
HAL Id: hal-03093298
https://hal.science/hal-03093298

Submitted on 3 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Runtime Verification of Timed Properties in
Autonomous Robots

Mohammed Foughali, Saddek Bensalem, Jacques Combaz, Félix Ingrand

To cite this version:
Mohammed Foughali, Saddek Bensalem, Jacques Combaz, Félix Ingrand. Runtime Verification of
Timed Properties in Autonomous Robots. 18th ACM-IEEE International Conference on Formal
Methods and Models for System Design (MEMOCODE), ACM/IEEE, Dec 2020, Jaipur (virtual),
India. �10.1109/MEMOCODE51338.2020.9315156�. �hal-03093298�

https://hal.science/hal-03093298
https://hal.archives-ouvertes.fr

Runtime Verification of Timed Properties in Autonomous Robots

Mohammed Foughali∗†, Saddek Bensalem∗, Jacques Combaz∗, Félix Ingrand‡
∗Université Grenoble Alpes, VERIMAG, Grenoble, France

† Corresponding author (mohammed.foughali@univ-grenoble-alpes.fr)
‡ LAAS-CNRS, Université de Toulouse, Toulouse, France

Abstract—Throughout the last few decades, researchers and
practitioners are showing more and more interest in using
formal methods in order to predict and prevent software failures
in robotic and autonomous systems. However, the applicability
of formal methods to such systems is limited due to several
factors. For instance, robotic specifications are often non-formal
which makes their formalization hard and error prone, and
their translation into formal models ad-hoc and non automatic.
Furthermore, the complexity and size of robotic applications lead
most often to scalability issues with exhaustive techniques such as
model checking. In this paper, we investigate the use of runtime
verification as an alternative to model checking for the rigorous
verification of large robotic systems. To do so, we first develop
a sound and automatic translation from the robotic framework
GenoM3 to the real-time version of the BIP formal language.
Then, we apply the translation to a real-world case study the
formal models of which do not scale with model checking, and
use the BIP Engine to execute the generated BIP model, verify
properties online, and adequately react to their possible violation.
The experiments are carried out on a real Robotnik robot and
show the efficiency of our approach in verifying timed properties,
that is when the amount of time separating events is important.

I. INTRODUCTION

a) Formal Methods and Robotics: Robotic software is
systematically tested, both on the field and via simulators (e.g.
Gazebo [26]). Such tests often fail, however, to rise to the
level of guarantees required to safely deploy robotic systems
in costly missions (e.g. space exploration) and applications
involving direct contact with humans (e.g. home assistants).
The authors of [27], for instance, report on a software bug that,
while never occurred during thousands of hours of simulations
and over 450 km of field tests, disqualified the autonomous
vehicle Alice from the 2007 Defense Advanced Research
Projects Agency (DARPA) urban challenge.

Formal methods are seemingly a promising alternative.
However, in order to propose robust solutions based on such
methods, one needs first to face the disparate nature of modern
robotic software. Indeed, the latter, characterized by some level
of autonomy, is classically component based, with components
belonging to either the decisional (high-level) layer, in charge
of deliberative functions (e.g. planning and learning [21], [22])
or the functional (low-level) layer, directly in charge of sensors
and actuators [37]. The level of integration of formal methods
in robotic software differs according to these two layers (a
detailed overview is given in [15, Sect. 1]). On the one
hand, formal verification is common at the decisional layer,
where most models (with the notable exception of learning
models) have formal, unambiguous semantics. On the other
hand, bridging functional components with formal methods is
particularly hard as such components are classically developed
and deployed via non-formal frameworks (e.g. ROS [36]).

Furthermore, the simplest robotic applications today involve
several functional components that use complex interaction
mechanisms and are subject to various timing constraints,
which leads to scalability issues with exhaustive techniques
like model checking. Non-exhaustive techniques, such as Sta-
tistical Model Checking (SMC) and Runtime Verification (RV),
are promising scalable alternatives, but their use in robotics is
still limited. For instance, most of the works on RV in robotics
(i) mix formal monitors with non-formal robotic specifications,
which makes it hard to trust the overall execution, and/or (ii)
do not consider timed properties, where the time separating
events is crucially important (Sect. V).

b) Contributions: In this paper, we focus on the func-
tional layer and propose a rigorous solution to the above issues.
Firstly, we develop a translation from the robotic framework
GenoM3 to the real-time formal language BIP, that is (i)
sound: formal models are faithful to their underlying robotic
specifications and (ii) automatic: the BIP model of any GenoM3
specification may be generated automatically. Secondly, we
generate the BIP model of a real case study that does not
scale with offline model checking. The generated BIP model,
augmented with a timed-property monitor, is executed using
the BIP Engine. Such execution allows to (i) verify the timed
property at runtime and (ii) efficiently react to its failure.

c) Outline: The rest of this paper is organized as fol-
lows. In Sect. II, we present the formal language BIP, the
robotic framework GenoM3 and the case study. Afterwards,
Sect. III shows how we soundly and automatically translate
any GenoM3 specification into a BIP model. We then apply
our translation to the case study and show how we use
our approach to verify and react to the possible violation
of a crucial timed property on the real Robotnik platform
(Sect. IV). Finally, we explore the related work in Sect. V
and conclude with possible future work (Sect. VI).

II. PRELIMINARIES

A. BIP

In this paper, we use RT-BIP [4] (the Real-Time version of
BIP [6]) and refer to it simply as BIP. BIP is a component-
based language for modeling, executing and analyzing real-
time systems. A system is represented by a set of com-
ponents (Behavior) synchronized through connectors which
define Interactions. Conflicts between interactions may be
resolved using Priorities. Complex systems can be built using
compound components, which encapsulate sub-systems made
of components constrained with interactions and priorities. The
underlying formalism of BIP is Timed Automata [5] extended
with Data and Urgencies [8], which we refer to as DUTA.

clock x
A

busy

finish

idle

x:= 0

x>0
x:= 0

x≤1

x>0
start

sync1

sync2

pr s1>s2

x>1

skip
idle

busy

B2

start
sync

idle

busy

B1

startsync sync

sync sync2

sync1

start

start

start

s1

begin

s2

restart

sync2
x≤2

Fig. 1: A BIP example (graphical)

Atom components are the simplest type of components,
i.e. with no hierarchies. An atom component is a DUTA:
it is a timed automaton that may (i) operate on a set of
local data variables and (ii) have eager edges, denoted

;

(see
below). Ports, which label edges, may be exported to interact
with other components and are thus the building blocks
of connectors, the only means of communication between
components (shared variables are not allowed). Connectors
may be rendezvous (strong synchronizations) or broadcasts
(weak synchronizations) that can both be multiparty (involve
any number of ports). Each connector defines a set of possible
interactions. An interaction involving at least one

;

edge
is urgent and must thus be taken (or disabled by taking a
concurrent interaction in the system) as soon as enabled. In
the remainder of this paper, graphical representations of BIP
models are provided for illustration purposes (BIP does not
provide a graphical interface). In such representations, atom
components are DUTA (initial locations recognized through
sourceless incoming edges, locations names and invariants in
purple, guards in green, operations (updates) in blue, and no-
tations are generic e.g. = for equality and := for assignment).

Example: Fig. 1 shows a simple example of three BIP
atom components interacting through connectors with priority
rules. Edges are labeled with ports (e.g. the edge from location
idle to location busy in component A is labeled with the port
start), that may be exported (e.g. the port sync of component
B1 is exported for strong synchronization, denoted by the little
red circle), or not (e.g. port restart of component A). Exported
ports build connectors (e.g. s1 is a rendezvous connector that
involves the ports sync1 of A and sync of B1). The priority pr
denotes that the interactions through s1 have a higher priority
than those possible through s2.

In the textual specification, we first define the types of
ports and connectors (listing 1). Here, ports are basic without
parameters (line 2). The define keyword is used to specify
the possible interactions through the connector (broadcast or
rendezvous, line 5). If c sync2 was a broadcast connector type,
p′ would be the way to define p as the sender.

Then, the atom types are defined. We show only the atom
type a for component A, in listing 2. The keyword provided
(e.g. line 19) is for guards and do (e.g. line 20) for operations
(in a C-like notation). Line 11 specifies the initial location idle
(together with this statement, initialization of local variables

1 /* port types */
2 port type Basic()
3 /* connector types */
4 connector type c_sync (Basic p, Basic q)
5 define p q
6 end
7 connector type c_sync2 (Basic p, Basic q, Basic r)
8 define p q r
9 end

Listing 1: Ports/Connectors types for the BIP example in Fig. 1

may be performed, example in Sect. III-B2). After specifying
the edges, invariants are defined (lines 34-35).

