagation in a fine way and leads
to exotic effects, e.g. negative refraction, subwavelength imaging, lensing and cloaking, to cite a few.
It constitutes the paradigm of metamaterials, which have undergone spectacular developments since
the early 2000: see [7] and references therein for an overview.

Interesting effects can be reached when local resonances occur within the microstructure. These
resonances can be induced by particular geometries (e.g. split ring resonators, Helmholtz resonators)
or by a large contrast of physical parameters [1, 2]. In electromagnetism, they yield doubly negative
metamaterials on a range of frequencies, paving the way to negative refraction (see chapter 1-4 in [7]).
In elasticity, the resonances are exploited to maximise sound absorption [25, 37, 11, 29] or to mitigate
waves [39].

Either in non-resonant or resonant cases, an active direction of research concerns the size reduction
of microstructures. It is often advantageous to replace a volumic distribution by a surfacic (in 3D) or a
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lineic (in 2D) distribution of scatterers. This is particularly important in the design of noise reduction
devices, including sound insulation panels.

With such applications in mind, it is important to examine the competition between the energy
leakage of resonant scatterers and the intrinsic dissipation losses [12, 20]. Discrete systems and
the mitigation effects of broadband waves at subwavelength scales are examined in [5, 30]. The
two mechanisms of the energy absorption (resonance of the inclusions yielding band-gaps, and
dissipative effects in the materials) are discussed in [16, 19]. The Coherent Perfect Absorption of
dissipative resonant metasurfaces (especially based on Helmholtz resonators) has motivated series
of papers[35, 13, 14, 15, 17, 33, 34]. In all these works, the analysis of the scattering matrix is
based on the calculation of the wave field at the microstructure scale, which can be computationnaly
cumbersome.

An approach based on homogenisation may therefore be an interesting alternative. The two-
scale homogenization method is well-known to simulate wave propagation in volumic microstructured
media [3, 36]. It avoids having to mesh fine spatial scales and thus leads to enormous computational
gains compared with brute-force simulations. However, the usual homogenization methods fail when
considering a thin row of scatterers, because of the fast-scale fields close to the microstructure. To
recover their efficiency, these methods must then be combined with matched-asymptotic expansions
[26], yielding effective jump conditions on an equivalent meta-interface.

In elasticity, works on interface homogenization focused first on rows of non-resonant inclusions
[9, 28, 8, 27], and then on resonant inclusions [31, 29, 41]. In [31, 41], two-scale asymptotic method
has been combined with matched-asymptotic expansions to yield effective jump conditions, both in
the frequency domain [31] and in the time domain [41]; in the latter case, the jump conditions turn
out to be non-local. Second-order accuracy in terms of the small ratio kmh has been reached, where
km is the wavenumber in the background medium and h is the typical size of the inclusions. The
conservation of energy has been proven provided the effective interface is sufficiently enlarged. In
[40], the formalism of auxiliary fields has been introduced to transform convolution operators at the
interfaces into a set of local-in-time problems. This made it possible to build efficient numerical
methods to simulate the scattering of transient shear waves by a row of resonant inclusions replaced
by an effective interface. Comparisons between microstructured and homogenized fields have been
successfully performed.

In the majority of these works on interface homogenisation, dissipation phenomena were ne-
glected. A notable exception is given in [31]: the derivation of the interface conditions is done
without attenuation, but damping is introduced heuristically in the numerical experiments (section 3
of this reference). We follow the line of this work, but with the additional objective of incorporating
damping in the homogenisation process. Another objective is to propose time-domain formulations
of the scattering phenomena.

Many energy dissipation mechanisms are involved in real experiments: damping due to the
bonding between microstructure and the matrix, viscous boundary layers, intrinsic viscoelasticity,
etc. The aim here is not to describe a particular mechanism in detail, but rather to examine the
overall effect of energy dissipation on the resonance peaks of local-resonant inclusions. As is usual in
structural dynamics, a phenomenological model is therefore considered. In this framework, the results
presented in [41, 40] are modified and need to be re-examined on their main features: (i) effective
jump conditions, (ii) energy balance, (iii) auxiliary fields, and (iv) discretization of the interfaces.
These four points are addressed here. For the sake of brevity, the reader is referred to [41, 40] for
details about unchanged features. Moreover, the correspondence principle is used to take shortcuts
when the whole proof does not bring anything new.
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The methodology followed here is in line with our previous works on interface homogenisation
and auxiliary field formalism. However, taking attenuation from basis into account is not incremental.
It is instructive to compare the effective coefficient without attenuation (11), obtained in [31], and the
new coefficient (22). The auxiliary fields are then largely modified, which is the subject of sections
3.4 and 4.3. The paper is then organized as follows:

• In Section 2, the physical problem under study is first presented and the homogenized model of
a thin resonant microstructure without dissipation in the inclusions is then recalled.

• The homogenized interface conditions in the dissipative case are derived in Section 3. A plane-
wave exact solution is computed. An energy balance is stated. Auxiliary fields are introduced
along the interface, leading to local-in-time jump conditions.

• Section 4 recalls the numerical methods used for the time-domain simulations: the ADER-4
scheme is implemented to integrate the evolution equations [24], and the ESIM discretizes the
resonant jump conditions on a uniform Cartesian grid [22, 21]. This presentation essentially
emphasizes the differences with the inviscid case. The focus is put on the computation of the
auxiliary fields, which is largely modified compared with the inviscid case.

• Numerical experiments are proposed in Section 5. Comparisons between numerical and semi-
analytical solutions of the homogenized problem validate the auxiliary-field approach. The
relevance of homogenization is assessed by comparing microstructured and homogenized fields.
Lastly, a critical value of the dissipation parameter is found, which maximises the absorption
of the waves at a frequency close to one resonant frequency. When the interface is illuminated
simultaneously from both sides and at this frequency, Coherent Perfect Absorption is reached
and the simulations show very clearly that the waves are totally absorbed by the interface.

• Section 6 concludes the article and draws future lines of research. Technical details about the
discretization of interfaces are given in Appendix A.

2. Preliminaries

2.1. Microstructured configuration
Problem statement. Let us consider the 2D propagation of anti-plane shear waves across a periodic row
of inclusions ∪iΩi embedded within a homogeneous matrix Ωm. Both media are isotropic, whereas
damping is considered only in the inclusions to model the overall dissipation induced by bonding with
the matrix, boundary layers, etc. Depending on the solid under consideration, it may be relevant to
model the energy dissipation by a Maxwell, Kelvin-Voigt, standard solid or more sophisticated model
[16, 19]. However in this paper, our goal is not to describe precisely the dissipative process for a
given medium. The questions we address are of methodological nature, and thus it is not relevant to
privilege one viscoelasticity model over another. Consequently, we find it more relevant to consider a
structural dissipation model, where damping is introduced through the equation of momentum.

The thickness and the periodicity of the row are denoted by e and h, respectively, with e = O(h).
The time and the spatial coordinates are denoted by t andX = (X1, X2) with X2 being the direction
of periodicity of the inclusions, as shown in Figure 1. The physical parameters of the microstructured
medium are the mass density ρh, the shear modulus µh and the dissipation parameter γh. The latter
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Figure 1: Homogenization process for a single periodic row of inclusions.

is inverse proportional to the damping, so that γh = +∞ corresponds to an inviscid medium. The
parameters are positive and piecewise constant:

(ρh, µh, γh)(X) =

{
(ρm, µm,+∞) in the matrix,
(ρi, µi, γ) in the inclusions.

We introduce the scalar velocity field Vh and the stress vector field Σh = (Σ1h,Σ2h)
>. Evolution

equations of linear anti-plane elasticity write as the first-order system:
∂tΣh(X, t) = µh∇Vh(X, t),

ρh ∂tVh(X, t) +
1

γh
Vh(X, t) = div Σh(X, t),

(1)

with Vh and Σh ·n being continuous at each matrix/inclusion interface ∂Ωi, given that n is the inward
unit normal on each ∂Ωi. This system is also relevant to the acoustic framework for which Σh, Vh, ρh
and 1/µh would stand instead for the velocity, pressure, compressibility and mass density, respectively.
For all time t ≥ 0, one defines

Eh(t) =
1

2

∫
D

{
1

µh(X)
(Σh(X, t))2 + ρh(X)(Vh(X, t))2

}
dX,

Υγ
h(t) =

1

γ

∫
∪iΩi

(Vh(X, t))2dX,

(2)

where D is a bounded domain chosen to be sufficiently large to neglect the boundary terms. Then the
energy identity holds

d

dt
Eh(t) = −Υγ

h(t) ≤ 0. (3)

When γ = +∞, the inviscid case is recovered and the energy is conserved.
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Regime of study. The wavelength λm within the matrix is assumed to be much larger than the spacing
h between the inclusions. Defining the wavenumber within the matrix as km = 2π/λm, we introduce
η = kmh that satisfies η � 1 for the configurations of interest. Local resonances can occur when
the wavelength within an inclusion is of the order of h [2]: kih = O(1), with ki = ω

√
ρi/µi. In

particular, this condition is satisfied for a low contrast in mass density ρi/ρm = O(1) and a high
contrast in shear modulus µi/µm = O(η2), a configuration which we consider in the present study.
These geometrical and material assumptions are summarized as follows:

Assumption 1. η = kmh� 1 while ρi/ρm = O(1) and µi/µm = O(η2).

