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Abstract—In most safety-critical systems, the robustness and
the confidentiality of the application code are crucial. Such code
is generally stored into Non-Volatile Memories (NVMs) that are
prone to faults (e.g., due to radiation effects). Unfortunately,
faults affecting the instruction code result very often into
Silent Data Corruption (SDC). This condition lets faults remain
undetected and it can lead to undesiderable errors that may
compromise the system functionality. Thus, it is desirable that
the system is able to detect faults affecting the code memory.
To overcome this issue, designers often resort to expensive
error detection/correction mechanisms. Furthermore, they also
adopt memory encryption techniques to prevent unauthorized,
hence malicious, access to the code or to protect it from any
unauthorized copy. In this paper, we show that the presence
of memory encryption alone is able to strongly reduce the
probability of SDC, without the need of implementing expensive
error detection.

We have performed some experiments on the OpenRISC1200
microprocessor in order to evaluate the impact on reliability
stemming from different encryption methods.

I. INTRODUCTION

Designers of Embedded Systems are used to face many
challenges: among them, it is increasingly common to find
both safety and security. In fact, in many domains where
embedded systems are used (e.g., automotive, biomedical,
aerospace) the effects of possible failures due to faults af-
fecting the hardware must be considered, and suitable safety-
oriented techniques must be adopted in order to minimize the
chances of faults (e.g., acting on the adopted semiconductor
technology) or to minimize the impact of their effects (e.g., by
introducing redundancy in the design). On the other side, in
the last years there has been an exponentially growing interest
(and concern) for the security-oriented techniques suited to
prevent possible attacks that can deliberately affect the system
behavior to change it (in the extreme case, blocking the
system, or forcing it to perform illegal operations), or to extract
private and/or precious information.

Focusing on security, a common issue which is often faced
when designing embedded systems is the one of protecting
the application code from possible attacks aimed at stealing it
(e.g., to better understand the adopted algorithms for copying
purposes, or to allow more intrusive attacks in the following).

For this purpose, in these cases the application code is often
encrypted when stored in the memory (often a Non Volatile
Memory, or NVM) and then decrypted before execution, or
when the code is transferred to a RAM [1]. In this way the
stored version of the code can hardly be used and understood,
even if downloaded from the NVM. A suitable hardware block
to execute the decryption is thus included within the circuit and
activated when required. Several issues related to efficiently
manage an encrypted NVM storing the application code are
discussed and solved in [2].

On the other side, since NVMs are prone to errors (e.g.,
caused by radiation effects), designers adopt redundancy so-
lutions able to detect the occurrence of single- and multiple-
bit errors and to possibly correct some of them. The most
common solution is based on Error Correction Codes (ECCs)
able to detect and possibly correct errors up to a given
multiplicity [3]. The adoption of ECCs involves both hardware
and performance overhead, because they require computing
some extra bits each time the memory is written, and re-
computing/checking them each time the memory is read.
Moreover, the error detection/correction capabilities of ECCs
depend on the number of errors they can manage, and the
overhead quickly becomes unacceptable when multiple faults,
other than double ones, are considered. Alternative solutions to
ECCs have also been explored, based on suitably selecting the
instruction opcodes, so that the chances that the processor can
trigger an exception when a faulty instruction is fetched are
maximized [4]. However, this solution requires acting on the
design of the CPU core, which is often impossible for system
companies using for their applications processors developed
by other companies.

Our work started from the observation that when a fault
affects the code memory, it is likely that the decryption mech-
anism produces a code which triggers some fault detection
mechanism in the processor (e.g., an illegal instruction excep-
tion). Hence, encrypting the code may turn into a mechanism
that detects possible errors in the code memory content. The
attractive consequence of this observation is that, if confirmed,
it allows an existing mechanism to be used for both security
and safety, thus reducing costs. In order to quantify this
phenomenon, we performed a number of experiments on the
OR1200 processor [5] with different encryption mechanisms
and different applications. Results show that by suitably se-



lecting the encryption mechanism, a significant percentage of
single- and multiple-bit faults can be detected. Hence, a high
error detection capability can be achieved without resorting to
any Error Correction/Detection mechanism for the memory.

As a result, a major contribution of this paper lies in
practically demonstrating that security-oriented mechanisms
can be used for detecting at no extra cost hardware faults
affecting the code memory.