1 /* atoms types */
2 atom type a()
3 clock x
4 port Basic restart()
5 export port Basic sync1()
6 export port Basic sync2()
7 export port Basic start()

9 state idle, busy, finish,
skip

11 initial to idle

13 on start
14 from idle to busy
15 do {x= 0;}

17 on sync1
18 from busy to finish
19 provided (x>0)

20 do {x= 0;}

22 on sync2
23 from busy to skip
24 provided (x>1)
25 do {x= 0;}

27 on restart
28 from skip to idle

30 on sync2
31 from finish to idle
32 provided (x>0)

34 invariant inv1 at busy
provided (x ≤2)

35 invariant inv2 at finish
provided (x ≤1)

36 end

Listing 2: Atom type a for component A in Fig. 1

Finally, in listing 3, we build the compound component (line
2) by instantiating the atom components (lines 3-4) and the
connectors (lines 6 to 8) and defining the priority pr (line 10).
The “: ∗” after the names of connectors s1 and s2 (line 10)
denotes all the possible interactions. Thus, pr states that any
possible interaction through s1 has a higher priority than any
possible interaction through s2.
As stated in the beginning of this section, priorities and
interactions restrict the possible behaviors of components. In
this example, for instance, there is no reachable global state
where the current location of A is busy and that of B1 (or B2)
is idle (because of the sole interaction forced by the connector
begin). Similarly, location skip of A is unreachable (because
of the application of priority pr).
1) The BIP Engine: The back-end compiler of BIP generates
source code in C++ for execution purposes. The BIP Engine
ensures a correct execution of the generated source code
following the semantics of BIP. Furthermore, concrete C/C++

1 /* compound definition */
2 compound type example()
3 component a A()
4 component b B1(), B2()
5 /* connectors */
6 connector c_sync s1(A1.sync1, B1.sync)
7 connector c_sync s2(A1.sync2, B2.sync)
8 connector c_sync2 begin(A1.start, B1.start, B2.start)
9 /* priorities */

10 priority pr s1:*>s2:*

Listing 3: Building the compound of the example in Fig. 1

Activities

Control Task
Control

 Services

Clients

Ports

Execution Tasks

Codels

IDS

read/write

read/write

read/write

Requests Reports

start

ether

pa
us

e

Fig. 2: A generic GenoM3 component

code can be executed together with interactions by using
the same keyword do on edges or connectors (examples in
Sect.III-B4). Therefore, the BIP Engine is a faithful, formally
founded executer of BIP models, possibly enriched with C or
C++ code. In addition, one may, using the Engine (i) monitor
the execution online with regard to e.g. timing constraints and
(ii) react to the violation of such constraints at runtime.

B. GenoM3

GenoM3 [31] is a framework for specifying and implement-
ing robotic functional components. A component is typically
assigned one functionality e.g. processing a sensor data or
computing an actuator command. A GenoM3 component is
organized as shown in Fig. 2. Activities, executed following
requests from external clients, implement the core algorithms
of the component. Two types of tasks are therefore provided:
(i) a control task to process requests, validate the requested
activity (if the processing returns no errors) and report to the
clients and (ii) execution task(s) to execute activities. Tasks
(resp. components) share data in the Internal Data Structure
IDS (resp. ports). For the sake of simplicity, we omit in this
paper control services and aperiodic execution tasks (for more
details, we provide complete semantics in [20], [18]).

1 activity Measure()
2 {
3 doc "Read a measure and publish in the <<IMU>> port.";
4 codel <start> MsStart(port out IMU) yield get, ether

wcet 1ms;
5 codel <get> GetImu(inout imu_driver, out imu, out

timestamp) yield write_p, ether wcet 2ms;
6 codel <write_p> WritePort(in imu, port out IMU) yield

pause::get, ether wcet 1.5ms;
7 codel <stop> MeasureStop() yield ether wcet 2ms;
8 interrupts Measure;
9 task update;

10 };

Listing 4: Activity Measure (comp. IMUDRIVER, Fig. 3)

1) Behavior: Below is a description of a component behavior,
supported with the specification of activity Measure (listing 4)
of component IMUDRIVER of our case study (Sect. II-B3). A
less informal explanation (using DUTA) is given in Sect. III.
Activities. An activity is a finite-state machine FSM executed
by the execution task it specifies (e.g. line 9 specifies that
Measure is executed by the task update). An activity may
need to interrupt other activities before executing (e.g. line

8 specifies that activity Measure interrupts itself, that is new
instances interrupt currently running ones).
An FSM defines the activity behavior through codels and
transitions. Except for some restrictions (e.g. mandatory start
and ether codels, see below), the programmer is free to define
the FSM behavior according to their needs (the FSM shown
in Fig. 2 is a “generic” example that does not impose any
behavioral model). A codel is a state at which a piece of
C/C++ code is executed (by abuse of terminology, we say
the codel is executed). A codel specifies (i) the IDS/ports data
its execution requires (e.g. codel write p reads the IDS field
imu and writes the port IMU, line 6) and (ii) the possible
transitions subsequent to its execution using the keyword
yield (e.g. executing codel get returns either codel write p
or codel ether, line 5). Taking a transition labeled “pause”
pauses the activity until the next period of its execution task
(e.g. taking pause::get pauses Measure at codel get until the
next period of task update, line 6). A codel may (optionally)
specify a WCET, namely its worst case execution time on a
given platform (e.g. start has a WCET of 1 ms, line 4). Any
activity FSM has always the codels start (entry point) and
ether (end point with no successors and no code attached to
it, this codel is not specified by the user). When the latter is
reached, the activity is terminated. The codel stop, if exists,
is executed when the activity is interrupted (e.g. line 7).
Control task. The control task processes requests (resp. sends
reports) from (resp. to) clients, and manages validation and
interruption of activities. If a request for activity A is processed
with no errors, A is validated, and its execution task is in-
structed to execute it after interrupting (executing stop codels)
and terminating (reaching ether codels) all the activities A
needs to interrupt. Upon completion of any activity, the control
task sends a report to the client that initially requested it.
Execution tasks. With each period, an execution task runs,
sequentially, all the activities it is in charge of, that were
previously validated by the control task. The execution of an
activity ends when the latter is paused or terminated. In the
former case, the activity is resumed at the next period.
IDS, ports & concurrency. GenoM3 tasks are run as parallel
threads at the OS level, with fine-grain concurrent access to
IDS/ports data: a codel (in its activity, run by a task) locks only
the IDS field(s) and/or port(s) required for its execution. A
codel in conflict (cannot execute at the same time) with some
other codel(s) because of this locking mechanism is called
thread unsafe TU (thread safe TS otherwise). By default,
ether codels are all thread safe (no code attached to them).
Because of the concurrency over ports, codels in conflict may
belong to different components (example in Sect. III-B1c).
2) Templates: GenoM3 provides templates for automatic gen-
eration purposes. A template may access all component in-
formation (e.g. tasks periods, activities FSM) and generate
text files with no restrictions (example in Sect. III-B5). For
example, the “implementation” templates generate glue code
for a middleware (e.g. PocoLibs [2], ROS-Comm [36]). Such
templates are extended so that codels execution time, aver-
age and WCET, is reported upon completion of components
execution.

3) Case study: Our case study involves a robot equipped
with a Laser Range Finder LRF for laser-based potential-
field navigation [23]. The GenoM3 specification includes eight
components (Fig. 3). Each box corresponds to a component,
and octagons are ports written by the components they are
attached to and read by other components through an arrow.
The components run on the real Robotnik robot and also in
simulation using Gazebo. Next, we give a high-level descrip-
tion of components roles. LASERDRIVER, GPSDRIVER, and
IMUDRIVER read the LRF, the Global Positioning System
GPS and the Inertial Measurement Unit IMU sensors and up-
date respectively ports Laser, GPS and IMU. ROBOTDRIVER
handles the communication between ports Odometry and
Cmd and the Robotnik ROS topics. POM reads data from ports
Odometry, IMU and GPS to which it applies an Unscented
Kalman Filter UKF to produce an estimated position in port
Pose. NAVIGATION computes, given the current position from
Pose, intermediate positions to reach a goal position, which it
writes to port Target. POTENTIALFIELD applies the potential-
field navigation algorithm (using information on the goal
position (port Target), the current position (port Pose), and
the obstacles (port Laser)), and updates the robot velocity
accordingly in port PFCmd. Finally, SAFETYPILOT uses the
velocity (port PFCmd), together with the laser perception
(port Laser), to compute through the activity StopIfObstacle
a safe command that it writes to port Cmd. Component POM,
running both its tasks at 100 Hz, has the highest frequency.