Two-scale homogenization techniques and matched-asymptotic expansions can be applied to
the microstructured problem defined above. They involve five steps: (i) two space coordinates are
introduced to describe both the slow variations and the small-scale fast variations of the fields; (ii) the
fields are expanded using the ansatz of a two-scale asymptotic expansion; (iii) matching conditions
between the far field and the near field are formulated in an intermediate region close to the inclusions;
(iv) these matching conditions identified at ordersO(1) andO(η) provide the jump conditions for the
effective fields at order O(η2); (v) the interface of zero thickness on which the jump conditions apply
is then replaced by an equivalent enlarged interface of thickness a = O(h), as sketched in Figure 1.
This enlargement is needed for stability purpose.

Some notations are introduced. The fast scale of coordinates is y = X/h = (y1, y2)>. The
domain Ω is the elementary cell R× [−1/2, 1/2] in y-coordinates that contains one single inclusion
Ωi, and (e1, e2) is the canonical basis of R2. The Fourier transform in time of a function g(t) is
defined by:

F [g](ω) = ĝ(ω) =

∫
R
g(t)e−iωt dt,

where ω is the angular frequency. Lastly, the jump and the mean value of a field h(X) at the enlarged
interface are denoted by

Jh(X)Ka = h (a/2, X2)− h (−a/2, X2) , 〈h(X)〉a =
1

2

(
h (a/2, X2) + h (−a/2, X2)

)
. (4)

Here we recall the known results in the inviscid case. In Section 3, we will adapt them to the damped
case. In each case, the findings are presented in the frequency domain, then in the time domain, which
allows to state an energy balance.

2.2. Known case: inviscid configuration
Frequency-domain formulation. The case γ = +∞ has been investigated in [31]. At order O(η2),
the homogenized fields V and Σ = (Σ1,Σ2)> satisfy in the frequency domain:

iω Σ̂(X, ω) = µm∇V̂ (X, ω) (|X1| ≥ a/2, Y ∈ R)

iω ρm V̂ (X, ω) = div Σ̂(X, ω) (|X1| ≥ a/2, Y ∈ R)
r
V̂

z

a
= h

{
B
〈
∂X1V̂

〉
a

+B2

〈
∂X2V̂

〉
a

}
(X2 ∈ R)

r
Σ̂1

z

a
= h

{
S
〈
∂X1Σ̂1

〉
a

+ C1

〈
∂X2Σ̂1

〉
a

+ C2

〈
∂X2Σ̂2

〉
a

+ D∞(ω)
〈

div Σ̂
〉
a

}
(X2 ∈ R),

(5)
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where the effective coefficientsB, B2, S, C1, C2 and D∞(ω) are computed as follows. First, let define
ϕ ∈]0, 1[ such that eϕ/h is the surface of the inclusion in y-coordinates. Then S writes

S =
a

h
− eϕ

h
. (6)

Secondly, let us introduce the cell problems (j = 1, 2):
∆yΦ(j)(y) = 0 (y ∈ Ω\Ωi),

[∇yΦ(j)(y) + ej] · n = 0 (y ∈ ∂Ωi),

lim
y1→±∞

∇yΦ(j)(y1, y2) = 0,

(7)

where the cell functions Φ(j)(y) are y2-periodic. Then B, B2, C1 and C2 write

Bj = lim
y1→+∞

[
Φ(j)(y1, y2)− Φ(j)(−y1, y2)

]
, B =

a

h
+B1,

Cj = −
∫

Ω\Ωi

∇Φ(j)(y) · e2 dy.
(8)

The effective coefficients B, B2, S, C1 and C2 depend on the geometry of the inclusions but not on
their physical properties, contrary to the non-resonant case [27]. Third and last, one introduces the
Dirichlet problem: {

∆yψ∞(y, ω) + κ2
∞(ω)ψ∞(y, ω) = 0 (y ∈ Ωi),

ψ∞(y, ω) = 1 (y ∈ ∂Ωi),
(9)

with
κ2
∞(ω) =

ρih
2

µi
ω2. (10)

Then the frequency-dependent coefficient D∞(ω) in (5) is

D∞(ω) =
ρi
ρm

∫
Ωi

ψ∞(y, ω) dy. (11)

The explicit dependency of D∞ on the frequency is reached through a modal expansion of ψ∞ on
the basis of the eigensystems (λr, Pr)re≥1 that is associated with the following self-adjoint eigenvalue
problem within the inclusion: {

∆yPr(y) + λrPr(y) = 0 (y ∈ Ωi),

Pr(y) = 0 (y ∈ ∂Ωi).
(12)

Let us define the real-valued coefficients {αr}r≥0 and the resonant frequencies {ωr}r≥1:

α0 =
ρi
ρm

∫
Ωi

dy αr =

√
ρi
ρm

∫
Ωi

Pr(y) dy and ωr =
1

h

√
µi
ρi
λr. (13)

Then after some calculations, the frequency-dependent coefficientD∞(ω) in (5) and (11) can be recast
as the infinite series

D∞(ω) = α0 −
∑
r≥1

α2
r

ω2

ω2 − ω2
r

. (14)
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The coefficient D∞ encapsulates the parameters of inclusions as well as their geometries. In practice,
the infinite series is truncated to a finite number NR of resonances. As seen in (13), the resonances
associated with null-mean modes do not contribute to the effective model obtained. It constitutes a
limitation of the second-order homogenized model, already noted in [31]. The effect of this failure
has been shown to be negligible in [41].

Time-domain formulation. Let us define the inner problem:
∂tΣi(y, X2, t) =

µi
h
∇yWi(y, X2, t) (y ∈ Ωi),

ρi∂tWi(y, X2, t) =
1

h
divy Σi(y, X2, t) (y ∈ Ωi),

Wi(y, X2, t) = 〈V (·, X2, t)〉a (y ∈ ∂Ωi),

(15)

where the fieldWi is a function of X2 through the prescribed boundary condition 〈V (·, X2, t)〉a. The
repeated index i in (15) denotes the inclusion and must not be confused with Einstein’s notation. In
[41], it has been proven that

iω ρi

∫
Ωi

Ŵi dy =
ρi
ρm

∫
Ωi

ψ∞(y, ω) dy
〈

div Σ̂
〉
a

= D∞(ω)
〈

div Σ̂
〉
a
.

(16)

Inverse Fourier transforms of (5) and (16) yield the homogenized model in the time domain:

∂tΣ = µm∇V (|X1| ≥ a/2, X2 ∈ R)

∂tV =
1

ρm
div Σ (|X1| ≥ a/2, X2 ∈ R)

JV Ka = h {B 〈∂X1V 〉a +B2 〈∂X2V 〉a} (X2 ∈ R)

JΣ1Ka = h

{
S 〈∂X1Σ1〉a + C1 〈∂X2Σ1〉a + C2 〈∂X2Σ2〉a + ρi

∫
Ωi

∂tWi dy

}
(X2 ∈ R).

(17)

An energy balance can be deduced from (17). A bounded domain D is chosen to be sufficiently

Homogenization

a

a

m

i

\

Figure 2: (left) Domain D = ∪iDi ∪Dm considered for the energy analysis in the original microstructured configuration,
(right) domain D\Da for the analysis of the effective problem.
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large to neglect the boundary terms, Da is the intersection between D and the enlarged interface, and
I = {X2 : X ∈ Da}, as sketched in Figure 2. Then one introduces Eb and Ei which are bulk and
interface terms, respectively:

Eb =
1

2

∫
D\Da

{
1

µm
(Σ)2 + ρm(V )2

}
dX,

Ei =
h

2

∫
I

{
Sρm 〈V 〉2a +

B

µm
〈Σ1〉2a +

S − C2

µm
〈Σ2〉2a +

∫
Ωi

(
ρiWi

2 +
1

µi

∣∣Σi

∣∣2) dy

}
dX2.