The rest of the paper is organized as follows. Section II
briefly describes the underlying theory of symmetric encryp-
tion and why it is applied to embedded system memories.
Section III introduces the reference scenario of this work and
details the proposed contribution. Section IV illustrates the
experimental setup and the related results obtained. Finally,
Section V draws the conclusions.

II. BACKGROUND

In this Section, we provide the background on memory
encryption which is required to let the reader appreciate the
evaluation proposed in the following of the paper. At first, we
summarize the theory of symmetric encryption, introducing
the two main categories of encryption mechanisms. Secondly,
we explain how these principles are applied to the practical
case of securing embedded system memories.

A. Symmetric Encryption

In cryptography, encryption is used to grant confidentiality
of exchanged data between a sender and a receiver [6]. Let
us imagine a communication scheme where a sender wants to
send a private message to a receiver. The incumbent security
threat is that an attacker could eavesdrop the communication
channel and potentially steal the content of the data. In order
to protect the message, the sender and the receiver can rely
on encryption, whose advantage is making the transmitted
message unintelligible for the attacker. In particular, symmetric
encryption schemes are based on the fact that the sender and
the receiver share the same secret key.

The plaintext message m is encrypted by the sender using
the secret key k and the encryption function E, in order to
produce the ciphertext c = E(k,m). The ciphertext c is sent on
the communication channel, but no attacker is able to deduce
m from c without knowing the secret key. The receiver can
easily retrieve the plaintext m using the secret key and the
decryption function D. Indeed, m = D(k, c).

The couple (E,D) is called cipher. A cipher is defined as
semantically secure, if it is not possible for an attacker to
retrieve the plaintext merely observing the ciphertex. Most
common ciphers can be classified into two categories: block
ciphers and stream ciphers.

1) Stream Ciphers: stream ciphers are based on a theoreti-
cal cipher, called One Time Pad (OTP). In the OTP, the secret
key must be as long as the message m. The encryption function
is defined as E(k,m) = m⊕k, and the decryption function as
D(k, c) = c⊕k. Normally, the plaintext and the ciphertext are
processed as bitstreams. The key k is called keystream and

it is combined one bit at a time with the plaintext to produce
the ciphertext stream.

If the keystream is perfectly random (i.e., according to
the uniform distribution), the OTP has perfect secrecy. This
means that the produced ciphertext is indistinguishable from
a random sequence (this is due to the properties of the
XOR operation). In this case, it is impossible for an attacker
intercepting the ciphertext to derive any information neither on
the message nor on the key. However, from a practical point
of view, the OTP is not implementable because the sender and
the receiver should share a secret key having the same size as
the message.

Stream ciphers are the implementation of the OTP. In
stream ciphers the keystream is produced by a Pseudo-Random
Generator (PRG). The PRG takes as input a value k, called
seed of the stream cipher, and outputs the keystream S(k).
The encryption and decryption functions are thus defined as
E(k,m) = m ⊕ S(k) and D(k, c) = c ⊕ S(k). Therefore,
the secret key that is exchanged between the sender and the
receiver is the seed of the PRG (which is much shorter than
the resulting keystream). As long as the PRG produces a
keystream that is unpredictable, the resulting stream cipher
is considered to be secure.
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Fig. 1: High-level architecture of: (a) stream cipher; (b) block
cipher.

In Fig. 1(a) the high-level structure of a typical stream
cipher is represented.

For the purpose of this paper, it is worth pointing out
that in stream cipher encryption, we always find a bit-to-
bit correspondence between plaintext and ciphertext. In fact,
a one-bit difference on the plaintext leads to the same bit
difference on the ciphertext.

2) Block Ciphers: block ciphers are based on mathematical
objects called Pseudo Random Permutations (PRPs). They
are invertible functions that take as input an n-bit value m
and a secret key k, and output an n-bit value c. A PRP is
considered secure if it is indistinguishable from a random
bijective function on n-bit values. Block ciphers implement a
secure PRP. They are made of (i) an encryption function that is
able to encrypt a plaintext block into a ciphertext block using a
secret key; (ii) a decryption function that performs the inverse
operation and retrieves the plaintext block from the ciphertext.