Functional Level

RobotDriver
GPSDriver

Task:
update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

Task:
rosTOgenom

Services:
Perm

Task:
genomToros
40ms
Services:
Perm

IMUDriver

Task:
update 10ms
Services:
SetParams*
ConnectDevice
Measure
Stop

LaserDriver
Task:
scan 100ms
Services:
SetParams*
ConnectDevice
StartScan
Stop

Cmd

PotentialField

LaserOdometry

Navigation

TargetPOM

SafetyPilot

IMU

Pose

PFCmd

Task:
plan 100ms
Services:
SetParams
TrackTarget
Stop

Task:
pilot 40ms
Services:
SetParams*
Stop
StopIfObstacle

Task:
navigate 200 ms
Services:
GotoPosition
GotoNode
Stop

Task: io 10ms
Services:
perm, add_me

Task: filter 10ms
Services:
Perm

GPS

Fig. 3: Autonomous navigation case study.
III. GenoM3 TO BIP

In this section, we show how GenoM3 specifications are
translated into BIP in a sound and automatic manner. Firstly,

we explain the need of such translation, as well as the choice
of BIP as a target language (Sect. III-A). Then, we present the
translation and its automatization (Sect III-B).

A. Motivation

GenoM3 already provides automatic translations to the model
checkers TINA and UPPAAL, as well as UPPAAL-SMC, the
statistical extension of UPPAAL, which were used to obtain
encouraging results on a couple of case studies [17], [19],
[20]. However, the case study we consider in this paper
(Sect. II-B3) scales neither with TINA nor with UPPAAL,
and using UPPAAL-SMC leaves some confidence problems
open (Sect. V). A key contribution of this paper is to use
RV as an alternative to tackle such scalability issues (Sect. I).
Yet, neither UPPAAL nor TINA provide an RV environment
per se, able to run code on a real robotic platform. Thus, we
choose the BIP language as to be able to use its powerful
Engine (Sect. II-A1) for RV purposes. Additionally, instead
of adding (formal) BIP monitors, of the desired properties
to verify, to (non formal) GenoM3 specifications, we choose
to fully translate GenoM3 specifications into BIP in a correct
and automatic manner, augment them with monitors to verify
the desired properties, and delegate both the execution and
RV to the BIP Engine. This method (i) allows the robotic
programmer to obtain formal executable models, faithful to
their robotic specifications, with no effort (ii) increases our
trust in the deployed models, as they are fully handled through
a formal and rigorous execution Engine and (iii) reduces the
resource usage as compared to methods mixing non formal
specifications with formal monitors (Sect. V).

B. Translation

In [20], [18], we propose semantics for GenoM3 and a sound
translation of such semantics to DUTA. In [20], we further
derive DUTA implementation models, as restricted by the
robotic middleware, then map them to UPPAAL to get a
sound and automatic translation from GenoM3 to UPPAAL. In
this paper, we use directly the DUTA implementation models
(already proven faithful to their GenoM3 counterpart) and show
how we map them automatically to BIP to obtain a correct and
automatic translation from GenoM3 to BIP.
1) DUTA implementation: We define the DUTA implementa-
tion of a generic GenoM3 component in a top-down fashion,
from the component to the activities. To simplify the presen-
tation, the control task is not represented and a stop codel
(resp. WCET Wc) is mandatorily defined for each activity
(resp. each codel c excluding ether) in the specification. In
the remainder of this paper (i) {Θ}[‖i∈1 ..n Pi] denotes the
parallel composition of n DUTA over a set of shared variables
Us the initial valuations of which is given by the function Θ
and (ii) µ is the function that returns for each TU codel c the
names of all codels in conflict with c.
a) Component: A component Comp containing n execution
tasks Ti is the parallel composition Comp = {Θ}[‖i∈1 ..n Ti].
The set of shared variables Us contains one Boolean r c for
each TU codel c (in each activity in each Ti in Comp), initially
false (Θ(r c) = False for all r c ∈ Us). These Booleans

allow implementing correctly the concurrency between all TU
codels in the component (see the example in Sect. III-B1c).
b) Execution tasks: An execution task T is the parallel com-
position T = {Θ}[Tim||M ||(‖i∈1 ..m Ai)] where Tim is the
timer, M the task manager, and ‖i∈1 ..m Ai the composition
of all the m activities T is in charge of. Us contains:

• sig : a Boolean (for period signal), initially False,
• run: an array of m cells, starting at index 0. Each cell is a

record of two fields: an activity “name” a and its “status”
s. The latter may be void (activity already terminated or
not requested), busy (activity being executed nominally) or
inter (activity being interrupted). Thus, each cell of run of
index i holds the name of activity Ai+1 and its current status
(initially void , i.e. ∀i ∈ 0 ..m − 1 : Θ(run[i].s) = void),

• Π: (the control passing variable with Θ(Π) = M) is either
equal to M or any activity name A,

• i: an integer (search index) in 0 ..m , initially zero.

We show each of the DUTA involved in the composition. We
first give definitions/illustrations, then exemplify.
We start with the models of Tim (the timer, Fig. 4) and
M (the manager, Fig. 5), both generic (parameterized with
the period value Per). There are two functions used by M :
(1) update(run) updates the status fields of run according
to the instructions of the control task (not represented here),
(2) next(run, i) browses run , starting from i, and returns
the index of the first cell satisfying s 6= void (|run|, i.e. m,
if such an element does not exist or i = m). For activities,
whose behavior is mostly user defined (Sect. II-B1), we give a
definition to derive the DUTA implementation from the robotic
specification. Because of mutual exclusion, the name of the
activity is added as a subscript to each of its codels names.

Definition 1. Activity A. The DUTA model of an activity A
is mapped from the latter’s specification as follows:
(1) Clocks X: the DUTA has one clock x ∈ X ,
(2) Locations L: each codel c is mapped to a location c ∈ L.
A location cexec ∈ L (resp. cpause ∈ L) is added for each TU
codel (resp. TS codel targeted by a pause transition) c. The
initial location is etherA,
(3) Edges E = EN ∪ EA are either nominal or additional:

• Nominal edges EN : each non-pause transition from c to
c’ in the specification is mapped to an edge c → c′ (resp.
cexec → c′) in EN if codel c is TS (resp. TU). Each pause
transition from c to c’ in the specification is mapped to a
pause edge c → c′′ (resp. cexec → c′′) in EN if codel c is
TS (resp. TU) where c′′ = c′ (resp. c′′ = c′pause) if codel
c’ is TU (resp. TS). There are three disjoint sets in EN :
EN = EP ∪ ET ∪ EX . EP is the set of pause edges, ET

the set of termination edges of the form → etherA and EX

the set of the remaining (execution) edges.
• Additional edges EA = ES ∪ E I ∪ EM ∪ ER where ES

contains the starting edge etherA → startA, EI the inter-
ruption edges from etherA and each location targeted by a
pause edge (in EP) to stopA, and EM the mutual exclusion
edges c → cexec (resp. ER the resume edges cpause → c)
for each pair of locations {c, cexec} (resp. {c, cpause}) in
2L. All edges in EA are

;

.

Fig. 4: Timer Tim

wait sig:= false,
update(run),
i:= next(run,i)

sig

i ≠ m ∧ π = M
π := run[i].a

manage

i=m ∧ π = M

M

Fig. 5: Manager M

startConnect
Connect

Measure

etherConnect

getMeasure

etherMeasure

startMeasure exec

write_pMeasure exec

gme(startMeasure)

gi(Measure)

op
fe (write_p

Measure),

op

clock x

x ≤ 1

x > 0

 x:= 0

clock x

Key (activities):

gn(A) : (π = A ∧

run[i].s = busy)

write_pMeasure
getMeasure pause

stopMeasure

startMeasure

Nominal execution:
Guards

Interruption
gi(A) : (π = A ∧

run[i].s = inter)

Mutual exclusion:
gme(c) : (

∀c’ ∈ μ(c) : ¬r_c’)

opse(startMeasure),

x:= 0 x ≤ 2

x ≤ 1.5

x ≤ 2

x > 0
g

m
e (w

rite_p
M

easure)
op

se (w
rite_p

M
easure),

x:= 0x > 0

x > 0

ack(Measure), o
p

x
>

0
ac

k(
M

ea
su

re
),

op

x > 0opfe(write_pMeasure),

ack(Measure), op

x > 0ack(Measure),op

g
n (M

easure)

g n
(M

easu
re)

 x:=
 0

gi (M
easure)

 x:= 0

 x:= 0

x ≤ 1.5
x > 0 x > 0

ack(Connect),
op

x ≤ 0.8

op : (
i= next(run, i+1),
π := M)

Operations

Pause/termination

Mutual exclusion:
start executing

opse(c): (
r_c:= true,)

with A ∈{Measure,
Connect}

with c∈{StartMeasure,

write_pMeasure}

finish executing

opfe(startMeasure),

x:= 0

gn(Connect) gi(Connect)
 x:= 0 stopConnect

opfe(c): (
r_c:= false,)

with c∈{StartMeasure,

write_pMeasure}
ack(Connect),

op

Fig. 6: DUTA implementation of activities Measure and
Connect in task update (component IMUDRIVER, Fig. 3).