(18)

In the Section 2.2 of [41], it has been proven that the E = Eb + Ei is constant over time. It has
also be proven that a ≥ e implies Ei ≥ 0, so that E is an energy, which ensures the stability of the
homogenized problem.

3. Homogenized resonant model with dissipation

3.1. Frequency-domain formulation
The homogenization steps followed in [31] can be customary extended to the case γ 6= +∞. For

the sake of brevity, the full derivation is not detailed here, since the findings can be obtained using the
correspondence principle: see e.g. chapter 3 of [4]. The microstructured problem (1) can be recast in
the frequency domain as {

iω Σ̂h(X, ω) = µh∇V̂h(X, ω),

iω ρ̂γh V̂h(X, ω) = div Σ̂h(X, ω),
(19)

with

ρ̂γh(X) =


ρm in the matrix,

ρi

(
1 +

1

iω γ ρi

)
in the inclusions,

which is exactly the same frequency-domain formulation than in the inviscid case. Consequently, one
expects to find the same effective jump conditions (5) by replacing the term ρi by ρi(1 + 1

iωγρi
) in

the effective coefficients. The coefficients S, B, B2, C1 and C2 do not depend on ρi, thus they are
unchanged. On the contrary, D∞(ω) depends implicitly on ρi, and thus it is changed into Dγ(ω),
leading to the new homogenized model with damping:

iω Σ̂(X, ω) = µm∇V̂ (X, ω) (|X1| ≥ a/2, X2 ∈ R)

iω ρm V̂ (X, ω) = div Σ̂(X, ω) (|X1| ≥ a/2, X2 ∈ R)
r
V̂

z

a
= h

{
B
〈
∂X1V̂

〉
a

+B2

〈
∂X2V̂

〉
a

}
(X2 ∈ R)

r
Σ̂1

z

a
= h

{
S
〈
∂X1Σ̂1

〉
a

+ C1

〈
∂X2Σ̂1

〉
a

+ C2

〈
∂X2Σ̂2

〉
a

+ Dγ(ω)
〈

div Σ̂
〉
a

}
(X2 ∈ R).

(20)
The new effective coefficientDγ(ω) is obtained as follows. Replacing ρi by ρi(1+ 1

iωγρi
), the Dirichlet

problem (9) becomes {
∆yψγ(y, ω) + κ2

γ(ω)ψγ(y, ω) = 0 (y ∈ Ωi),

ψγ(y, ω) = 1 (y ∈ ∂Ωi),
(21)
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where (10) is replaced by

κ2
γ(ω) =

ρih
2

µi
ω2

(
1 +

1

iω γ ρi

)
.

Then the frequency-dependent coefficient in (11) becomes

Dγ(ω) =
ρi
ρm

(
1 +

1

iω γ ρi

)∫
Ωi

ψγ(y, ω) dy. (22)

Keeping the same definitions of α0, αr≥1 and ωr than in (13), the modal expansion of (22) yields

Dγ(ω) =

(
1 +

1

iω γρi

)α0 −
∑
r≥1

α2
r

ω2 − iω

γρi

ω2 − iω

γρi
− ω2

r

 . (23)

The frequency-dependent effective coefficient (23) recovers (14) in the limit-case γ = +∞, but it does
not appear as a trivial extension of the inviscid configuration. As in (14), the infinite series is truncated
to a finite number NR of resonances, and the null-mean modes lead to αr = 0, so that they do not
contribute to the effective model obtained. The effect of this limitation will be examined numerically
in Section 5.

3.2. Plane-wave solution
Let us consider an harmonic plane wave impacting with an angle θ the enlarged interface located

between X1 = −a/2 and X1 = +a/2. The wavefield solution û = (V̂ , Σ̂1, Σ̂2)> is decomposed into
incident ûI , reflected ûR and transmitted ûT plane waves, ie û = ûI + ûR + ûT , that write

ûI =

 1/µm
− cos θ/cm
− sin θ/cm

 exp(−ikI ·X),

ûR =

 1/µm
+ cos θ/cm
− sin θ/cm

 exp(−ikR ·X)R(ω),

ûT =

 1/µm
− cos θ/cm
− sin θ/cm

 exp(−ikT ·X) T (ω).

(24)

The wavevectors kI , kR and kT of norm ω/cm are normal to the wave fronts. Using the jump
conditions in (20) yields a 2× 2 system satisfied by the reflection coefficient R and the transmission
coefficient T , whose solution is

R(ω) =
iωL(ω)

2Z + iωN (ω)− ω2M(ω)
exp

(
i
ω

cm
a cos θ

)
,

T (ω) =
2Z + iω G + ω2M(ω)

2Z + iωN (ω)− ω2M(ω)
exp

(
i
ω

cm
a cos θ

)
.

(25)
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The coefficients in (25) are

L(ω) = h((−S +B) cos(θ)2 − C2 sin(θ)2 + (B2 − C1) cos(θ) sin(θ)−Dγ(ω)),

G = −h(C1 +B2) cos(θ) sin(θ),

Z = cm cos θ,

N (ω) = h(S cos(θ)2 + C2 sin(θ)2 +B cos(θ)2 + Dγ(ω)),

M(ω) =
h2

2cm
(BS cos(θ)2 −B2C1 sin(θ)2 +BC2 sin(θ)2 +BDγ(ω)) cos(θ).

(26)

The frequency-dependent effective coefficient (23) is involved in the exact solution through L(ω),
M(ω) and N (ω) in (25)-(26). The effect of damping on R and T will be examined numerically in
Section 5.

3.3. Time-domain formulation
Replacing ρi by ρi(1 + 1

iωγρi
) in (15) yields the inner problem in the frequency domain:

iω Σ̂i(y, X2, t) =
µi
h
∇yŴi(y, X2, t) (y ∈ Ωi),

ρi

(
1 +

1

iω γρi

)
Ŵi(y, X2, t) =

1

h
divy Σ̂i(y, X2, t) (y ∈ Ωi),

Ŵi(y, X2, t) =
〈
V̂ (·, X2, t)

〉
a

(y ∈ ∂Ωi).

(27)

Similarly, (16) becomes

iω ρi

(
1 +

1

iω γρi

)∫
Ωi

Ŵi dy =
ρi
ρm

(
1 +

1

iω γρi

)∫
Ωi

ψγ(y, ω) dy
〈

div Σ̂
〉
a

= Dγ(ω)
〈

div Σ̂
〉
a
.

(28)

Inverse Fourier transforms of (20), (27) and (28) yield the homogenized model in the time domain:

∂tΣ = µm∇V (|X1| ≥ a/2, X2 ∈ R)

∂tV =
1

ρm
div Σ (|X1| ≥ a/2, X2 ∈ R)

JV Ka = h {B 〈∂X1V 〉a +B2 〈∂X2V 〉a} (X2 ∈ R)

JΣ1Ka = h

{
S 〈∂X1Σ1〉a + C1 〈∂X2Σ1〉a + C2 〈∂X2Σ2〉a + ρi

∫
Ωi

∂tWi dy +
1

γ

∫
Ωi

Wi dy

}
(X2 ∈ R),

(29)
whereWi is solution in each inclusion of the inner problem:

∂tΣi(y, X2, t) =
µi
h
∇yWi(y, X2, t) (y ∈ Ωi),

ρi∂tWi(y, X2, t) +
1

γ
Wi(y, X2, t) =

1

h
divy Σi(y, X2, t) (y ∈ Ωi),

Wi(y, X2, t) = 〈V (·, X2, t)〉a (y ∈ ∂Ωi).

(30)

In the limit-case γ = +∞, the equations (15) and (17) of the inviscid model are recovered.
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The energy balance can be calculated in the same way as in the case without dissipation. The
expressions (18) are unchanged. The properties B ≥ 0 and S − C2 ≥ 0 if a ≥ e are independent of
ρi and are therefore always satisfied, so that E = Eb + Ei is an energy. On the other hand, the term γ
modifies the energy balance, which is written as follows

d

dt
(Eb + Ei) = −Υγ, (31)

with
Υγ =

h

γ

∫
I

∫
Ωi

Wi
2dy dX2 ≥ 0. (32)

This underlines that E is decreasing due to the dissipation.