Block cipher functions perform confusion and diffusion of the
plaintext on the ciphertext. This means that two very similar
plaintexts result in completely different ciphertexts after the
encryption.

In Fig. 1(b) the high-level structure of a typical block cipher
is represented.

In block cipher based encryption the plaintext and the
ciphertext have a block per block correspondence. This means
that the modification of one bit on the plaintext leads to the
perturbation of an entire block of ciphertext.

B. Memory Encryption

In embedded systems, encryption is widely implemented in
order to protect a large variety of assets. All the intellectual
properties that are present inside a system could potentially be
stolen by an attacker having physical access to the hardware.
For this reason, it is important to provide confidentiality of the
memory content [7], as well as of the data that is exchanged
with the other integrated circuits in the system [8].

NVMs are sensitive elements in all embedded systems. For
instance, flash memories can be opened and read out by any
attacker having access to the device [9]. Since the application
code is typically stored inside external flash memories, the
encryption of the memory content is a functionality that is
more and more needed by designers. Even when the NVM is
part of a single chip also including the CPU, its content could
be encrypted to make it more difficult to steal it via some
peripheral interface.

The memory encryption model adopted in this paper relies
on the symmetric encryption scheme. The sender is the code
developer that stores the encrypted code into the NVM. The
receiver is the microprocessor that reads out the code from
the NVM and loads it into its internal memory (e.g., internal
RAM or instruction cache) for being executed. The secret
key is known by the code developer and configured inside
the microprocessor in a secure way. At system boot, the
application code is transferred from the external NVM to the
internal RAM and processed on-the-fly by a decryption module
using the secret key.

III. REFERENCE SCENARIO AND PROPOSED EVALUATION

When a single fault affects the non-encrypted NVM, where
the application code is stored, this normally results in the
flipping of one instruction bit. If the fault hits the part of
the instruction containing the opcode, it may happen that the
instruction is transformed into an illegal instruction, causing a
failure in the code execution. On the other hand, if the fault
affects the part of the instruction containing the operands,
there is a higher probability that the resulting instruction is
executed by the processor without causing a failure. Thus, the
computation carries on with corrupted data, resulting in Silent
Data Corruption (SDC).

In this paper, we show that when memory encryption
is implemented, faults affecting the application code could
produce an effect that may be propagated and amplified by
the decryption mechanism. This increases the probability of an

illegal instruction condition, thus it decreases the SDC proba-
bility. The experiments that we have conducted (discussed in
Section IV) show that the SDC reduction heavily depends on
the cipher that is used.

For the purpose of this paper we have considered two
different ciphers to implement memory encryption:

• RC4: a very lightweight stream cipher which is widely
used in hardware implementations;

• Advanced Encryption Standard (AES): the most widely
used block cipher. It encrypts the plaintext per blocks
of 128 bits.

Block ciphers can be implemented according to different
modes of operation. A mode of operation is an encryption
scheme that repeatedly applies a single-block operation in
order to securely transform a plaintext that is longer that one
encryption block.

In the proposed experiments, we have considered memory
encryption with AES configured according to the following
modes of operation:

• Electronic Codebook (ECB): blocks are encrypted inde-
pendently, such that one block of plaintext is mapped to
one block of the ciphertext.

• Cipher Block Chaining (CBC): each plaintext block,
before being encrypted, is XORed with the ciphertext
resulting from the previous block.

• Cipher Feedback (CFB): it behaves like a stream cipher.
The ciphertext is obtained as the XOR between the
plaintext block and a key block. The key block is obtained
by the encryption of the ciphertext resulting from the
previous block.

• Output Feedback (OFB): it behaves like a stream cipher.
Keystream blocks are created starting from an initializa-
tion vector, which are XORed with plaintext blocks in
order to generate ciphertext blocks.

• Counter (CTR): it behaves like a stream cipher.
Keystream blocks are computed in parallel encrypting
blocks produced by a counter. The resulting keystream
blocks are XORed with the plaintext blocks in order to
compute the ciphertext blocks.