Guards, invariants and operations:
(4) Each location c (resp. cexec) mapping a TS (resp. TU)
codel c is associated with the invariant x ≤Wc,
(5) Each incoming (resp. outgoing) edge of a location in L
that is associated with an invariant is augmented with the
operation (resp. guard) x := 0 (resp. x > 0),
(6) Each edge in ET ∪ EP is augmented with the operations
Π := M , i := next(run, i + 1),
(7) Each edge in ES ∪ E I ∪ ER, as well as each edge
c → cexec in EM such that c is targeted by a pause edge
(in EP), is guarded with Π = A,
(8) Each edge in EM is augmented with the operation
r c := true (see shared variables in Sect. III-B1a).
(9) Finally, (i) the guard of each edge in EM is conjuncted
with the expression ∀c′ ∈ µ(c) : ¬r c′ and (ii) r c := false
is added to the operations of each edge cexec → in EN .

Nominal edges map the underlying activity transitions explic-
itly specified by the programmer (e.g. transitions in listing 4).
In contrast, additional edges enforce internal GenoM3 actions
given by its semantics: starting (ES), concurrency (EM),
resuming after a pause at a TS codel (ER), as well as
interruptions (EI). The set ER relates to TS codels only (it
is empty if there is no TS codel targeted by a pause transition

in the specification). Indeed, a TU codel c is already mapped
into two locations c (invariant free) and cexec , connected with
an edge c → cexec in EM , guarded with resource availability
(rules (2), (3), and (9)). Thus, if codel c is targeted by a
pause transition in the specification, resuming after a pause
will correspond to taking c → cexec in EM . This explains why
edges c → cexec in EM such that c is targeted by a pause edge
in EP need the clause Π = A in their guards (rule (7)). If c
is a TS codel targeted by a pause (e.g. codel get in activity
Measure, see the latter’s DUTA in Sect. III-B1c), an invariant-
free location cpause is necessary (rule (2)) to wait until the
control through Π is back (guard on the edge cpause → c
in ER, rule (7)), otherwise a timelock might occur (details
in [18] and [20]). The remaining aspects of Definition 1 are
best clarified via a practical example (Sect. III-B1c).
c) Example: Let us illustrate through an example how ac-
tivities evolve following the DUTA implementation, and how
this coincides with the behavior in Sect. II-B1. We consider
again the component IMUDRIVER that has one execution task
update in charge of two activities: Measure (already shown
in listing 4, Sect. II-B) and Connect (listing 5). All codels are
TS except for start and write p (activity Measure) which
use the port IMU concurrently with codels in component
POM (Fig. 3). We apply Definition 1 to get the DUTA
implementation of both activities (Fig. 6, a key is provided for
readability). M and Tim of task update are retrieved from
Fig. 5 and Fig. 4, respectively (by replacing Per with 10 ms,
the period of task update). In the following, we explain the
DUTA behavior with all references made to figures 4, 5 and 6.

1 activity Connect()
2 {
3 doc "Connect the serial line to the hardware device";
4 codel <start> start_device(inout imu_driver, in

device, in baudrate, out device_open) yield ether
wcet 1.5 ms;

5 codel <stop> stop_device() yield ether wcet 0.8 ms;
6 interrupts Measure, Connect;
7 };

Listing 5: Activity Connect (comp. IMUDRIVER, Fig. 3)
Let us start with the communication between M and Tim . At
exactly each period (ensured by the invariant x ≤ Per and the
guard x = Per), Tim transmits, through Boolean sig , a signal
to M . M has two locations: wait (to wait for the signal) and
manage (to execute activities, if any). As soon as (an urgency
enforced with an eager

;

edge) sig is true, M updates the
activities statuses in array run according to the control task
instructions (update(run)), computes the identity of the next
activity to execute (next(run, i)), and transits to manage.
M and the activities communicate to achieve a sequential
execution within task update. If there is still at least one
activity to execute in this period (i 6= m , that is an activity
that was validated by the control task, still did not terminate
and still is not executed in this period), M gives it the
control (Π := run[i].a on the edge manage → manage).
Such activity will then execute until it is terminated or paused,
where it computes the identity of the next activity to execute
and gives the control back to M (operation op). And so, i
moves through run as the control switches between M and the
activities to execute until all are paused or terminated (i = m).

M transits then back to wait and awaits the next period.
Now, if an activity has the control (through Π), it is, depending
on its status, either (1) executed nominally, by taking a starting
edge (in ES , Definition 1, e.g. etherConnect to startConnect) or
resuming after a pause (e.g. getMeasure pause to getMeasure in
ER) or (2) interrupted by taking an

;

interruption edge (in EI)
to the stop location (e.g. etherConnect to stopConnect). The
execution ends with a termination (taking an edge in ET , e.g.
getMeasure → etherMeasure) or a pause (taking an edge in EP ,
e.g. write pMeasure exec → getMeasure pause). In the former
case, the activity acknowledges the control task (not shown
here) to update its status (e.g. operation ack(Measure)).
Finally, each codel (except ether) location c (cexec if c is TU)
is associated with the invariant x ≤Wc , and its outgoing edges
are guarded with x > 0 to emulate a non-zero execution time
inferior to the WCET of codel c (e.g. location startConnect).
Eager edges in EM (e.g. startMeasure → startMeasure exec)
ensure through the guard ∀c′ ∈ µ(c) : ¬r c′ that codel c starts
executing as soon as none of the codels c’ in conflict with c
is currently executing (at location c′exec). Similarly, operation
r c := false on the outgoing edges of locations cexec allow
codels in conflict with c to capture the end of the latter’s
execution (e.g. opfe(write pMeasure)).

2) DUTA implementation to BIP: At this step, we need to cor-
rectly map the DUTA implementation (faithful to the GenoM3
semantics [18], [20]) to BIP. The main difficulty here is the
fact that BIP does not use shared variables and rather relies
on local variables and connectors. When taking a rendezvous
interaction involving n ports p1 ... pn, the operations on the
edges labeled with such ports are executed one after another
in one atomic sequence. For instance, in listing 7, when the
only possible interaction in connector rv is taken (line 5), the
operations associated with the edges labeled with ports mm (in
M), p (in Measure) and p (in Connect) are executed one after
another (in no predefined order). Within this sequence, value-
passing operations (using the keywords up and down) may be
inserted to propagate the changes made to local variables in
one component to variables in other components in a typical
data flow à la process calculi. For readability and space,
we present a generic solution where value-passing is implicit
(without up and down operations). Such solution entails (i)
duplicating shared variables within each DUTA as local ones
and (ii) adding rendezvous connectors to propagate any change
made to a local variable in one DUTA to the local variables
having the same name in all other DUTA.
Let us illustrate with an example. In the DUTA implementa-
tion, M and the activities Measure and Connect share the
variables run , i and Π (Figures 5 and 6). We proceed as
described in the generic solution above. Firstly, each of the
atom components M , Measure and Connect will have run ,
i and Π as local variables, that we make sure are equal at
the initial global state of the system. For that, we simply
initialize each local duplicate variable v (within the “initial
to” statement of its BIP atom component) of each global
variable v ∈ Us (in the original DUTA composition) to Θ(v)
(Sect. III-B1). Listing 6 shows how we guarantee i is equal
to 0 in all atom components M , Measure and Connect (of

types ma , measure and connect , respectively) at the initial
global state of the system.

startConnect

Connect

Measure

etherConnect

getMeasure

etherMeasure

startMeasure exec

write_pMeasure exec

clock x

x ≤ 1

x > 0

 x:= 0

clock x

write_pMeasure
getMeasure pause

stopMeasure

startMeasure

x:= 0 x ≤ 2

x ≤ 1.5

x ≤ 2

x > 0
x:= 0x > 0

x > 0

x
>

0

x > 0

x > 0

 x:=
 0

 x:= 0

 x:= 0

x ≤ 1.5
x > 0 x > 0

x ≤ 0.8

x:= 0

 x:= 0
stopConnect

wait

i ≠ m ∧ π = M
π := run[i].a

manage

M
mm

p

p

rv

p p

p

p

p

p

p

p

p

p

p
data i,π,run

data i,π,run

mm

data i,π,run

Key:

cop : (π := run[i].a)

cop

cop

cop

cop

cop

cop

cop

cop

cop

cop
cop

Fig. 7: Partial BIP model of update (IMUDRIVER, Fig. 3).

1 atom type ma()
2 data int i
3 ...
4 state start, manage

6 initial to start
7 do {i=0;}
8 ...
9 end

11 atom type measure()
12 data int i
13 ...
14 state ether, start, ...