3.4. Formalism of auxiliary fields
In (29), Wi can be expressed as a time convolution with the Green’s function in the inclusion

domain Ωi. Handling numerically such a non-local-in-time term is very costly and would therefore
reduce the computational gains associated with the homogenization. To circumvent this difficulty, the
auxiliary variable approach is used. This formalism has been introduced in [40] to handle the resonant
jump conditions without dissipation. Following the same method here, we introduce the auxiliary
variables Ĵr and Ĝr associated with the resonance index r ∈ {1, · · · , NR} and which satisfy:

(
ω2 − 1

γρi
iω − ω2

r

)
Ĵr(X2, ω) = α2

r

(
1 +

1

γρi iω

) (
ω2 − 1

γρi
iω

)
〈div Σ̂〉a

iω Ĵr(X2, ω) = Ĝr(X2, ω)

(X2 ∈ R).

(33)
Combining (20), (23) and (33), a formal inverse Fourier transform yields the system

∂tΣ(X, t) = µm∇V (X, t) (|X1| ≥ a/2, X2 ∈ R)

∂tV (X, t) =
1

ρm
div Σ(X, t) (|X1| ≥ a/2, X2 ∈ R)

∂tJr(X2, t) = Gr(X2, t) (X2 ∈ R, r = 1, . . . , NR)

∂tGr(X2, t) = − 1

γρi
Gr(X2, t)− ω2

rJr(X2, t) + µmα
2
r

(
∂t +

2

γρi

)
〈∆V 〉a +

(
αr
γρi

)2

〈div Σ〉a

JV Ka = B̃1〈∂X1V 〉a + B̃2〈∂X2V 〉a (X2 ∈ R)

JΣ1Ka = C̃11〈∂X1Σ1〉a + C̃12〈∂X2Σ1〉a + C̃22〈∂X2Σ2〉a + D̃0〈V 〉a − h
NR∑
r=1

Jr (X2 ∈ R),

(34)
where we have set B̃1 = hB, B̃2 = hB2, C̃11 = h(S + α0), C̃12 = hC1, C̃22 = h(C2 + α0) and
D̃0 = (hρmα0)/(γρi). When γ = +∞, then equation (7) of [40] is recovered.

In (34), the evolution equation satisfied by Gr involves ∂t〈∆V 〉a. This term could be replaced
by 〈∆ div Σ〉a via conservation laws. However, it is preferable to leave it in this form for numerical
purpose [40].

11



4. Numerical modeling in 1D

4.1. 1D setting
In this section, we describe the numerical implementation of the system (34) in a one-dimensional

configuration representative of the propagation of a plane wave illuminating a straight enlarged
interface at normal incidence. In this case, the fields are independent from X2 and the vector
field Σ(X) reduces to the scalar field Σ(X) = Σ1(X1), where X = X.e1 and (e1, e2) being the
canonical basis of R2. The system (34) is recast for all t as

∂tΣ(X, t) = µm ∂XV (X, t) (|X| ≥ a/2)

∂tV (X, t) =
1

ρm
∂XΣ(X, t) (|X| ≥ a/2)

∂tJr(t) = Gr(t) (r = 1, . . . , NR)

∂tGr(t) = − 1

γρi
Gr(t)− ω2

rJr(t) + µmα
2
r

(
∂t +

2

γρi

)
〈∂2
XXV 〉a +

(
αr
γρi

)2

〈∂XΣ〉a (r = 1, . . . , NR)

JV Ka = B̃1〈∂XV 〉a

JΣKa = C̃11〈∂XΣ〉a + D̃0〈V 〉a − h
NR∑
r=1

Jr.

(35)
As in [40], the solution u = (V,Σ)> of (35) is discretized using a uniform Cartesian grid with mesh
size ∆X and time step ∆t. The elastodynamic equations are integrated by a ADER-4 scheme [38, 24],
which is explicit, fourth-order accurate in space and time, and stable when the CFL number is less
than or equal to 1.

The discretization of the interface requires special care to satisfy three criteria: (i) ensure a
subcell resolution of the geometry; (ii) maintain the error of convergence despite the non-smoothness
of the solution across the interface; (iii) discretize accurately the resonant jump conditions. For this
purpose, we extend the Explicit Simplified Interface Method (ESIM) to the dissipative resonant case.
Non-resonant case and inviscid resonant case have already been treated in [21] and [40], respectively.

The ESIM leads to distinguish two types of grid nodes [22]: the regular points for which the
stencil of the ADER-4 scheme does not intersect the enlarged interface, and the irregular points for
which the stencil includes at least one node whithin the enlarged interface where the solution is not
defined. These grid nodes lying in the enlarged interface are called phantom points, where phantom
values need to be built. A phantom value is a smooth extrapolation of the solution on the other side
of the nearest interface. The next section describes how to compute the phantom values in 1D.

4.2. Computation of the phantom values
We denote by (u)nj the numerical approximation of u at point Xj = j∆X and time tn = n∆t.

IL and IR are the indices of the grid nodes that are the closest of the enlarged interface, see Figure
3. Due to the stencil of the ADER-4 scheme, there are four irregular points and four phantom points.
The ESIM of order q in 1D consists in defining the phantom values u∗(Xj, tn) as the q-th order
extrapolations of the solution at the grid node with index j from the values of the solution at the
physical point ±a/2, which may not coincide with a grid point. To do so, one introduces Tqj(±a/2)
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Figure 3: Stencil at XIL and nodes around the enlarged interface.

as the 2× qU matrices of the polynomial forms of the Taylor expansions:

Tqj(±a/2) =

(
1 (Xj ± a/2) . . . (Xj ± a/2)q/q! 0 0 . . . 0
0 0 . . . 0 1 (Xj ± a/2) . . . (Xj ± a/2)q/q!

)
,

(36)
with qU = (2q+2). The vectorsU q

+(tn) andU q
−(tn) are also introduced and concatenate qU unknowns

which are the traces on each side of the spatial derivatives of the fields V and Σ up to order q:

U q
±(tn) = (V±(tn), ∂XV±(tn), . . . , ∂qXV±(tn), Σ±(tn), ∂XΣ±(tn), . . . , ∂qXΣ±(tn))> ∈ RqU , (37)

where V±(tn) ≡ V (±a/2, tn) and Σ±(tn) ≡ Σ(±a/2, tn) and the same notation is employed for
the spatial derivatives. The numbering of arrays begin at 1: for instance, one has U q

±(tn)[1] =
V (±a/2, tn). The phantom values in 1D can thus be defined:

u∗(Xj, tn) = Tqj
(
−a

2

)
U q
−(tn) for j = IL + 1, IL + 2,

u∗(Xj, tn) = Tqj
(a

2

)
U q

+(tn) for j = IR − 1, IR − 2.
(38)

The method to derive the numerical approximations of the phantom values (u∗)
n
j is unchanged but the

expression of the matrices is modified compared to the case γ = +∞. The main steps are reminded
in Appendix A and yield: {

(u∗)
n
j = Tqj(U

q
−)n for j = IL + 1, IL + 2,

(u∗)
n
j = Tqj(U

q
+)n for j = IR − 2, IR − 1,

(39)

with {
(U q
−)n = (Mq)−1 [Un + FqQqZn]

(U q
+)n = (Cq

+)−1[Cq
−(Mq)−1 Un + GqQqZn],

(40)

the numerical approximations of U q
±(tn).

The matrices Tqj
(
±a

2

)
, Cq
±, Qq, (Mq), Fq, and Gq are defined in (36), (A.1), (A.6), (A.7). They

are computed during a pre-processing step once for all. Their expressions are given in Appendix A
for q = 3. In practice, the computation of the phantom values given by (39) and (40) at each time
step only requires to compute Un andZn. Un is defined in (A.7) and is computed from the numerical
values of the solution at the previous time. Zn is the numerical approximation of the vector containing
the auxiliary variables defined in (A.2) and its computation is presented in the next section.
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For the sake of brevity, the numerical modeling in 2D is not detailed in this paper. It has been
addressed in the inviscid case in [40]. The following two remarks highlight the main differences due
to the incorporation of dissipation.