Depending on the error propagation properties of the afore-
mentioned encryption techniques, we can classify them into
the following categories:

• Non-Propagating configurations: if a fault affects one
bit of the encrypted memory, after decryption the fault
will not propagate to other bits. Thus, in this case, the
resulting code is as much corrupted as it would be without
memory encryption. This category includes all the stream
ciphers, as well as OFB and CTR modes of operations of
block ciphers. For the sake of clarity, in the following of
the paper we will refer to these encryption methods with
the generic name of stream ciphers.

• Propagating configurations: if a fault affects one bit
of the encrypted memory, during the decryption the
fault propagates to at least one encryption block. If
the processor runs 32-bit instructions and the encryption



Fig. 2: Experiments’ Setup

method is based on 128-bit blocks, one bit flip on the
memory results in at least four consecutive instructions
that are entirely corrupted. ECB, CBC and CFB modes
of operations of block ciphers belong to this category. For
the sake of clarity, in the following of the paper we will
refer to these encryption methods with the generic name
of block ciphers.

For these reasons, implementing memory encryption based
on a propagating configuration may lead to an increased
reliability of the system, substantially reducing the risk of
SDC. In the next Section, we will verify these hypotheses
through some experiments.

IV. EXPERIMENTAL RESULTS

A. Experimental setup and environment

For the purposes of our experiments, we selected a set of
programs representative of typical application codes. Matrix
multiplication, the Dijkstra algorithm and the Bubble-sort
algorithm were considered. These programs were written using
ANSI C, then compiled for the OR1200 processor, providing
us with the .or32 binary files. The OR1200 is a 32-bit scalar
RISC with Harvard micro-architecture and 5 stage integer
pipeline. The OR1200 core is mainly intended for embedded,
portable and networking applications. The RTL description of
the core was taken from [5] and it was synthesized using the
Silvaco 45nm Open Cell library [10].

To analyze the effects of faults affecting the code memory
content, we corrupted the binary files with a Python script.
Given the binary file, the encryption method to be used
and the number of faults to inject, the script (i) performs
the encryption, (ii) injects the specified amount of faults,
and (iii) performs the decryption. As a result, the corrupted

version of the binary file is obtained. For the exhaustive 1-
bit injection experiments we used the OpenSSL library [11]
for encrypting/decrypting. Finally, the corrupted binary format
was transformed into a hex-file for the purpose of the Logic
Simulation with ModelSim, which follows.

To know when to set a timeout for every test program’s
simulation, we simulated the OR1200 with the original non-
corrupted binary files and so we defined a timeout margin as:

Ttimeout = Ti + ∆ (1)

• i ε {MatrixMultiplication,Dijkstra,BubbleSort}.
• ∆ is a time constant: ∆ = 10%× Ti.

After finding the timeout values and furthermore acquiring
the golden values for every program, we run the Logic
Simulation with the corrupted binary files. After the simulation
end, each fault is classified as:

• Silent: the signatures are the same (effect-less fault).
• Silent Data Corruption: the signatures differ.
• Detected: the application crashed or the timeout condition

was triggered.
The above described process (depicted in Figure 2) was

fully automated using two bash scripts. The first script was re-
sponsible for corrupting the .or32 file, running the simulation
and comparing the results with the golden values. The second
script was used to run multiple experiments while changing
the experiment’s variables (e.g., the number of faults to inject).

B. Results and discussion

A set of experiments was devised and performed on the
OR1200 microprocessor resorting to the described environ-
ment and procedure. To have a point of reference, we started
by doing single-bit fault injections without using encryption.



TABLE I: Detection Rates on 1-bit Injections

Programs

Encryption Methods
Stream Ciphers Block Ciphers

NO ENC CTR OFB RC4 CBC ECB CFB
Matrix Multiplication 20.2% 22% 22.2% 21.8% 90 % 89.9% 84.1%

Bubble Sort 35.1% 34.6% 34.4% 34.2% 85.1% 85 % 81.5%
Dijkstra 34 % 33% 35% 35,5% 93.5% 93.5% 89.5%
Average 29.8% 29.9% 30.5% 30.5% 89.5% 89.5% 85.0%

NO ENC Stream Ciphers Block Ciphers
Average detection 29.8% 30.3% 88.0%

Average Improvements* 0% (ref.) 0.5% 58.2%
*Average absolute improvements compared to unencrypted code