16 initial to ether
17 do {i=0;}
18 ...
19 end

21 atom type connect()
22 data int i
23 ...
24 state start, ether, stop

26 initial to ether
27 do {i=0;}
28 ...
29 end

Listing 6: Correct initialization of i (local) variables

Secondly, side effects of operations involving (originally)
shared variables are propagated. For simplicity, we show how
this is done for only one operation affecting one shared
variable, namely that on the self-loop at manage (in M ,
Fig. 5) affecting Π. Fig. 7 shows a partial BIP-implementable
model were all remaining edges are stripped from their shared-
variable-dependent guards and operations, as well as their
labeling ports, for readability. To capture the said side effects
(of the edge manage → manage in M) no matter what the
current locations of Measure and Connect are, self-loop edges
(in red) are added on all locations in each of these activities
atom components. Each of the added edges is associated
with the operation cop, which copies the operations the
effects of which we want to propagate (those associated with
manage → manage , labeled mm , in M). Finally, each port p
is exported to form a rendezvous connector rv with port mm .
Now, when the guard on manage → manage is true, the only
interaction of rv (the rendezvous between mm and each p) is
enabled and taken urgently (since one of the involved edges,
i.e. that labeled with mm , is

;

), which results in executing
the operations on the edges labeled with mm and each p one
after another in one atomic sequence. Therefore, taking such

interaction, all local Π variables are equal to run[i].a (with
run and i guaranteed to be equal in all components using the
same initialization and propagation mechanisms).
Consequently, combining the proper initialization (as shown
in listing 6 for variables i) and propagation of side effects of
each operation (as shown for that on manage → manage in
Fig. 7), we guarantee that, at any global state of the system,
local duplicates (in different atom components) of an originally
shared variable (in the underlying DUTA implementation)
have equal values. Listing 7 shows how to declare the type
of connector rv (Fig. 7) and the instantiation code in BIP,
given that ports p and components M , Measure and Connect
are previously instantiated from their types (see definition of
atom/port types in Sect. II-A).

1 connector type rv (Basic mm, Basic p, Basic q)
2 define mm p q
3 end
4 ...
5 connector rv rv(M.mm, Measure.p, Connect.p)

Listing 7: Connector rv (Fig. 7) type and instantiation
3) Soundness: The mechanism shown above (correct initial-
ization + side-effect propagation) guarantees a strict equiva-
lence between the DUTA implementation and its BIP coun-
terpart. This may be proven using timed bisimulation in the
style of [18] (with the difference that it is a strong bisimulation
here). For readability and space, we only give a sketch of such
proof, restricted to one component with one execution task.
Hereafter, an action is a time progress or discrete transition in
the timed transition system giving the semantics of the DUTA
implementation or the BIP model (since both are DUTA-based,
such semantics are similar). A time action corresponds to an
arbitrary evolution of time in the system. A discrete action
in the DUTA implementation (resp. BIP model) is, by abuse
of notation, an edge in a DUTA (resp. an interaction). Each
(edge) action in the DUTA implementation corresponds to an
(interaction) action in the BIP model: it is the interaction syn-
chronizing the same edge with other edges in the BIP model
(in order to propagate side effects on shared variables), and
vice versa (the “corresponds to” is symmetric). For instance,
in Fig. 7, the (edge) action in the DUTA implementation
manage → manage (in DUTA M) corresponds to the sole
interaction defined by connector rv , and conversely.
Let Φ (resp. Ψ) be the (global) timed transition system
representing the semantics of the DUTA implementation (resp.
the BIP translation) of some component Comp with one
execution task (see the generic definitions in Sect. III-B1a
and Sect. III-B1b). Each state of Φ (resp. Ψ) will then be of
the form (L,V) (resp. (L,V)) where L (resp. L) contains the
current location of each DUTA (resp. atom component) as well
as the current value of each variable in the composition, and
V (resp. V) the valuations of all clocks. The main difference
between the representation of states in Φ and Ψ is the fact that
L gives the valuations of global variables in Φ while L gives
those of local variables in Ψ. For instance, if (L0 ,V0) (resp.
(L0 ,V0)) is the initial state of Φ (resp. Ψ), then while L0

contains the initial valuation of e.g. Π, L0 contains the initial
valuation of ΠM , the duplicate of Π local to the manager M
and, for each activity Ai, the initial valuation of ΠAi

, the

duplicate of Π local to Ai. To simplify the explanation, we
group the (local) duplicates of each (originally global) variable
u in a set u′. For instance, if we reuse the example of initial
states and variable Π, L0 contains the valuations of variables
in the set Π ′ = {ΠM ,ΠA1

, ...,ΠAm
}.

Now, it is sufficient to say that a state in Φ and a state in Ψ
are bisimilar iff (i) the current location of each DUTA (given
by L) and its BIP atom component counterpart (given by L)
are equal, (ii) the valuation of each local variable in each set
u′ (given by L) is equal to the valuation of the global variable
u (given by L) and (iii) the valuation of each clock in each
DUTA (given by V) is equal to the valuation of the clock of
the corresponding BIP atom component (given by V).
Thanks to the proper initialization mechanism (as exemplified
in listing 6), and the fact that all clocks start at zero, we may
easily see that (L0 ,V0) and (L0 ,V0) are bisimilar. Now, we
need to ensure that for any pair of bisimilar states (L,V) in
Φ and (L,V) in Ψ, if we take whatever discrete (resp. time
progress) action from (L,V) to reach a state (L′,V) (resp.
(L,V ′)), taking the corresponding action from (L,V) would
lead to state (L′,V) (resp. (L,V ′)) such that (L′,V) and
(L′,V) (resp. (L,V ′) and (L,V ′)) are bisimilar (Ψ simulates
Φ) and vice versa (Φ simulates Ψ).
For discrete actions, thanks to the propagation mechanism
(exemplified in Fig. 7), we can easily see that taking any edge
in the DUTA implementation and its corresponding interaction
in the BIP model, along which we ensure all duplicates of
affected shared variables are updated, would result in states
where each global variable u (in the DUTA implementation)
is equal to each duplicate of u (in the BIP model). That is,
if a discrete action (an edge) is taken from a state (L,V) in
the DUTA implementation, and its corresponding action (the
corresponding BIP interaction) is taken from a state (L,V) in
the BIP model (with (L,V) and (L,V) bisimilar), to reach,
respectively, (L′,V) and (L′,V), then the valuation of each
variable u given by L′ is equal to the valuation of each element
of u′ given by L′. Additionally, the location of each DUTA
after taking the action, given by L′, is the same for its BIP
atom component counterpart, given by L′, as the translation
does not bring any change to this aspect (the edges added for
propagating side-effects are self-loops, e.g. the red edges in
Fig. 7). Which means that L′ and L′ respect the bisimilarity
condition, and thus (L′,V) and (L′,V) are bisimilar.
For time actions, the translation does not affect any timing
constraint between the DUTA implementation and the BIP
model: (i) clock constraints are not modified and (ii) the added
edges to propagate side effect are not

;

and have no clock
constraints, which means they have no time-related effect on
the interactions in which they take place. We may thus prove
with no particular difficulty that taking a time action from
(L,V) (in Φ) to reach (L,V ′), and the same action (same
time progress) from (L,V) (in Ψ) to reach (L,V ′), would
result in (L,V ′) and (L,V ′) being bisimilar. Thus, combining
the proof on the discrete actions and that on the time actions,
we conclude that Ψ simulates Φ. Finally, we follow the same
steps to prove that Φ simulates Ψ, and thus prove (strong)
bisimilarity between Φ and Ψ under both types of actions.

4) Extending to Runtime: At this stage, we have a sound
translation from GenoM3 to BIP. However, both DUTA and
BIP models are “offline”: codels are not executed. Rather, the
execution of a codel c is emulated as a time progress com-
prised between zero (excluded) and the WCET of c reflected
by an invariant and x > 0 guards. Moreover, the offline model
may be non deterministic: when a codel c has more than one
successor, there is an edge from location c (cexec if c is TU)
to each location c′ mapping a codel c’ successor of c in the
GenoM3 specification. Both of these aspects, retrieved from
Definition 1 and explained in Sect. III-B1c, can also be seen
in the BIP model (see e.g. location get in Fig. 7). Yet, the
models we aim to generate will be run, on the real robot, by
the BIP Engine (Sect.II-A1). We may then execute the real C
code attached to codels which, we recall, we refer to simply as
executing codels (Sect. II-B). It follows that we need to extend
the model to take into account such concrete execution.
First, we need to remove non-determinism. When a GenoM3
activity is executed, any non-determinism within is resolved:
when a codel has more than one successor, its concrete execu-
tion returns the codel to execute next (among the successors
defined by the transitions in the GenoM3 specification). For
any codel c with more than one successor, we need thus an
intermediate location ctest to decide which codel to execute
next according to the return value of the execution of c. If c
is TS (resp. TU), the edges from location c (resp. cexec) to
each location c′ (of each successor c’) in the offline model
are then replaced by one edge from c (resp. cexec) to ctest ,
on which codel c is executed, plus