Remark 1. The computation of the phantom values in the two-dimensional inviscid case is detailed in
[40]. Compared with the one-dimensional damped case of section (4.2), a significant change occurs
when the jump conditions are derived q times, see (A.1). Indeed, the q-th order jump conditions are
derived not only by differentiating in time the jump conditions but also by differentiating with respect to
the curvilinear abscissa s. For the derivatives with respect to s, one uses ∂s = X ′1(s)∂X1 +X ′2(s)∂X2 .
Consequently, the 2D version of the vector Zn is the vector of size qA = q(q + 1)×NR that contains
the auxiliary variables and their spatial derivatives until order q−1. Without dissipation, we only had
(q− 2)(q− 1)×NR auxiliary variables in 2D since the second member only involves the third-order
derivative term. In particular, the case q = 3 used in practice did not require to introduce additional
auxiliary variables in the inviscid case. Such technicalities can not be avoided with dissipation.

Remark 2. Without dissipation, the matrices in the ESIM separate the terms of stress and velocity,
which have very different orders of magnitude. In the dissipative case, these terms are mixed, which
induces a bad conditioning of the jump condition matrices and leads to numerical instabilities. To
overcome this difficulty, normalized physical parameters are used in our simulation program when
dissipation is considered. These quantities are denoted by tilds in the following. We choose a real
N and define the normalized time t̃ = N t and frequency f̃ = f/N and the normalized physical
parameters ρ̃ = N 3ρ, µ̃ = Nµ, c̃ = c/N , γ̃ = γ/N 2.

4.3. Computation of the auxiliary variables
Compared with the inviscid case [40], the computation of the auxiliary variables is substantially

changed by dissipation, since the equation satisfied by the auxiliary variables is modified. From now
on the following assumption is used regarding the dissipation parameter γ:

Assumption 2. γ > γ? = 1/(2 ρi ω1).

The infinite set of resonant frequencies is strictly increasing (13), hence the assumption (2) implies
γ > 1/(2ρiωr) for all r ≥ 1. The case of high -dissipation such that γ ≤ γ? yields a finite set of
purely damped eigenmodes. The reader interested in this regime can easily adapt the forthcoming
calculations. We introduce

ξ1 = −1/(2γρi)

ξ2
r =

√
4ω2

r − 1/(γρi)2 / 2

ϕ(τ) = µmα
2
r

(
∂t +

2

γρi

)
〈∂2
XV 〉a(τ) +

(
αr
γρi

)2

〈∂XΣ〉a(τ).

(41)

Zero initial conditions are assumed for Jr andGr. Using Assumption 2, then the auxiliary fields write{
Jr(tn) = eξ

1tn
[
−Λ1

r(tn) cos(ξ2
r tn) + Λ2

r(tn) sin(ξ2
r tn)

]
,

Gr(tn) = eξ
1tn
[
Λ1
r(tn)(ξ2

r sin(ξ2
r tn)− ξ1 cos(ξ2

r tn)) + Λ2
r(tn)(ξ2

r cos(ξ2
r tn) + ξ1 sin(ξ2

r tn))
]
,
(42)
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where one has for k = 1, 2:

Λk
r(tn) =

1

ξ2
r

∫ tn

0

`kr(τ) dτ with

{
`1
r(τ) = ϕ(τ) sin(ξ2

rτ)e−ξ
1τ ,

`2
r(τ) = ϕ(τ) cos(ξ2

rτ)e−ξ
1τ .

(43)

This leads to an iterative computation of the functions Λk
r :

Λk
r(t0) = 0,

Λk
r(tn+1) = Λk

r(tn) +
1

ξ2
r

∫ tn+1

tn

`kr(τ) dτ,
(44)

where t0 = 0. The integral is computed using an extrapolative Newton-Cotes formula [32]:∫ tn+1

tn

`kr(τ) dτ = ∆t
1∑

w=0

δw`
k
r(tn−w) +O(∆t3), (45)

where δ0 = 3/2 and δ1 = −1/2 . The computation of the terms `kr(tn−w) requires to approximate
ϕ(tn−w). The temporal derivative in (41) is computed using a finite-difference approximation:

∂t〈∂2
XV 〉a(tn−w) =

1

∆t

2∑
z=0

βz〈∂2
XV 〉a(tn−w−z) +O(∆t2), (46)

with β0 = 3/2, β1 = −4/2 and β2 = 1/2. The numerical approximation of the traces at ts ≤ tn is
computed thanks to the numerical approximations (U q

±)s of (40):
(〈∂2

XV 〉a)s =
1

2
((U q

−)s + (U q
+)s) [3],

(〈∂XΣ〉a)s =
1

2
((U q

−)s + (U q
+)s) [q + 3].

(47)

To compute the numerical approximation (Λk
r)
n+1 of Λk

r(tn+1), the iterative relation (44) is used, the
highest-order terms in (45) and (46) are neglected, and the approximation (47) is followed. It yields:

(Λk
r)

0 = 0,

(Λk
r)
n+1 = (Λk

r)
n +

α2
r∆t

ξ2
r

1∑
w=0

δw×[
µm
∆t

2∑
z=0

βz(〈∂2
XV 〉a)n−w−z +

2µm
γρi

(〈∂2
XV 〉a)n−w +

1

(γρi)2
(〈∂XΣ〉a)n−w

]
(κkr)

n−w,

(48)
with (〈∂2

XV 〉a)s and (〈∂XΣ〉a)s given by (47), (κ1
r)
s = sin(ξ2

r ts)e
−ξ1ts and (κ2

r)
s = cos(ξ2

r ts)e
−ξ1ts .

Then, the numerical approximation of the auxiliary variables writes:{
Jnr = eξ

1tn
[
−(Λ1

r)
n cos(ξ2

r tn) + (Λ2
r)
n sin(ξ2

r tn)
]
,

Gn
r = eξ

1tn
[
(Λ1

r)
n(ξ2

r sin(ξ2
r tn)− ξ1 cos(ξ2

r tn)) + (Λ2
r)
n(ξ2

r cos(ξ2
r tn) + ξ1 sin(ξ2

r tn))
]
.

(49)

It follows the vector Zn and consequently the phantom values (39).
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The numerical method presented in sections 4.2-4.3 involves different parameters: order K = 4
of the ADER schema, order q = 3 of the ESIM, order qI = 3 of the integration (45), and order qD = 2
of the derivation (46). In the inviscid case [40], the local truncation error was analysed. The steps of
the proof can be adapted directly to the dissipative case, and are not repeated here. We then have the
following result.

Property 1. Let assume that the numerical method is stable. Then the total error ε(tn) = O(∆Xν)
is obtained, with the parameter

ν = min (K, q − 1, qI − 1, qD) , for q = {3, 5}.

In the present case, it follows convergence of order ν = 2. This theoretical insight will be verified
numerically in section 5.

5. Numerical experiments

In Section 5.1, we first detail the microstructured configuration under study. Section 5.2 focuses
on the validation of the numerical method: comparisons with analytical solutions and convergence
measurements validate the numerical methods in both 1D and 2D. Then, Section 5.3 compares
the simulation results with microstructured and homogenized configuration. Different frequencies
are considered, illustrating the accuracy of the homogenization method. Two types of sources are
considered; the source point case allows to impact the microstructures with different angles, which
solicits all terms in the homogenized case. Finally, Section 5.4 proposes a physical analysis of
the results, in a 1D geometry. The analysis of the scattering matrix allows to find a critical value
of attenuation and a frequency for which the waves impacting the interface are totally absorbed.
Time-domain simulations illustrate that this phenomenon is very fastly reached.

5.1. Microstructured and homogenized configurations
We consider a straight array of elliptic inclusions defined by their semi-major axis r1 = 0.8m,

semi-minor axis r2 = 0.5m and tilt angle θ = 40° with respect to the X1-axis. This results in
an array of thickness e = 1.3838m, with a periodicity h = 2m. The constitutive moduli are
µm = 1010 kg · m−1 · s−2, µi = 10−2µm = 108 kg · m−1 · s−2, and ρi = ρm = 4.44 · 103 kg · m−3

with a high contrast in the shear modulus and no constrast in the density. The resulting velocities
are cm = 1500m · s−1 and ci = 150m · s−1. The minimal dissipation parameter in Assumption 2 is
γ? = 1.87 10−7 kg−1 · m3 · s. The dissipation parameter γ is given for each numerical experiment later
on.

The numerical approximation in this microstructured configuration is computed using the numer-
ical method presented in [23]: the system is discretized using the ADER-4 scheme and the geometry
of the inclusions is handled using the ESIM. It yields high numerical costs because the mesh size has
to be much smaller than the caracteristic size of the inclusions. The dissipation in the inclusion is
taken into account with a Strang’s splitting method [18]. The value of the normalization parameter is
set to N = 103.