For the Dijkstra program, we injected 200 one-bit random
faults, since we could not adopt the exhaustive injection due to
the large application code size, which resulted in excessively
long simulation times. Hence, we reduced the number of
iterations to 200 since they were enough to provide accurate
samples. For all the test programs we also performed one-
bit fault injections for all the encryption methods in our set.
The results of these experiments are shown in Table I. The
table reports the detection rates for single-bit fault injections
obtained by applying the considered proposed approach. The
obtained results show that, even for single-bit error scenarios,
block cipher encryption mechanisms provide a drastic detec-
tion increment (58.2% on average) compared to unencrypted
code. Values spanning from 81.5% to 93.5% single bit-flip
detection were achieved. The single-bit error event is the
most difficult to detect via encryption/decryption. Indeed, this
condition quite often leads to corrupted data (SDC), silently
propagating the error to the rest of the computation.

1: for i = {MatrixMult, BubbleSort,Dijkstra} do
2: for j = {CTR,OFB,CBC,ECB,CFB,RC4} do
3: for k = {10, 20, 50, 100, 200, 500} do
4: for (l = 1; l ≤ 1000; l + +) do
5: Simulate the injection of k faults using j on i;
6: Classify each fault;
7: end for
8: end for
9: end for

10: end for

Fig. 3: Random Fault Injection Procedure

The next step was to understand the ability of encryption
to detect multiple-bit faults. For this purpose we computed,
for each encryption mechanism, how many bit should be
flipped before the number of SDC faults is reduced to 0. We
started by injecting a small number of bit-flips so that we
could distinguish the difference between the detection rates
of stream ciphers and block ciphers. Then we moved to an
increasingly large number of bit-flips. Lastly, we considered
as many samples as possible from every method and every
type of injection. Considering also the computational time,
the complexity of the simulations and also based on some

experiments, we selected a number of iterations for each
experiment equal to 1,000. The procedure is described by the
pseudo-code in Figure 3.

The graphs in Figures 4 to 6 show that using block ciphers
over stream ciphers provides significantly higher detection
rates for multiple-bit fault injection as well. These graphs also
show that encryption alone is able to guarantee the detection
of faults starting from a given multiplicity k. The value of
k changes depending on the encryption method. In some
cases, encryption is able to detect any fault with multiplicity
greater than 4 or 5 bits. This is a remarkable result, since
error correction codes are typically unable to guarantee similar
detection capabilities.

V. CONCLUSIONS

Embedded systems are increasingly employed in safety-
critical scenarios, both in industrial and in consumer envi-
ronments. As a consequence, robustness and confidentiality
of the application code running on those systems are key
requirements. This generally results in implementing protec-
tion mechanisms for the memory containing the application
code, in order to prevent both random error effect propagation
(e.g., due to radiations) and unauthorized accesses. Encryption
mechanisms are widely adopted to protect all the intellectual
properties within the system. At the same time, designers often
resort to expensive error detection/correction mechanisms to
prevent random error effects that would cause unexpected
results. In general, it is crucial to avoid the silent propagation
of random fault effects, either by correcting the error or by
preventing it from silently propagate.

In this work, we investigate the possibility to exploit the
features of some encryption mechanisms to detect errors in
the system: when a random fault strikes and impacts one or
more bits of the encrypted code in the memory, the error will
propagate to other bits of the code thanks to the decryption
process. This will likely cause instruction corruptions, thus it
will prevent the error from silently propagate.

Experimental results showed that, by using block cipher
encryption mechanisms, the detection rate of single-bit faults
increases on average by 58.2%, compared to non-encrypted
code, without resorting to any ECC. In absolute terms, single
bit-flip fault detection values, achieved with block cipher



Fig. 4: Detection Rates on Matrix Multiplication

Fig. 5: Detection Rates on Bubble Sort

Fig. 6: Detection Rates on Dijkstra

encryption, spans from 81.5% to 93.5% (88.0% on average).
These results support the claim that it is possible to avoid
the implementation of costly detection/correction mechanisms
by reusing encryption mechanisms already implemented to
protect the system from illegal accesses. Moreover, some
encryption/decryption mechanisms proved to have very good
detection properties with respect to multiple-bit faults, thus
complementing the limited capabilities of ECCs in this direc-
tion.

Work is currently being done to extend the performed work
considering more application programs and different types of
encryption mechanisms.
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