;

edges, guarded with an
equality between the return value of the execution and c’,
between ctest and each c′. Second, we need to replace the
“emulation” of execution time by a timing constraint on the
concrete execution of the codel. Since the concrete execution
is done on an edge/interaction rather than in a location, we
use the BIP construct resume() to define such constraint.
Let us illustrate how this is done for activity Measure (Fig. 7).
Without details on other operations and guards (previously
explained for the DUTA implementation and its BIP counter-
part), and with a simplified version of codels names (without
activities subscripts), listing 8 shows the (extended model) of
the header of the BIP atom component for activity Measure
as well as the behavior of the TS codel get. The extension for
the latter is comprised between lines 16 and 30. Notice how,
to remove non-determinism, intermediary location gettest is
added. On the edge get → gettest (lines 16 to 20), the concrete
execution of codel get takes place (line 19). Then, once gettest
is reached, it is urgently left to reach either getpause or ether ,
depending on the return value of the concrete execution (lines
22 to 30). Dually, there is no more an invariant at location
get and a guard x > 0 on its outgoing edge(s) (Fig. 7).
Instead, the outgoing edge of get is

;

(keyword eager, to start
the execution immediately, line 18) and the resume(x ≤ 2)
statement (line 20) checks whether the concrete execution of
the edge operations (i.e. executing codel get in this case, line
19) takes no longer than 2 time units, that is the WCET of get
(we recall that clock x is reset when reaching get according to
Definition 1). If the timing constraint of resume() is violated,

the Engine detects it (example in Sect. IV).

1 /* external data type for codel return */
2 extern data type genom_event
3 ...
4 atom type measure()

6 data genom_event next_codel
7 clock x unit millisecond
8 ...
9 port Basic get_to_get_test()

10 port Basic get_to_ether()
11 port Basic get_to_get_pause()

13 state ether, start, start_exec, start_test, get,
get_test, get_pause, write_p, write_p_exec,
write_p_test, stop

14 initial to ether
15 ...
16 on get_to_get_test
17 from get to get_test
18 eager
19 do {next_codel=... } /* call C code of get*/
20 resume (x≤2)

22 on get_test_to_ether()
23 from get_test to ether
24 provided (next_codel == ether)
25 eager

27 on get_test_to_get_pause()
28 from get_test to get_pause
29 provided (next_codel == get_pause)
30 eager
31 ...
32 end

Listing 8: Codel execution in BIP (activity Measure, Fig. 6)
5) Automatic synthesis: After developing our sound transla-
tion and extending it to runtime, we need to automatize it
to reach our goal of a sound and automatic translation from
GenoM3 to BIP. Automation is very important as it allows
to obtain the BIP counterpart from any GenoM3 specification,
while sheathing the translation details to the robotic program-
mer. Listing 9 shows an example of how such automation
is achieved using the template mechanism (introduced in
Sect. II-B2). It is an excerpt that generates the locations of
the BIP atom component from the GenoM3 specification of
some activity a, which would, for activity Measure, generate
line 13 in listing 8. The interpreter outputs everything as is,
except what is enclosed in <’ ’> that it evaluates in Tcl, and
in <” ”> that it evaluates and outputs the result.
In sum, the listing implements rule (2) of Definition 1 (to get
the locations of the DUTA of a, which remain the same in
the BIP model) plus the additional ctest locations added for
the concrete execution of codels with more than one successor
(Sect. III-B4). In order to do so, we need first to know which
codels are targeted by a pause transition. This is done from line
1 to 6, where we iterate over each successor y of each codel c
of a and add y to the list called p only if the transition c to y
is a pause transition (notice that [$a codels] returns all codels
of a specified by the user, that is excluding ether, which is
sufficient here because we know ether has no successors in
the specification, Sect. II-B1). Thus, arriving at line 7, p will
contain all the codels targeted by a pause transition in the
GenoM3 specification of a (if any). Then, we apply rule (2) of
Definition 1: we generate the location ether , always present

in an activity (initial location, line 7), then, from line 8 to
12, we output for each codel c (excluding ether) a location
with the same name (line 8), and an additional location cexec
(resp. cpause) iff codel c is TU, line 9 (resp. TS targeted
by a pause transition, line 10 to 12), with any TU codel c
recognized through the non emptiness of the list of all codels
in conflict with c, returned by the mutex function (line 9).
Finally, if codel c has more than one successor (line 13), an
additional location ctest is generated for concrete execution
purposes (Sect. III-B4).

1 <’set p [list]’>
2 <’foreach c [$a codels] {’>
3 <’ foreach y [$c yields] {’>
4 <’ if {[$y kind] == "pause" && !($y in $p)} {lappend p

$y}
5 <’ }’>
6 <’}’>
7 state ether
8 <’foreach c [$a codels] {’>, <"[$c name]">
9 <’ if {[llength [$c mutex]]} {’>, <"[$c name]">_exec<’}’>

10 <’ } else {
11 <’ if {$c in $p} {’>, <"[$c name]">_pause<’}
12 <’ }’>
13 <’ if {[llength [$c yields]] > 1} {’>, <"[$c

name]">_test<’}’>
14 <’}’>

Listing 9: Automatic generation of locations (for activity a)

IV. EXPERIMENTS AND DISCUSSION

We generate automatically the BIP model of our autonomous
navigation case study (Sect. II-B3), using the template devel-
oped in Sect. III. We add, to the generated model, a monitor
to verify a crucial timed property, and properly react to its
possible violation online. The experiments, publicly available
as videos (see Artefacts below), are carried out in simulation
and on the real Robotnik platform.
A. Properties of interest

In laser-based navigation, failure to use updated LRF data dur-
ing motion may lead to collision with obstacles which could
damage the robot or injure humans. An important property to
verify is thus “always getting new laser data in a bounded
amount of time when the robot is moving”. That is, each time
port Laser (LASERDRIVER (Fig. 3, Sect. II-B3)) is written,
it will be rewritten before a timeout occurs, which means that
there must be a maximum amount of time separating any two
successive writes on the port. This is a bounded response
property, the violation of which means that there is a serious
problem such as a starvation phenomenon (a codel is waiting
forever to get access to the port it writes) or a sensor defect.
The robot must thus urgently stop moving and abandon its
mission. We also visualize the violation of timing constraints
extracted from the specification, mainly the WCET of codels.
B. RV with BIP

After we generate the runtime BIP model, we augment it with
a monitor to verify the bounded response property. First, we
create a BIP atom monitor which verifies online the correct-
ness of the property (listing 10). Starting to move is captured
via port go. Port scan corresponds to the event of writing (the
GenoM3) port Laser within the constant timeout. Port report

corresponds to detecting the violation of the property. Finally,
port finish is triggered when the motion ends (goal reached,
invalid, unreachable). It follows that location idle (resp. busy)
corresponds to the robot at rest (resp. at motion), that is no
(respect. one) instance of activity GotoPosition (NAVIGATION,
Fig. 3) is being executed. Notice the non-determinism at busy
when x ≤ timeout (lines 15 to 24) with no real impact on the
desired behavior (if scan is triggered first when both scan and
finish are possible, finish will follow immediately anyway).

1 atom type monitor()

3 clock x unit millisecond
4 export port Basic scan(),

report(), go(),
finish()

6 state idle, busy

8 initial to idle

10 on go
11 from idle to busy
12 eager
13 do {x=0;}

15 on scan

16 from busy to busy
17 provided (x≤ timeout)
18 eager
19 do {x=0;}

21 on finish
22 from busy to idle
23 provided (x≤ timeout)
24 eager

26 on report
27 from busy to idle
28 provided (x> timeout)
29 eager

31 end

Listing 10: The monitor atom type

Second, we need to create connectors that link ports automati-
cally generated in the model with the ports of the atom monitor
so they correspond to the wanted events as explained above.
We make sure this “connection” between the monitor and the
generated model is non invasive, that is the monitor does not
modify (only observes) the events of the underlying model
unless the priority is violated (at which point it intervenes to
stop the robot). We will see how this works for ports scan
and report, for instance. The event that scan corresponds to
is writing the port Laser. We need thus a connector that
involves both scan and the connector within the compound
laserdriver (generated from the GenoM3 component LASER-
DRIVER, Fig. 3) that corresponds to writing the GenoM3 port
Laser. This connector is defined as Write Laser. Now, we
create a broadcast connector involving both parties as follows:
connector br2 Scan_OK (LaserDriver.Write_Laser, Monitor.scan)