The corresponding homogenized model is given by (34). Due to the energy considerations
mentionned in Section 3, the thickness of the enlarged interface is chosen such that a = e. The
effective parameters used in these jump conditions are given in Tables 1 and 2. The numerical
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B̃1 B̃2 C̃11 C̃12 C̃22

3.206 -0.284 0.756 -0.284 0.4

Table 1: Numerical values of the effective interface parameters featured in (34).

approximation of the homogenized solution is obtained using the numerical method presented in
Section 4.
For both configurations, we will consider either initial conditions for u = (V,Σ1,Σ2)> or a source
point. The initial conditions read

u(X, 0) =


1

µm

− 1

cm
0

G
(
(X −XI) · e1

)
, (50)

whereXI is an initialization point chosen to control the compact support of the initial condition. The
source point is located atXS such that (1) reads:

∂Σ

∂t
(X, t) = µ∇V (X, t)

ρ
∂V

∂t
(X, t) +

1

γ
V (X, t) = div Σ(X, t) + ρ δ(X −Xs)G(tcm),

(51)

with δ(X −Xs) being a Dirac delta function at X = Xs. The source function G used in both cases
is defined by:

G(x) =


3∑

k=0

αk sin(2kkmx) if − cm
f0

≤ x ≤ 0

0 otherwise,

(52)

with f0 the central frequency, α0 = 1, α1 = −21/32, α2 = 63/768, and α3 = −1/512, such that G is
of class C6. The typical wavelength in the matrix is defined as λ0 = cm

f0
, so that the associated small

parameter of Assumption 1 is

η(f0) =
2πf0h

cm
. (53)

5.2. Validation of the numerical method
5.2.1. 1D setting

We consider a microstructured array aligned with the X2-axis and centered at X1 = 0 together
with the initial conditions (50). Consequently, in the homogenized problem, the incident plane wave
impacts the enlarged at normal incidence. Thus, the homogenized configuration can be considered as

r 0 1 4 8 9 13 16 21 23
αr 0.314 0.462 0.144 0.148 0.069 0.078 0.037 0.053 0.081

ωr (rad · s−1) 600 1101 1523 1637 1962 2178 2438 2463

Table 2: Resonances parameters in (23). When αr = 0, the value of ωr is not given.
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a one-dimensional problem. In this case, the numerical method has been developped in Sections 4.1,
4.2 and 4.3. The present section aims at validating this approach to simulate the wave propagation in
the effective medium.

The central frequency is f0 = 72 Hz in the source function (52) used in the initial conditions
(50). The pointXI = (−2, 0)m is chosen such that the initial conditions do not intersect the enlarged
interface. The initial profile (normalized by its maximum) of the velocity is displayed in Figure 4a.
The numerical parameters are ∆X = 0.2m for the mesh size and ∆t = ζ∆X/cm for the time step.
The CFL number ζ = 0.95 < 1 is chosen and ensures the stability of the ADER-4 scheme in a
homogeneous medium. The order of the ESIM is q = 3.

The dissipative parameter is γ = 2 · 10−6 kg−1 · m3 · s > γ?. The profile of the numerical
approximation of this homogenized model is displayed at the final time tf = 31.7ms together with a
semi-analytical solution Vref in Figure 4b. The computation of this semi-analytical solution is detailed
in Section 3.2.
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(a) t = 0

-50 0 50
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-0.5
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0.5

1

(b) t = tf

Figure 4: Velocity profiles of the homogenized problem at time t = 0 and time t = tf for a plane wave at normal incidence
with f0 = 72Hz. The dashed lines denote the positions of the enlarged interface.

The discrepancy between the numerical and semi-analytical homogenized solutions is measured
in the L2-norm for X ∈ [−50;−5]m. The relative error in Figure 4b, i.e. for ∆X = 0.2 m, is of
0.7%. The relative error is then represented in Figure 5 as a function of ∆X whose slope in a log-log
scale graph characterizes the global order of the scheme. This figure is obtained with the relative
position of the enlarged interface in the uniform Cartesian grid being kept while the mesh size ∆X
increases. The errors obtained in the case γ = +∞ are also included in the figure for comparison. As
theoretically predicted in Property 1, order 2 of convergence is measured.
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Figure 5: Relative error between the 1D numerical and semi-analytical velocities of the homogenized problem in a log-log
scale.

5.2.2. 2D setting
In this section, we validate the 2D numerical method mentioned in Remarks 1 and 2. We still

consider the same configuration of an incident plane wave at normal incidence than in Section 5.2.1
but the full 2D algorithm is used for the homogenized problem. The same numerical parameters
than in 1D are used, q = 3 and ∆X = 0.2m. Periodic conditions are imposed at the top and the
bottom of the computational domain. For f0 = 72Hz, Figure 6 shows the velocity fields at the initial
time t = 0 and the final time t = tf = 31.7ms. The profiles along X2 = −1m of the numerical
and semi-analytical solutions of the homogenized problem are displayed at tf in Figure (7a). The
discrepancy is of same order as in 1D, with a relative error of 1%. This relative error is displayed
as a function of ∆X in Figure (7b) and confirms an order of 2. Consequently, we observe the same
order of convergence as in 1D even if the 2D numerical method is much more intricate, involving 12
auxiliary variables computed instead of 2 for the one-dimensional problem, see Remark 1.
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-50 0 50

-10

-5

0

5

10

(b) t = tf

Figure 6: Velocity fields of the homogenized problem at time t = 0 and time t = tf at normal incidence with f0 = 72
Hz. The black lines denote the enlarged interface.

5.3. Validation of the homogenized model
Once the numerical method validated, for a mesh size enough small, we compare the numerical

simulations in the microstructured configuration and for the homogenized problem to assess the
reliability of the jump conditions (34).
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Figure 7: Numerical and semi-analytical velocity profiles (a) of the homogenized problem at time t = tf for normal
incidence with f0 = 72 Hz and corresponding relative errors (b).

5.3.1. Incident plane wave at normal incidence
We compare the homogenized simulations with full-field simulations performed in the mi-

crostructured configuration. The mesh size of ∆X = 0.2m, which gives satisfying results according
to Figure 7, is chosen for the homogenized configuration. On the other hand, a mesh size 8 times
smaller ∆X = 0.025m is required to handle the geometry of the microstructure. This underlines
the benefits of the homogenization process in terms of computational time and memory requirement.
The dissipation parameter is γ = 2 · 10−6 kg−1 · m3 · s. One investigates the agreement between
both configurations for three values of η(f0) = 0.3, 0.6, 0.9 in (53). This corresponds to central
frequencies of f0 = 36, 72, 108Hz, respectively in (52) for the initial conditions (50).
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Figure 8: (Top two rows) velocity fields for the microstructured configuration and for the homogenized model for an
illumination by an incident plane wave at normal incidence. (Bottom row) comparison of the corresponding velocity
profiles at X2 = −1m. (left) η(f0) = 0.3, (center) η(f0) = 0.6, and (right) η(f0) = 0.9.
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The velocity fields for the microstructured configuration and for the homogenized model together
with their respective profiles along X2 = −1m are reported in Figure 8 at time t = 31.7ms. The
corresponding discrepancy between both solutions is measured in the L2-norm forX1 ∈ [−50;−5]m
and at X2 = −1m. The relative errors are of about 3.8%, 5.7% and 7.4%, respectively. As expected,
the solutions agree at low frequency but deviate from one another as the parameter η(f0) increases to 1
and does not conform to Assumption 1. The Fourier spectrum of the source functionG is displayed as
a function of η(f) in Figure 9 for the three values of η(f0) used in the previous numerical experiments.
One notes that this wide-band signal involves higher frequencies than f0 for which the associated
values η(f) lie beyond the hypothesis of the small parameter of Assumption 1. The comparison of
the simulations in both configurations is then satisfying given the large values of η(f) involved.
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Figure 9: Fourier transform Ĝ of the source function for the three different values η(f0) considered (here indicated by the
dashed lines). The blue crosses denote the values η(ωr/(2π)) = ωrh/cm associated with resonances ωr in (23).

In order to have a more precise comparison frequency by frequency, the transmission coefficients
are now studied. To do so, the velocity of the microstructured configuration and the homogenized
model in the case η(f0) = 0.6 is recorded from t = 0 to t = 475 ms at one receiver located at
(10, 0)m. The Fourier transform of the velocity is computed from these data and normalized by the
one of the source function. The resulting transmission coefficient is displayed in Figure 10. One
recovers the fact that the agreement between both transmission coefficients deteriorates around the
resonant frequencies that are not taken into account in Dγ(ω). Moreover, in the dissipative case
γ 6=∞, the behaviour of the transmission coefficient around the resonances is less singular than when
damping is not considered. Consequently, around these resonances the agreement is better than the
ones presented in [41] explaining the good quality of the results in Figure 8 even for the higher values
of η(f0).

5.3.2. Source point
In the previous example, we had aX2-invariance in the homogenized problem with consequently

no role of the effective parameters B̃2, C̃12 and C̃22 in (34). In this section, we consider the illumination
by a source point (51) located at XS = (−35, 0)m so that all the effective parameters are taken into
account. The numerical and physical parameters are unchanged and the computational domain is
defined as [−70 m; 35 m] × [−132 m; 132 m]. Perfectly Matched Layers are used in the background
domain on the left and right boundaries while the domain is chosen large enough along the X2-axis
to avoid reflections from the top and bottom boundaries. The simulations of the homogenized model
are compared with full-field simulations to investigate the capability of the homogenized problem to
model a full 2D configuration.
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Figure 10: Transmission coefficient for the microstructured configuration and the homogenized model. The blue crosses
and the green squares denote the resonant frequencies taken into account in Dγ(ω) and the missed resonant frequencies
of zero mean modes, respectively.

The velocity fields are displayed at times t ∈ {t1, t2, t3, t4} = {25.3, 38.0, 50.7, 63.3} ms on
the figures 11, 12 and 13 for η(f0) = 0.3, 0.6, 0.9, respectively. Only a subset of the computational
domain [−62 m; 27 m] × [−40 m; 40 m] is shown. The profiles at X2 = 1 m are then compared on
Figure 14. Quantitatively, the discrepancies between solutions of the microstructured problem and of
the homogenized model are measured in the L2-norm for X1 ∈ [−50 m ;−5 m ] and at X2 = 1m.
The relative errors for the three values of η(f0) are of about 2.7%, 7% and 14%, respectively. A good
agreement is again observed at low frequency and decreases as η(f0) increases to 1.

5.4. Application to Coherent Perfect Absorption
In the previous examples, we validated the numerical methods and showed that the homogeniza-

tion of interfaces represented very accurately resonant and dissipative microstructures. Consequently,
we will now use numerical simulations of the homogenized configuration to investigate the effect of
the dissipation parameter γ. For this purpose we will consider a plane wave at normal incidence,
so that the problem becomes one-dimensional again. Numerical simulations are performed with
∆X = 0.2m, which guarantees a good accuracy according to Figures 4 and 5.

First, the velocity profiles at t = tf are presented in Figure 15 for different values of γ. The
resonant behaviour of the material leads to energy radiated by the enlarged interface even a long time
after the incident wave has passed it. Close to the limit value γ?, for example γ = 2 ·10−7 s · kg−1 · m3,
the dissipation is so high that we do not see this resonant behaviour anymore. On the other hand,
close to 100 γ?, for example γ = 2 · 10−5 kg−1 · m3 · s, the dissipation has barely any influence and
we almost recover the case γ = +∞.

Considering a homogenized interface is obviously very advantageous on a computational level.
But it also makes it much easier to study the physical properties of the studied system. We then will
illustrate this aspect, by focusing on the phenomenon of Coherent Perfect Absorption. Schematically,
resonant and dissipative scatterers behave as open systems, characterized by their energy leakage and
intrinsic losses. The equilibrium between these two energy losses corresponds to a condition of critical
coupling and maximizes the energy absorption. The study of critical coupling is an active research
topic in acoustics, especially for the design of subwavelength panels made of Helmholtz resonators,
ie resonances induced by the geometry [35, 13, 14, 15, 17, 33, 34]. Here we propose an example with
material resonances.

The setting is still one-dimensional: the design of an optimal metasurface over a wide band of
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Figure 11: (Left) velocity fields for themicrostructured configuration and (right) for the homogenizedmodel for η(f0) = 0.3
and at different times t ∈ {25.3, 38.0, 50.7, 63.3}ms. A source point is located at the black cross.

incidence angles [14] is out of the scope of this paper. From the reflection and transmission coefficients
for θ = 0 (25), one can fill in the scattering matrix S [34]. The poles of det(S) are off the real axis,
and have a real part close to each resonant frequency ωr in Dγ(ω). By convention, we have chosen a
time dependence eiωt, so that the poles are in the upper half-plane of C, unlike [34]. For a medium
without dissipation, the zeros of det(S) and complex conjugate of the poles, and lie therefore in the
lower half-plane of C. This property is observed in Figure (16a), where we represent log(|det(S)|)
around the first four resonance frequencies ωr in Dγ(ω).

When attenuation is considered in the scatterers, the position of these zeros and poles evolves in
the complex plane. The imaginary parts of these quantities grow strictly with the magnitude of the
dissipative effects. Associated to each resonance ωr, there is then a critical value of the attenuation
for which the zero of det(S) crosses the real axis, at a frequency ω̃r. Figure (16b) illustrates this
property; for the critical value γ = 4.47 · 10−6, we observe that the zero of det(S) associated to the
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Figure 12: (Left) velocity fields for themicrostructured configuration and (right) for the homogenizedmodel for η(f0) = 0.6
and at different times t ∈ {25.3, 38.0, 50.7, 63.3}ms. A source point is located at the black cross.

first resonance frequency crosses the real axis. This is not the case for the three following resonances
at this value of γ. Figure 17 displays the trajectory of the zeros of det(S) in the complex plane. We
note that there is a slight shift between ωr and ω̃r.

The transmission and reflexion coefficients computed analytically in (25) are displayed in Figure
18 for the two values γ = +∞ and γ = 4.47 · 10−6 kg−1 · m3 · s; as said previously, this last
value ensures the critical coupling at ω̃1. When dissipation is not considered, perfect transmission
is reached followed by perfect reflection within a small band width around the resonant frequencies.
We introduce ωmin,1 the frequency for which transmission is minimal around the first resonance. With
dissipation, these behaviors are smoothed. Besides, one notices that dissipation α is maximal around
these resonant frequencies (see Figure 18c): as usual for transmission problems illuminated only on
one side [34], the optimal value is α = 0.5 and it is reached at ω̃1.
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Figure 13: (Left) velocity fields for themicrostructured configuration and (right) for the homogenizedmodel for η(f0) = 0.9
and at different times t ∈ {25.3, 38.0, 50.7, 63.3}ms. A source point is located at the black cross.
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Figure 14: comparison of the velocity profiles at X2 = 1m for the case of a source point and the three different values of
η(f0).
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Figure 15: Velocity profiles of the homogenized problem at time t = tf for different values of γ.

(a) γ = +∞ (b) γ = 4.47 · 10−6

Figure 16: Complex frequency map of log(|det(S)|) for the invisicid case (a) and for the critical value of the dissipation
parameter associated with the first resonance(b), where S is the scattering matrix. We observe four poles and four zeros,
in the vicinity of the first four resonance frequencies considered in Dγ(ω).

To illustrate this behaviour around the resonant frequencies, we consider a causal monochromatic
source point located at XS = −120m. In (51), the forcing G(tcm) is thus replaced by A sin(ωSt) if
t ≥ 0, and 0 if t < 0. The angular frequency ωS will be given for each case later on. The velocity
profiles at t = 633ms are displayed in Figure 19. The magnitude A of the source is such that the
amplitude of the emitted velocity is 0.5 m/s, which is denoted by horizontal dotted lines. At the
considered instant, the incident wave to the left of the source has almost left the domain, and the front
of the reflected wave is located near -800 m; it is marked by a green arrow. For γ = +∞ (Figure
19a), the angular frequency is ωS = ωmin,1 for which minimal transmission is reached around the
first resonance. The time-domain simulations confirm that there is almost no transmitted signal quite
quickly. In Figure 19b, we consider the critical value of dissipation γ = 4.47 · 10−6 s · kg−1 · m3 and
the associated angular frequency ωS = ω̃1 for the source. The transmitted wave is greater, as expected.
Between the front of the reflected wave (green arrow) and the interface, the amplitude of V is greater
than 0.5, which confirms that the reflected wave is not absorbed.
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Figure 17: Zeros of det(S) in the complex plane, where S is the scattering matrix, for various values of the dissipation
parameter. The arrow shows the direction of the trajectory as losses are increased. The red circles denote the zeros for
γ ∈

{
+∞, 5 · 10−5, 1 · 10−5, 5 · 10−6, 4.47 · 10−6, 4 · 10−6, 2 · 10−6

}
from bottom to top. The blue cross denotes the

resonant frequency.