Where br2 is a broadcast connector type with two ports (the
first is the sender), Monitor an instance of atom monitor and
LaserDriver an instance of laserdriver. Using a broadcast
ensures the monitor’s “non-invasive” feature described above:
writing the laser must remain possible even when the robot
is not moving, as allowed by the GenoM3 model. When the
robot is moving, the maximal interaction (involving both the
sender and the receiver) is guaranteed by the BIP Engine.
Now, port report in the monitor must correspond to the action
to take if the property is violated, i.e. to urgently stop the robot.
To do so, we couple triggering report with the generation of
a request to activity Stop (component SAFETYPILOT). This
is because activity Stop interrupts activity StopIfObstacle in
the same component, the codel stop of which writes a null
speed to its Cmd (GenoM3) port (which makes the robot stop
moving when applied by ROBOTDRIVER, Fig. 3, Sect. II-B3).
The port triggering the behavior following a Stop request in

the compound safetypilot (generated automatically from the
GenoM3 component SAFETYPILOT) is defined as Rq Stop. We
need thus to create a rendezvous connector involving report
(from the monitor) and Rq Stop:
connector sync2 Scan_Fail (SafetyPilot.Rq_Stop, Monitor.report)

Where sync2 is a two-port rendezvous connector type and
SafetyPilot an instance of safetypilot. Alternatively, we may
send a request Stop in component NAVIGATION, which will
interrupt activity GotoPosition and eventually entail writing a
null speed to the Cmd (GenoM3) port of SAFETYPILOT.
The BIP model (including the monitor) is now ready for
execution and RV (including proper reaction to the possible
violation of the timed property of interest). We set the timeout
to 100 ms, which is the period of POTENTIALFIELD (in charge
of potential-field navigation). The robot fulfills its missions
correctly. We inject then some delays: we (i) create an activity
SetDelay in the GenoM3 component LASERDRIVER which
uses a usleep() function in order to delay writings to port
Laser, then (ii) visualize how the monitor intervenes to stop
the robot quickly. We may see within the execution trace
that the Engine forces taking connector Scan Fail, which
results in executing codel stop of activity StopIfObstacle
(SAFETYPILOT), and therefore a zero speed is sent to the
controller as shown in the listing below.

[BIP ENGINE]: state #165351: 1 interaction:
[BIP ENGINE]: [0] ROOT.Scan_Fail: SafetyPilot.Rq_Stop()

Monitor.report()] 26s591ms324us108ns, +INFTY]
[BIP ENGINE]: →choose [0] ROOT.Scan_Fail:

SafetyPilot.Rq_Stop() Monitor.report() at global time
26s591ms324us109ns

...
[GenoM3] SafetyPilot Calling

SafetyPilot_activity_StopIfObstacle_stop codel.
[GenoM3] SafetyPilot Exiting

SafetyPilot_activity_StopIfObstacle_stop codel with
::SafetyPilot::ether.

While tuning the timeout, we realize that a constraint as small
as 40 ms is too strict as the monitor stops the robot too often.
This observation allowed us to reconsider the 40 ms period
that we give to SafetyPilot (which also relies on the LRF).
The BIP Engine allows us also to further tune codels WCETs,
as it issues a warning whenever a resume() constraint
(Sect. III-B4) is violated. Below is a warning issued by the
Engine pointing out that a resume within component init in
the compound instance PotentialField (mapping activity init
in the GenoM3 component POTENTIALFIELD) is violated. The
messages given by GenoM3 help localizing where the violation
occurred (in this example, the WCET of codel start).

[GenoM3] PotentialField Calling
PotentialField_activity_Init_start codel.

[GenoM3] PotentialField Exiting
PotentialField_activity_Init_start codel with
::PotentialField::ether.

[BIP ENGINE]: WARNING: state #903017 and global time
1min3s230ms653us976ns: violation of the following
timing constraint ROOT.PotentialField.init:

[BIP ENGINE]: ROOT.PotentialField.Init resume [-INFTY,
1min3s229ms530us282ns]

Artefacts: Link [1] directs to three videos of our experiments.
One video shows the full automatic generation process. The
other two show the RV: one using the Gazebo simulator and

the other on the Robotnik platform. In the former (resp. the
latter), the BIP Engine interrupts activity StopIfObstacle in
SAFETYPILOT (resp. GotoPosition in NAVIGATION) in order
to stop the robot (by executing codel stop of StopIfObstacle,
resp. GotoPosition) following injected delays through SetDelay
requests. A README file is provided for further details.

C. Discussion

We manage to verify online a crucial bounded response
property and adequately react to its violation, as well as to
monitor timing constraints related to concrete execution of
codels, on the real robotic platform. Execution and RV with
the BIP Engine offer a rigorous and efficient alternative to
exhaustive techniques such as model checking. Indeed, the
formal models obtained from our case study are too large to
scale with tools such as TINA and UPPAAL, as we confirm
when we generate them using the templates developed in [17]
and [20]. To give an idea on the size of formal models of our
case study, the automatically generated BIP model is over 13
thousand lines (excluding codels C code) and its compilation
takes over 20 minutes on a modern computer.
However, the BIP Engine induces, in this application, up to
10% overhead (processor load), which creates delays that may
play a role in reaching the timeout and thus violating the
bounded response property. Such overhead also prevents us
from applying the approach in this paper to robotic applica-
tions running at high frequencies such as the drone navigation
presented in [14]. Another issue is that the monitor is added
manually to the generated BIP model, which threatens the
usability of our approach by a regular robotic engineer. Some
future directions to solve the above issues are given in Sect VI.

V. RELATED WORK

A. RV in Robotics

The literature of RV of functional robotic components is
relatively rich. For instance, the Java PathExplorer tool [24]
is used with the NASA robot K9 case study. Important LTL
and concurrency-related properties (such as deadlock freedom)
are verified at runtime. ROSRV [25], an RV environment for
ROS-based robotic systems, is another related work. It adds a
monitoring layer on top of the ROS components to restrict the
execution to scenarios satisfying security and safety properties.
A more recent example is found in [30], where past-time
LTL (available since [29]) is used to formulate properties of a
collision avoidance algorithm, which are then checked online
by monitors based on (untimed) FSM models. Fault Detection,
Isolation and Recovery (FDIR) approaches are also related
works when RV is employed to perform fault detection. In
particular, BIP has been used to develop FDIR components
to detect and recover from time-related faults in aerospace
robotics [33], [32].
Globally, RV in robotics suffers from two major limitations.
Firstly, it is mostly restricted to temporal and safety properties
(no verification of timed properties), which is the case in
all the related work above (except the FDIR ones). This
problem is not intrinsic to RV, as RV theories for timed
properties have significantly progressed in the last decade [7],

[35]. Rather, the application of such theories in the robotic
domain is timid as of today. Secondly, as emphasized in
Sect. I, robotic functional components are mostly specified
in non formal frameworks. In all the related work above, the
authors generate the (formal) monitors that they link to (non
formal) specifications, which raises a number of concerns. For
instance, it is difficult to reason on the trustworthiness of the
overall approach (i.e. to know at what point we can trust the
non-formal specifications, and consequently trust the whole
system). Moreover, this heterogeneity leads to performance
issues that are more perceptible than those that we report here
where the model (including the monitor), the executer and the
verifier are all in BIP. As an example, the authors of [24]
notice a slowdown by an order of magnitude (compared to
10% of overhead in our case) due to the fact that the monitors
and the logic Engine (to check the properties) are written in
two different languages, respectively Java and Maude [9].
Recent works in [10], [13], [11] are a notable exception to the
above limitations. However, their approach requires encoding
robotic specifications in the formal language P [12], whereas
we favor increasing usability by robotic programmers by
automatically and transparently bridging a robotic framework
(GenoM3) with a timed formal language (BIP).
B. Verification Works Involving GenoM3
Recent works involving GenoM3 include automatic translation
and verification of functional components using model check-
ing and SMC [17], [20], [19], [16]. The formal models of the
case study we present here are too large to scale with model
checking. Furthermore, as we conclude in [20], SMC raises
an open confidence problem (it is hard to set the probability
at which we deem the properties “sufficiently” satisfied).
When it comes to RV, works like [3] use the untimed version
of BIP to model and verify functional components written in
GenoM2 (an earlier version of GenoM). None of such works
escapes the two limitations explained in Sect. V-A: (i) no timed
properties could be verified (due to the untimed nature of BIP
then) and (ii) it is not possible to verify the soundness of
the BIP models (vis-à-vis their robotic counterpart) due to the
absence of operational semantics of GenoM2.
C. Our Contribution
The work we present here tackles both limitations of RV in
robotics (Sect. V-A): (i) runtime models are formal, with the
BIP model faithful to the semantics of the robotic specification
and (ii) timed properties are supported, with appropriate ac-
tions whenever they are violated. Furthermore, the translation
from GenoM3 to BIP is automated. We offer therefore a
trustworthy and efficient alternative to model checking for
large models, with a support for timed properties. To the best
of our knowledge, this is the first work where both execution
and RV of timed properties, based on formal foundations, are
directly accessible from a mainstream robotic framework.

VI. CONCLUSION

In this paper, we propose a sound and automatic translation
from the robotic framework GenoM3 to the real-time formal
language BIP. The approach is convenient to robotic program-
mers with no formal background as it conceals the translation

details and provides the BIP model for any new robotic
application with no additional modeling efforts. The BIP
model of a real-world case study is generated and executed,
using the BIP Engine, on the robotic platform. Orchestrated
with a monitor, the generated BIP model is used to verify
a crucial timed property (bounded response) at runtime and
properly react to its violation, on a model that originally does
not scale with model checking.
We give two directions of future work. First, though acceptable
compared to that reported in related work, the 10% overhead of
the BIP Engine introduces unpredictable delays (Sect. IV-C).
For future work, we plan to investigate further the sources
of such overhead in order to try and reduce it. Second, the
manual encoding of BIP monitors is unsuitable for robotic
programmers (Sect. IV-C). In the future, we aim to extend
the BIP template to generate, from a GenoM3 specification
and a (possibly timed) property, an equivalent BIP model
including the property monitor. However, we first need a
high-level, preferably robotic-friendly language, where the
robotic engineer can express the properties of interest. Once
such a language is defined, we may benefit from theoretical
results on generating timed automata monitors from property
specifications [28], [34].

REFERENCES

[1] Artefacts (videos). Shortened DropBox link https://bit.ly/3i8IXs4.
[2] The Pocolibs middleware https://git.openrobots.org/projects/pocolibs.
[3] Tesnim Abdellatif, Saddek Bensalem, Jacques Combaz, Lavindra

De Silva, and Felix Ingrand. Rigorous Design of Robot Software:
A Formal Component-Based Approach. Robotics and Autonomous
Systems, 60(12):1563–1578, 2012.

[4] Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. Model-Based
Implementation of Real-Time Applications. In International Conference
on Embedded software, pages 229–238, 2010.

[5] Rajeev Alur. Timed Automata. In International Conference on
Computer-Aided Verification, pages 8–22. Springer, 1999.

[6] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling Heteroge-
neous Real-Time Components in BIP. In International Conference on
Software Engineering and Formal Methods, pages 3–12. IEEE, 2006.

[7] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime
Verification for LTL and TLTL. ACM Transactions on Software
Engineering and Methodology, 20(4):1–64, 2011.

[8] Sébastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling
Urgency in Timed Systems. In International Symposium on Compo-
sitionality, pages 103–129. 1997.

[9] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Martı-Oliet, José Meseguer, and José F Quesada. Maude: Specification
and Programming in Rewriting Logic. Theoretical Computer Science,
285(2):187–243, 2002.

[10] Ankush Desai, Tommaso Dreossi, and Sanjit A Seshia. Combining
Model Checking and Runtime Verification for Safe Robotics. In
International Conference on Runtime Verification, pages 172–189, 2017.

[11] Ankush Desai, Shromona Ghosh, Sanjit A Seshia, Natarajan Shankar,
and Ashish Tiwari. SOTER: A Runtime Assurance Framework for
Programming Safe Robotics Systems. In International Conference on
Dependable Systems and Networks, pages 138–150. IEEE, 2019.

[12] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram
Rajamani, and Damien Zufferey. P: Safe Asynchronous Event-Driven
Programming. ACM SIGPLAN Notices, 48(6):321–332, 2013.

[13] Ankush Desai, Shaz Qadeer, and Sanjit A Seshia. Programming
Safe Robotics Systems: Challenges and Advances. In International
Symposium on Leveraging Applications of Formal Methods, pages 103–
119. Springer, 2018.

[14] Mohammed Foughali. Toward a Correct-and-Scalable Verification of
Concurrent Robotic Systems: Insights on Formalisms and Tools. In
International Conference on Application of Concurrency to System
Design, pages 29–38. IEEE, 2017.

[15] Mohammed Foughali. Formal Verification of the Functional Layer of

Robotic and Autonomous Systems. PhD Thesis, INSA Toulouse, 2018.
[16] Mohammed Foughali. A Two-Step Hybrid Approach for Verifying Real-

Time Robotic Systems. In International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 1–10. IEEE,
2020.

[17] Mohammed Foughali, Bernard Berthomieu, Silvano Dal Zilio, Pierre-
Emmanuel Hladik, Félix Ingrand, and Anthony Mallet. Formal Verifi-
cation of Complex Robotic Systems on Resource-Constrained Platforms.
In International Conference on Formal Methods in Software Engineer-
ing, pages 2–9. ACM, 2018.

[18] Mohammed Foughali, Silvano Dal Zilio, and Félix Ingrand. On the
Semantics of the GenoM3 Framework. Tech. Report, LAAS-CNRS, 2019.

[19] Mohammed Foughali and Pierre-Emmanuel Hladik. Bridging the Gap
between Formal Verification and Schedulability Analysis: The Case of
Robotics. Journal of Systems Architecture, 111:817–852, 2020.

[20] Mohammed Foughali, Félix Ingrand, and Cristina Seceleanu. Statistical
Model Checking of Complex Robotic Systems. In International SPIN
Symposium on Model Checking of Software, pages 114–134. Springer,
2019.

[21] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning:
Theory and Practice. Elsevier, 2004.

[22] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu.
A Survey of Deep Learning Techniques for Autonomous Driving.
Journal of Field Robotics, 37(3):362–386, 2020.

[23] Matteo Guerra, Denis Efimov, Gang Zheng, and Wilfrid Perruquetti.
Avoiding Local Minima in the Potential Field Method Using Input-to-
State Stability. Control Engineering Practice, 55(C):174–184, 2016.

[24] Klaus Havelund, Grigore Rosu, and Daniel Clancy. Java PathExplorer: A
Runtime Verification Tool. Tech. Report, NASA Ames Research Center,
2001.

[25] Jeff Huang, Cansu Erdogan, Yi Zhang, Brandon Moore, Qingzhou Luo,
Aravind Sundaresan, and Grigore Rosu. ROSRV: Runtime Verification
for Robots. In International Conference on Runtime Verification, pages
247–254. Springer, 2014.

[26] Nathan Koenig and Andrew Howard. Design and Use Paradigms
for Gazebo, an Open-Source Multi-Robot Simulator. In International
Conference on Intelligent Robots and Systems, pages 2149–2154. IEEE,
2004.

[27] Hadas Kress-Gazit, Tichakorn Wongpiromsarn, and Ufuk Topcu. Cor-
rect, Reactive, High-Level Robot Control. IEEE Robotics & Automation
Magazine, 18(3):65–74, 2011.

[28] Moez Krichen and Stavros Tripakis. Conformance Testing for Real-Time
Systems. Formal Methods in System Design, 34(3):238–304, 2009.

[29] Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. The Glory of the
Past. In Workshop on Logic of Programs, pages 196–218, 1985.

[30] Chenxia Luo, Rui Wang, Yu Jiang, Kang Yang, Yong Guan, Xiaojuan Li,
and Zhiping Shi. Runtime Verification of Robots Collision Avoidance
Case Study. In Computer Software and Applications Conference, pages
204–212. IEEE, 2018.

[31] Anthony Mallet, Cédric Pasteur, Matthieu Herrb, Séverin Lemaignan,
and Félix Ingrand. GenoM3: Building Middleware-Independent Robotic
Components. In International Conference on Robotics and Automation,
pages 4627–4632. IEEE, 2010.

[32] Jorge Ocón, Iulia Dragomir, Andrew Coles, Lars Kunze, Robert Marc,
Carlos Perez, Thierry Germa, Vincent Bissonnette, Genny Scalise,
Mohammed Foughali, Konstantinos Kapellos, Raùl Dominguez, Florian
Cordes, Gerhard Paar, and Giulio Reina. ADE: Autonomous DEcision
making in very long traverses. In International Symposium on Artificial
Intelligence, Robotics and Automation in Space, 2020.

[33] Jorge Ocón et al. The ERGO Framework and Its Use in Planetary/Orbital
Scenarios. In International Astronautical Congress, 2018.

[34] Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, Hervé Marchand, An-
toine Rollet, and Omer Nguena Timo. Runtime Enforcement of Timed
Properties Revisited. Formal Methods in System Design, 45(3):381–422,
2014.

[35] Srinivas Pinisetty, Thierry Jéron, Stavros Tripakis, Yliès Falcone, Hervé
Marchand, and Viorel Preoteasa. Predictive Runtime Verification of
Timed Properties. Journal of Systems and Software, 132:353–365, 2017.

[36] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. ROS: an Open-Source
Robot Operating System. In International Workshop on Open Source
Software, page 5, 2009.

[37] Richard Volpe, Issa Nesnas, Tara Estlin, Darren Mutz, Richard Petras,
and Hari Das. The CLARAty Architecture for Robotic Autonomy. In
IEEE Aerospace Conference, pages 115 –121, 2001.

https://bit.ly/3i8IXs4
https://git.openrobots.org/projects/pocolibs