0 0.5 1 1.5 2
0

0.5

1

(a) Reflection coefficient

0 0.5 1 1.5 2
0

0.5

1

(b) Transmission coefficient

0 0.5 1 1.5 2
0

0.5

1

(c) Absorption coefficient

Figure 18: Reflection, transmission and absorption coefficients (25). The blue crosses denote ωr in Dγ(ω).

To obtain Coherent Perfect Absorption in our transmission problem [34], it is necessary to
illuminate the resonant interface from both sides. To do this, two sources of angular frequency ω̃1

are placed symmetrically with respect to the interface and switched on at the same time. Figure 20
represents V at t = 631 ms. The dotted horizontal lines in ± 0.5 mark the amplitude of the incident
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Figure 19: Velocity profiles of the homogenized problem at t = 633ms with one source. Dissipation parameter γ = +∞
(a) and γ = 4.47 · 10−6 s · kg−1 · m3 (b). The monochromatic source point is located at the black cross and is switched
on at t = 0. The angular frequency of the source ωS is either ωmin,1 (a) or ω̃1 (b). The green arrows denote the reflected
wavefront.
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Figure 20: Velocity profiles of the homogenized problem at t = 631ms with two sources. Dissipation parameter
γ = +∞ (a) and γ = 4.47 · 10−6 s · kg−1 · m3 (b). The two monochromatic source points are located at the black
crosses and are switched on at t = 0. The angular frequency of the source ω̃S = ω̃1 is such that det(S)(ω̃S) = 0 if
γ = 4.47 · 10−6 s · kg−1 · m3. The green arrows denote the reflected wavefronts.

wave emitted. At this moment, the incident waves emitted by the two sources have almost left the
domain. On the other hand, the fronts of the reflected waves are visible and marked by green arrows.
In the unattenuated case (Figure 20a), the reflected waves are observed, which lead to an increase
in the amplitude of the waves. In the dissipative case with critical coupling (Figure 20b), the wave
amplitude does not exceed 0.5. This means that the reflected waves have disappeared and have been
completely absorbed by the dissipative resonant interface.

6. Conclusion

We considered a periodic row of inclusions with a scaling in the shear moduli as η2, where η is
the usual small parameter. Compared with existing results, dissipation of energy was considered. The
effective jump conditions applying have thus been enriched in the frequency-domain and the time-
domain using the homogenization techniques. A time-domain numerical method has been proposed in
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1D and 2D to deal with the model so obtained. Finally, time-domain simulations have been presented
to validate the numerical method. Once validated, this method has then been used to compare the
solution with simulations in the original microstructure. A good agreement has been found and
discussed. Simulations of the homogenized problem have also been performed to investigate the
role played by the dissipation parameter. An application to Coherent Perfect Absorption has been
proposed, in lines with current researches done on subwavelength metasurfaces [34].

As in the case where no dissipation is considered, perspectives include the derivation of an
effective model at higher order, as discussed in [10, 31, 41]. This could allow to account for the
resonances associated with modes with zero mean, which are missed in the current model. However,
it seems that when dissipation is considered, this does not induce a large error compared with full-field
solutions. Another fruitful direction of work concerns the design of meta-interfaces to reach some
objective effective properties through a topological optimization process. This approach has been
developped in [6] for bulk metamaterials and its adaptation for thin resonant metasurfaces could be of
particular interest, for example, in the noise reduction field [25, 37].
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Appendix A. Numerical approximation of the phantom values in 1D

This section details the computation of the phantom values defined in (38). It requires to derive
the q-th order jump conditions. The jump conditions in (34) are differentiated iteratively q times with
respect to t. At each step, the temporal derivatives are replaced by the spatial derivatives using (34).
This process can be written:

Cq
+U

q
+(tn) + Rq

+(tn) = Cq
−U

q
−(tn) + Rq

−(tn) + QqZ(tn), (A.1)

with Cq
± being qU × qU matrices and Cq

+ being invertible in the cases considered hereafter,Qq being a
qU × 2NR matrix, and Rq

±(tn) being qU -element vectors containing the (q + 1)-th spatial derivatives
of the fields. The vector Z contains the 2NR auxiliary variables at time tn, i.e.

Z(tn) = (J1(tn), . . . , JNR
(tn), G1(tn), . . . , GNR

(tn))> . (A.2)
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The expression of the matrices and vectors which depend on the physical parameters are given below
in the case q = 3:

C3
±[i, i] = 1, C3

±[5, 1] = ∓D̃0

2
,

C3
±[1, 2] = ∓B̃1

2
, C3

±[5, 6] = ∓C̃11 + hα0

2
,

C3
±[2, 3] = ∓C̃11 + hα0

2
, C3

±[6, 7] = ∓B̃1

2
,

C3
±[2, 6] = ∓ D̃0

2ρmµm
, C3

±[7, 3] = ∓hρm
γρi

(α0

2
−

NR∑
r=1

α2
r

)
,

C3
±[3, 4] = ∓B̃1

2
, C3

±[7, 6] = ± h

2(γρicm)2

NR∑
r=1

α2
r ,

C3
±[4, 3] = ∓ h

2(γρicm)2

NR∑
r=1

α2
r , C3

±[7, 8] = ∓1

2

(
C̃11 + hα0 − h

NR∑
r=1

α2
r

)
,

C3
±[4, 6] = ∓ h

2µmc2
m(γρi)3

NR∑
r=1

α2
r , C3

±[i, j] = 0 else.

C3
±[4, 8] = ∓ h

2µmγρi

(
α0 −

NR∑
r=1

α2
r

)
,

(A.3)



Q3[2, j] = − h

µm
if j ∈ {NR + 1, ..., 2NR},

Q3[4, j] = −
hω2

j

µmc2
mγρi

if j ∈ {1, ..., NR},

Q3[4, j] =
h

µmc2
m

(
ω2
j−NR

− 1

(γρi)2

)
if j ∈ {NR + 1, ..., 2NR},

Q3[5, j] = −h if j ∈ {1, ..., NR},

Q3[7, j] =
hω2

j

c2
m

if j ∈ {1, ..., NR},

Q3[7, j] =
h

c2
mγρi

if j ∈ {NR + 1, ..., 2NR},

Q3[i, j] = 0 else.

(A.4)

R3
±[4] = ∓1

2

(
C̃11 + hα0 − h

NR∑
r=1

α2
r

)
∂4
XV±, R3

±[8] = ∓B̃1

2
∂4
XΣ±, R3

±[i] = 0 else. (A.5)

One recalls that index numbering starts at 1 for all the vectors and matrices considered in this paper.
When γ = +∞, one recovers the equations (19), (20) and (21) in [40].

To compute the phantomvalues (38), Taylor expansions arewritten at qT nodesXIL−qT +1, . . . , XIL

on the left side of the enlarged interface and at qT nodes XIR , . . . , XIR+qT−1 on the right side of the
enlarged interface. The phantom values u∗(Xj, tn) are then computed using these Taylor expansions
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and the q-th order jump conditions (A.1). We introduce the following matrices and vectors by blocks:

Mq =



TqIL−qT +1(−a
2
)

...
TqIL(−a

2
)

TqIR(a
2
)(Cq

+)−1Cq
−

...
TqIR+qT−1(a

2
)(Cq

+)−1Cq
−


, Fq =



0
...
0

−TqIR(a
2
)

...
−TqIR+qT−1(a

2
)


(Cq

+)−1, (A.6)

Gq = Cq
−(Mq)−1Fq + IqU and Un =



(u)nIL−qT +1
...

(u)nIL

(u)nIR...
(u)nIR+qT−1


. (A.7)

The matrices Mq and Fq are 4qT × qU matrices, Gq is a qU × qU matrix, Un is a 4qT -element vector
andZn is the numerical approximation ofZ(tn). When qT is such that 4qT = qU , thenMq is a square
matrix that is formally checked to be invertible. If 4qT > qU thenMq is not square and (Mq)−1 denotes
its Moore-Penrose pseudo-inverse. The numerical approximations (u∗)

n
j of the phantom values (39)

are finally obtained neglecting the derivatives of order greater than (q + 1).
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